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Abstract—In this paper, we address the problem of joint
direction-of-arrival (DoA) and range estimation using frequency
diverse coprime array (FDCA). By incorporating the coprime
array structure and coprime frequency offsets, a two-dimensional
space-frequency virtual difference coarray corresponding to
uniform array and uniform frequency offset is considered to
increase the number of degrees-of-freedom (DoFs). However,
the reconstruction of the doubly-Toeplitz covariance matrix is
computationally prohibitive. To solve this problem, we propose
an interpolation algorithm based on decoupled atomic norm
minimization (DANM), which converts the coarray signal to
a simple matrix form. On this basis, a relaxation-based op-
timization problem is formulated to achieve joint DoA-range
estimation with enhanced DoFs. The reconstructed coarray signal
enables application of existing subspace-based spectral estimation
methods. The proposed DANM problem is further reformulated
as an equivalent rank-minimization problem which is solved by
cyclic rank minimization. This approach avoids the approxima-
tion errors introduced in nuclear norm-based approach, thereby
achieving superior root-mean-square error which is closer to the
Cramér-Rao bound. The effectiveness of the proposed method is
confirmed by theoretical analyses and numerical simulations.

Index Terms—coprime array, direction-of-arrival estimation,
frequency diverse array, atomic norm, degree-of-freedom, pa-
rameter estimation.

I. INTRODUCTION

LOCALIZATION is a fundamental problem in radar,
sonar, wireless communications, and navigation. It plays

an increasingly important role in various emerging applications
such as autonomous driving [2], 5G and next-generation
communications [3], and Internet of Things (IoT) [4]. In
order to localize targets in both direction-of-arrival (DoA) and
range, beam steering of phased arrays should be achieved
across a certain signal bandwidth. Recently, a special type
of phased array with frequency diversity, namely, frequency
diverse array (FDA), has attracted great attention [5], [6]. The
concept of FDA was first proposed by Antonik et al. [7], [8].
By exploiting a small frequency increment across the array
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elements, FDA achieves a focused beam to localize targets
in both angle and range dimensions [9]–[12]. On the other
hand, an analogous technique called SpotFi [13] also aroused
much attention in the wireless communication community.
SpotFi is a localization system using channel state information
acquired from commercial off-the-shelf Wi-Fi devices, which
use orthogonal frequency-division multiplexing (OFDM) sig-
nals to estimate the DoA and range of targets relative to
the access point. Essentially, the ranging capability of both
FDA and SpotFi originates from the utilization of frequency
diverse signals, which produce a range-related phase difference
between subcarriers. The combination of spatial sampling and
frequency diversity yields a space-frequency diverse system
and, thereby, facilitates joint DoA-range estimation.

Future localization technology is envisioned to accommo-
date a massive number of devices and support fine-grain
positioning. This imposes much higher requirements in terms
of the number of spatial degrees-of-freedom (DoFs) and signal
bandwidth. The prototype FDA configuration [7], [8], which
consists of N antenna elements with each element using a
subcarrier of a fixed frequency offset, is able to resolve up
to N2 − 1 targets. As the number of DoFs, which determines
the maximum number of detectable targets, is fundamentally
limited by the number of sensors and the order of frequency
diversity, increasing the number of DoFs and range resolution
with a small number of sensors and low spectrum occupancy
is a problem of great interest [14]. In the literature, several
types of sparse arrays have been designed to provide a larger
array aperture and increase the number of DoFs for a given
number of physical sensors [15]–[19]. Extending this concept
to FDAs rendered the development of coprime array with
coprime frequency offsets [20], [21] that exploits the virtual
difference coarray concept [22] to circumvent the limitation of
physical sampling. In this paper, we refer to the array config-
urations as the frequency diverse coprime array (FDCA), and
the corresponding coarray processing as its space-frequency
virtual difference coarray.

Under the space-frequency difference equivalence of an
FDCA, the derived virtual coarray has multiple missing el-
ements, commonly referred to as ‘holes’, which lead to the
model mismatch [23] for decoherence. To fully utilize the
array aperture and the DoF potentials of a space-frequency
difference coarray, the complex multi-task Bayesian compres-
sive sensing (CMT-BCS) framework is employed in [20] to
enhance the robustness to dictionary coherence. However, this
method has two major issues: (a) The maximum number of
DoFs is still limited by the number of non-negative unique
lags [16], and (b) Pre-defined spatial grids are required. As
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will be demonstrated later, in addition to its high computa-
tionally complexity, CMT-BCS is grid-based and suffers from
performance loss when there is basis mismatch.

Solutions to avoiding ‘holes’ and providing extra DoFs in a
coarray so as to enable gridless DOA estimation can be largely
divided into two classes. The first one extends the maximum
contiguous segment by proper non-uniform configuration de-
sign [14], [24], [25], at the expense of imposing extra require-
ment on hardware complexity. The other approach is to fill in
the holes based on Toeplitz covariance matrix reconstruction,
such as those using the nuclear norm minimization (NNM)
algorithm [26], [27], the maximum entropy algorithm [27],
and the atomic-norm minimization (ANM) algorithm [29],
[30]. These algorithms recover missing array data for a general
class of non-uniform array configurations. To ensure that these
algorithms work properly, the array manifold must satisfy the
Vandermonde property, which is an intrinsic property of the
uniform linear array (ULA). However, as the FDCA receive
signals are coupled in direction and range, such prerequisite is
not met. More specifically, the covariance matrix of an FDCA
is obtained from the Kronecker product of two analogous
Toeplitz matrices, which are respectively constructed by spatial
diversity of sensor position and frequency diversity of different
carrier frequency. As such, the resultant covariance matrix is
a doubly-Toeplitz matrix instead of a Toeplitz one.

Motivated by the above facts, in this paper, we propose
a low-complexity interpolation framework for gridless joint
DoA-range estimation using the space-frequency difference
coarray of FDCA. First, we derive the space-frequency dif-
ference coarray from the physical FDCA receive signal. By
respectively applying two-dimensional (2D) spatial smoothing
technique (SST) [13] and 2D MUltiple SIgnal Classification
(MUSIC) algorithm [31] on the difference coarray signal,
a DoF-enhanced joint DoA-range estimation framework is
established. Then, we propose a DANM-based interpolation
method to fully utilize the information in the presence of
‘holes’ as well as to reduce the computational complexity
of doubly-Toeplitz reconstruction. To avoid the approximation
loss introduced in the convex relaxation by DANM, we convert
the original ANM problem into a 2D rank-minimization prob-
lem. By further incorporating the cyclic rank minimization
approach [32] into the rank reformulation framework [33],
we reconstruct the coarray signal more accurately with lower
parameter estimation errors. The enhanced estimation perfor-
mance in terms of the higher number of DoFs, improved
estimation accuracy, and lower computational complexity is
verified by the numerical results. The main technical contri-
butions of this work are summarized as follows:

• We design a 2D SST method as the foundation to
develop a generic coarray-based gridless joint DoA-range
estimation method. A baseline method for DoF-enhanced
estimation is formulated using the consecutive part of the
space-frequency virtual difference coarray.

• We decouple the underlying doubly-Toeplitz reconstruc-
tion problem, which is computationally costly, and for-
mulate the DANM approach based on decoupled atomic
norm minimization. DANM can fully utilize the space-
frequency difference coarray signals with ‘holes’ to in-

crease the number of DoFs.
• To avoid the approximation loss of the DANM induced by

relaxation, we reformulate a dual-variable rank minimiza-
tion problem, which is exactly equivalent to the original
atomic l0-minimization and thus yields more accurate
parameter estimation. We solve the problem via cyclic
minimization and further design an alternating direction
method of multipliers (ADMM)-based solver, which has
closed-form solutions and is computationally efficient.

• We provide comprehensive theoretical analyses of the
proposed joint estimation framework. Based on the in-
terpolated coarray manifold, we first explore the identifi-
abilty conditions of the space-frequency coarray, and then
prove the convergence of the proposed CRM method. Fur-
thermore, to analytically evaluate the performance of the
interpolation, the respective bounds of the reconstruction
performance using DANM and CRM are derived.

The rest of this paper is organized as follows. In Section II,
we first describe the array configuration and the signal model
under investigation. Then, we reconstruct the consecutive
coarray signal into a spatial-smoothed form as a baseline for
DoF-enhanced joint estimation. In Section III, we reduce the
complexity of the underlying doubly-Toeplitz reconstruction
problem by decoupling the coarray signal and the atomic
norm is defined. We then interpolate the ‘holes’ using DANM
and achieve DoF-enhanced joint DoA-range estimation. In
Section IV, we propose a loss-free cyclic rank-minimization
(CRM)-based method to reconstruct the signal matrix and
further design an ADMM-based highly efficient closed-form
solver. In Section V, we analyze the identifiabilty of the
coarray-based estimation framework, the convergence of the
CRM method, and the theoretical reconstruction performance
of the interpolation methods. We evaluate and analyze the
performance of the proposed scheme via extensive numerical
simulations in Section VI. The conclusion of this paper is
drawn in Section VII.

Notations: Lower (upper)-case bold characters are used
to denote vectors (matrices), and the vectors are by default
in column orientation. Both Ai,j and (A)i,j represent the
(i, j)-th entry of matrix A, while [A]i,j denotes the (i, j)-
th submatrix, i.e., A with the i-th row and the j-th column
deleted. Blackboard-bold characters denote standard sets of
numbers and, in particular, C denotes the set of complex
numbers. The operator vec(·) vectorizes a certain matrix and
matrix(a) reshapes a vector a ∈ CL2

to a square matrix
A ∈ CL×L. The superscripts (·)T, (·)∗, and (·)H represent
the transpose, complex conjugate, and conjugate transpose
operators, respectively. tr(·) returns the trace of a matrix, and
rank(·) returns the rank of a matrix. diag{·} represents a
diagonal matrix that uses the entries of a vector as its diagonal
entries. I denotes an identity matrix, and i = vec(I). T(x)
denotes a Hermitian and Toeplitz matrix with x as the first
column. Symbols ◦, ⊙ and ⊗ stand for Hadamard, Khatri-
Rao and Kronecker products, respectively. The notation ∥ · ∥F
represents the Frobenius norm, and E[·] denotes the expected
value of a discrete random variable. The curled symbol ⪰
denotes linear matrix inequality. N (µ, σ2) denotes a Gaussian
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Fig. 1. Illustrative example of an FDCA with M=3 and N=5. (a) Physical array. (b) Space-frequency virtual difference coarray.

distribution with mean µ and variance σ2. ȷ =
√
−1 is the

imaginary unit.

II. PRELIMINARY

A. FDCA Signal Model

In this section, the signal model of FDCA under investi-
gation is provided. The receive array in an FDCA transceiver
system consists of two uniform sparse subarrays. One subarray
is equipped with M sensors spaced by N units, and the other
has N sensors spaced by M units, where M and N are a
pair of coprime integers with M < N , and the unit inter-
element spacing d typically takes the value of half wavelength
to avoid spatial ambiguity. In the following, we consider a
simple signal model in which the carrier offsets of the transmit
frequency diverse signal and the sensor spacing share the same
coprime pattern. As we will show in the sequel, this setting
produces a clear symmetric doubly-Toeplitz structure. Note
that the derivation can be easily extended to a general case
where the sparse pattern for the sensor positions and that
for the carrier frequencies are different. Overall, the space-
frequency structure of the FDCA can be described as the
following prototype coprime integers set

S = S1 ∪ S2 (1)

with
S1 = {Nm, 0 ≤ m ≤M − 1}, (2a)

S2 = {Mn, 0 ≤ n ≤ N − 1}. (2b)

As such, the coprime integer set yields the set of all sensor
positions P = Sd and the set of all carrier frequencies
F = f0+S∆f , where f0 and ∆f are respectively the reference
frequency and the unit frequency offset. As an example, the
FDCA model corresponding to M = 3 and N = 5 is
illustrated in Fig. 1(a). Without loss of generality, we limit
our discussion to far-field targets with only azimuth DoAs.
Assume K uncorrelated targets at positions (θk, rk), k =
1, · · · ,K, where θk and rk respectively represent the DoA

and range of the k-th target. The q-th frequency component
reflected by the k-th target and received by the i-th receive
sensor is expressed as

xi,q(t) =
∑K

k=1
sk(t)e

ȷ
4πfqrk

c e
−ȷ

2πdi
λq

sin θk + ni,q(t)

≈
∑K

k=1
sk(t)e

ȷ
4πfqrk

c e−ȷ
2πdi

λ sin θk + ni,q(t), (3)

where sk(t) is the reflection complex envelope of the k-th
target for t = 1, · · · , T , and fq = f0+sq∆f is the q-th carrier
frequency, where sq is the q-th element of coprime integer
set S and c is the speed of light. Likewise, di = sid is the
position of the i-th receive sensor, where si is the i-th element
of S. Finally, ni,q(t) denotes the additive white Gaussian noise
(AWGN). Stacking xi,q(t) for all i, q = 1, · · · ,M + N − 1,
the receive signal vector of the FDCA is obtained as

x(t)=
∑K

k=1
sk(t)hp,f(θk, rk)+n(t)=Hp,fs(t)+n(t), (4)

where hp,f(θk, rk) = hp(θk)⊗ hf(rk) represents the steering
vector associated with the position (θk, rk), with hp(θk) and
hf(rk) denoting the steering vectors corresponding to DoA θk
and range rk, respectively. In addition, the following vectors
and matrix are used in (4):

s(t) = [s1(t), · · · , sK(t)]
T
, (5a)

Hp,f = [hp,f(θ1, r1), · · · ,hp,f(θK , rK)] , (5b)

hp(θk) = [1, · · · , exp(−ȷ2πdM+N−1 sin θk/λ)]
T
, (5c)

hf(rk) = [1, · · · , exp(ȷ4πfM+N−1rk/c)]
T
. (5d)

The covariance matrix of the FDCA signal vector x(t) can be
written as

Rx = E
[
x(t)xH(t)

]
= Hp,fRsH

H
p,f + σ2

nI

= (Hp ⊙Hf)Rs(Hp ⊙Hf)
H + σ2

nI, (6)

where Rs represents the covariance matrix of the target
reflection signals s(t) and σ2

n denotes the noise power. When
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the target signals are uncorrelated, Rs = diag
{
σ2
1 , · · · , σ2

K

}
with σ2

k representing the reflection power of the k-th target.
Since Rx is unavailable in practice, it is substituted by its
asymptotically unbiased estimate from T available snapshots,

R̂x =
1

T

∑T

t=1
x(t)xH(t). (7)

B. Space-Frequency Difference Coarray

In this subsection, we first derive the virtual domain signal
corresponding to the space-frequency difference coarray of
the FDCA based on the estimated covariance matrix R̂x.
Vectorizing R̂x by stacking the columns of the matrix, the
signal in the virtual domain can be written as

x̆v = vec(R̂x) = Avp+ σ2
ni, (8)

where Av = Hp,f ⊗H∗
p,f and p = [σ2

1 , · · · , σ2
K ]T. Owing to

the cross-correlation between different sensors, each element
of x̆v corresponds to a sensor in the virtual space-frequency
domain. The positions and frequency offsets of virtual sensors
are determined by their respective difference sets P and F, i.e.,

Pdiff = Sdiff · d, Fdiff = Sdiff ·∆f, (9)

where Sdiff is the difference set of the two coprime-integer
sets, expressed as

Sdiff = {l | l = ±(Nm−Mn)|m = 0, 1, · · · ,M − 1,

n = 0, 1, · · · , N − 1 } . (10)

The signal output of the virtual sensor at position l1d with
frequency offset l2∆f is computed as the cross-correlation of
two physical sensors spacing l1d with frequency difference
l2∆f . Thus, the virtual signal vector can be obtained by
selecting the element of x̆v as

x̌v = Ǎvp+ σ2
n ǐ. (11)

The entries of submatrix Ǎv and subvector ǐ are respectively
selected from Av and i by removing redundant elements.

For the FDCA illustrated in Fig. 1(a), the yielding space-
frequency difference coarray is shown in Fig. 1(b). The
dimension of the signal vector rapidly increases from 49 to
441 in the coarray derivation, and the number of non-negative
lags increases from 49 to 121 as well. The missing sensors
at {−11,−8, 8, 11} correspond to the missing elements in
the difference set of coprime integers, which are commonly
referred to as ‘holes’ in the literature. If we can fill the ‘holes’
shown in Fig. 1(b), as we will discuss in the sequel, the number
of non-negative lags will be further increased to 169.

Note that, the virtual signal vector x̌v is obtained from the
covariance matrix which represents the second-order statistics
of the signal and, thus, is equivalent to a single-snapshot
signal which suffers from the problem of coherence. That
is, any uncorrelated signal in the physical FDCA domain
becomes coherent in the difference coarray. As a result,
the covariance matrix of the virtual signal is rank-deficient
and decoherence techniques such as the SST [13] must be
applied. The SST divides a uniform linear array into multiple
overlapping subarrays to solve the rank-deficient problem. For

Coarray Signal Smoothed Coarray Signal

Fig. 2. Construction of smoothed coarray signal from input coarray signal.

difference coarray containing ‘holes’, only the consecutive part
located within the black dashed square of Fig. 1(b) is extracted.
The size of subarrays is set as the red dashed square in
Fig. 1(b), and a full-rank measurement can be constructed via
SST as illustrated in Fig. 2, where xj,l is the virtual signal with
frequency offset j∆f at position ld, and U is the maximum
index of the consecutive part. 2D MUSIC algorithm can be
directly applied to the smoothed coarray signal to estimate
the range and DoA of all targets. We denote the smoothed
coarray signal in Fig. 2 as Rss, which is a spatial smoothed
covariance matrix of the receive signal. Denote UN as the
noise subspace formed by eigenvectors that correspond to the
smallest eigenvalues of Rss. Then, the 2D MUSIC algorithm
is expressed as

(θ̂, r̂) = argmax
θ,r

1

ãHp,f(θ, r)UNUH
Nãp,f(θ, r)

, (12)

where
ãp,f(θ, r) = ãp(θ)⊗ ãf(r), (13a)

ãp(θ) = [1, · · · , exp(−ȷπU sin θ)]
T
, (13b)

ãf(r) = [1, · · · , exp(ȷ4πU∆fr/c)]
T
. (13c)

By applying the coarray SST, the number of DoFs is
effectively increased. For the FDCA example illustrated in
Fig. 1, the number of DoFs increases from 48 to 63 in theory.
However, such method underutilizes the array aperture and
frequency bandwidth as it discards the non-consecutive part,
which inevitably results in performance loss.

III. DOF-ENHANCED JOINT DOA-RANGE ESTIMATION
USING DANM

In this section, we develop a DoF-enhanced joint DoA-
range estimation method based on DANM. In order to make
full use of the information contained in the non-consecutive
coarray, the proposed method first creates an interpolated
signal vector. To reduce the computational complexity of
doubly-Toeplitz covariance matrix reconstruction, the coarray
signal is converted into a matrix form to decouple the array
position and frequency offsets. Based on the atomic norm-
based formulation of the signal matrix, a relaxation-based
reconstruction method is proposed. Once the augmented signal
matrix is recovered, the SST and a subspace-based spectral
estimation method are used to jointly estimate the range and
DoA of the targets.
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A. Initialization of Coarray Signal Matrix

The interpolated coarray signal x̃v can be initialized as

[x̃v]j,l =

{
[x̌v]j,l , j, l ∈ Sdiff ,
0, j or l ∈ SI − Sdiff ,

(14)

where SI denotes the full integer set between −M(N − 1)
and M(N − 1), and [x̌v]j,l represents the virtual sensor with
frequency offset j∆f at position ld. Denote b as a binary
vector with one indicating derived statistics in x̃v and zero
indicating interpolated results. Then, we obtain x̃v ◦ b = x̌v.

Interpolating the ‘holes’ mathematically comes down to
a Hermitian and Toeplitz covariance matrix reconstruction
problem in single-parameter estimation (e.g., DoA estimation
in an array), which can be solved by semi-definite program-
ming (SDP) approaches such as NNM and ANM. In the
space-frequency coarray of an FDCA, on the other hand, the
signal covariance matrix is a high-dimensional doubly Toeplitz
matrix which is generated by the Kronecker product of two
Toeplitz matrices. Consider a noiseless case, the covariance
matrix of coarray signal vector xv = Ap,fp = (Ap ⊙Af)p
after applying SST is expressed as

Rv = AH
p,fRsAp,f = (Ap ⊙Af)

HRs(Ap ⊙Af), (15)

where the array manifolds and steering vectors are defined as

AP = [ap(θ1), · · · ,ap(θK)] ∈ CM(N−1)×K , (16a)

Af = [af(r1), · · · ,ar(rK)] ∈ CM(N−1)×K , (16b)

ap(θk) = [1, · · · , exp (−ȷπM(N − 1) sin θk)]
T
, (16c)

af (rk) = [1, · · · , exp (ȷ4πM(N − 1)∆frk/c)]
T
. (16d)

According to (15), the dimension of Rv ∈
CM2(N−1)2×M2(N−1)2 exponentially increases with M and
N . Therefore, the computational complexity of reconstructing
Rv is intractable for large-scale antenna arrays [34].

Note that the coarray signal is obtained from the second-
order covariances and is equivalent to a single-snapshot signal
as mentioned in Section II. Hence, the augmented virtual
coarray signal can also be expressed in a matrix form, i.e.,

Xv=matrix(xv)=
∑K

k=1
pkap(θk)a

H
f (rk)=ApPA

H
f , (17)

where P = diag(p).

B. Atomic Norm of Coarray Signal Matrix

In view of the definition of the atomic norm of Xv, an atom
for representing Xv can be expressed as

G(θ, r) = ap(θ)a
H
f (r), (18)

where ap(θ) = [exp (ȷπL sin θ) , · · · , exp(−ȷπL sin θ)]T,
af(r) = [exp(−ȷ4πL∆fr/c), · · · , exp(ȷ4πL∆fr/c)]T and
L = M(N − 1). Thus, the corresponding atom set is

A =

{
G (θ, r)

∣∣θ ∈ [−90◦, 90◦] , r ∈
[
0,

c

2∆f

]}
. (19)

The atomic l0-norm is the smallest number of atoms needed
to represent the coarray signal matrix Xv, defined as

||Xv||A,0=inf
K

{
Xv =

∑K

k=1
pkG(θk, rk), pk ≥ 0

}
. (20)

Reconstructing Xv is equivalent to finding the combination of
the smallest number of K atoms. Till this point, the recon-
struction problem is loss-free. However, such l0-minimization
problem is NP-hard [29]. One straightforward and widely ac-
cepted alternative is to introduce convex relaxation, rendering
the following l1-minimization problem:

||Xv||A=inf

{∑K

k=1
pk
∣∣Xv =

∑K

k=1
pkG(θk, rk), pk ≥ 0

}
.

(21)

Utilizing the initialized signal in (14) as the reference of
reconstruction, the optimization problem is formulated as

X̂v = argmin
Xv

∥Xv∥A

subject to ∥Xv ◦B− X̃v∥2F ≤ η, (22)

where X̃v = matirx(x̃v), B = matrix(b), and η represents
an upper bound of the noise effect. The decoupled ANM
problem in (22) is equivalent to a trace-minimization SDP
problem as [35]

min
zp,zf ,Xv

1

2L
(tr [T(zp)] + tr [T(zf)]) + µ∥Xv ◦B− X̃v∥2F

subject to
[
T(zp) Xv

XH
v T(zf)

]
⪰ 0, (23)

where µ is a regularization coefficient. Readers are referred
to [35] for more details on the problem conversion, where
a generic framework for multilevel Toeplitz matrix decom-
position is introduced. The optimization problem (23) is
convex and can be solved efficiently by using available SDP
solvers (e.g., CVX). This work concerns more on how to
fully utilize the partially observed 2D coarray signal in joint
parameter estimation based on low-complexity and effective
interpolation. After obtaining the augmented signal matrix
Xv, the ‘holes’ in the space-frequency difference coarray are
effectively interpolated. By observing the optimization in (23),
the following remarks are in order.

Remark 1: Note that the Hermitian and Toeplitz matrices
T(zp) and T(zf) are decoupled from a Kronecker product in
(23), and three matrices T(zp), T(zf), Xv have the same
dimension (2L+ 1)× (2L+ 1). Compared to the doubly-
Toeplitz covariance matrix Rv ∈ CL2×L2

, the number of
the optimization variables decreases from O(L4) to O(L2).
Different from the decoupling operation which directly adopts
a single-snapshot signal collected by physical sensors, xv

is obtained by averaging the covariance matrices of multi-
ple snapshots. The yielded coarray signal fully utilizes all
accessible snapshots and is yet given in a single-snapshot
form. Hence, the decoupling in (23) guarantees the number of
DoFs and estimation performances with significantly reduced
computational complexity.

Remark 2: The full observation of the space-frequency
difference coarray is obtained in Xv. To jointly estimate the
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DoA and range of targets, a method similar to that described
in Section II-B can be applied to overcome the rank deficiency,
which increases the number of DoFs to L2+2L. If we instead
apply cascaded 2D SST and MUSIC to the consecutive part
(hereafter referred to as SST for short), the achievable number
of DoFs is only U2+2U ; while that of the CMT-BCS [20] with
all D non-negative unique lags is D2+2D. For instance, when
M = 3 and N = 5, SST only detects at most 63 targets, while
the CMT-BCS can detect at most 121 targets. In comparison,
the DANM-based interpolation method can detect at most 168
targets. However, the maximum number of DoFs is not always
attainable since the interpolation is governed by the partial
observation, as described in (23). Detailed consideration of
the identifiability will be given in Section V-A.

Remark 3: Compared to the SST which drops the non-
consecutive part, the DANM exploits all information in the
partially observed difference coarray. As a larger aperture
and a higher bandwidth of FDCA are utilized in the DANM
than the SST, the estimation performance can be improved by
exploiting signal matrix interpolation.

Remark 4: If we consider a multiple measurement vector
(MMV) form of the virtual signal [29], the covariance-based
formulation and similar DANM methods [36] can also be
developed. To further reduce the computational complexity,
the methodology of compressed sensing can be combined with
DANM [37].

The joint DoA-range estimation method using DANM is
summarized in Algorithm 1.

IV. CYCLIC RANK-MINIMIZATION BASED
RECONSTRUCTION METHOD

In the previous section, the original atomic l0-norm min-
imization problem is solved by relaxing it to an l1-norm
minimization problem. However, the relaxation-based solution
inevitably leads to performance loss. To avoid such perfor-
mance loss, we propose a cyclic low-rank algorithm to recover
the two decoupled Toeplitz matrices.

A. Reformulation of Multi-Convex Optimization Problem

We first prove the equivalence between the atomic l0-norm
and a dual-variable rank-minimization problem. On this basis,
we recast the underlying rank-minimization problem as an
equivalent multi-convex form, which is solved using cyclic
iterations. To formulate the CRM problem, the following
proposition is first derived.

Proposition 1: Let T(zp) and T(zf) ∈ C2L+1×2L+1 be two
Hermitian and Toeplitz matrices. Then, the original atomic l0-
norm minimization problem (20) is equivalent to

min
zp,zf ,Xv

1

2
(rank [T(zp)] + rank [T(zf)])

subject to
[
T(zp) Xv

XH
v T(zf)

]
⪰ 0. (24)

Proof: Denote by rpopt and rfopt the minimum ranks
of T(zp) and T(zf) obtained from (20), respectively.
We first show that (1/2)(rank[T(zp)] + rank[T(zf)]) ≤
∥Xv∥A,0. Let ∥Xv∥A,0 = m and assume that Xv =

∑m
k=1 pkap(θk)a

H
f (rk) with pk > 0 achieves ∥Xv∥A,0. We

further assume that T(zp) =
∑m

k=1 pkap(θk)a
H
p (θk) and

T(zf) =
∑m

k=1 pkaf(rk)a
H
f (rk). Then, the matrix in the

constraint of (20) can be expressed as

C ≜

[
T(zp) Xv

XH
v T(zf)

]
=

[∑m
k=1 pkap(θk)a

H
p (θk)

∑m
k=1 pkap(θk)a

H
f (rk)∑m

k=1 pka
H
p (θk)af(rk)

∑m
k=1 pkaf(rk)a

H
f (rk)

]
=

∑m

k=1
pk

[
ap(θk)
af(rk)

] [
aHp (θk) aHf (rk)

]
⪰ 0. (25)

This implies that T(zp) and T(zf) are two submatrices of
positive semi-definite (PSD) matrix C which can be written
as an m-fold factorization. As such, neither rpopt nor rfopt is
greater than m. Thus, (1/2)(rpopt + rfopt) ≤ m = ∥Xv∥A,0.

On the other hand, suppose that the optimal solutions of
(20) are zpopt and zfopt. If T(zpopt) and T(zfopt) respectively
follow the Vandermonde decomposition T(zpopt) = DpEpD

H
p

and T(zfopt) = DfEfD
H
f , the PSD-ness of matrix C implies

that Xv is in the column space of Dp and in the row space
of Df . This in turn implies that Xv can be expressed as a
combination of at most rpopt or rfopt atoms, i.e., both rpopt and
rfopt are greater than or equal to m. It can be further written
as 1/2(rpopt + rfopt) ≥ m = ∥Xv∥A,0. The proof is finished.

Algorithm 1 DoF-enhanced joint DoA-range estimation
method based on DANM.
Input: Received signal x(t)Tt=1.
Output: DoAs θk and ranges rk, k = 1, · · · ,K.
Initialize: Define µ.

1: Derive the covariance matrix R̂x using (7);
2: Obtain the equivalent coarray signal vector x̆v using (8);
3: Initialize the interpolated coarray signal vector x̃v using

(14);
4: Reshape x̃v as coarray signal matrix X̃v = matrix(x̃v);
5: Define binary matrix B to distinguish the elements in the

interpolated coarray;
6: Solve the SDP problem to obtain the full observation Xv

according to (23);
7: Perform SST and 2D MUSIC on Xv in order to estimate

θk and rk according to Fig. 2 and (12).

The nuclear norm is commonly adopted to solve the rank-
optimization problem, which is essentially a variation of l1-
norm relaxation and, thus, also introduces approximation loss.
Inspired by the rank function proposed in [33], we adopt an
exactly-equivalent reformulation of (24) to solve the optimiza-
tion problem without approximation. Let γ > 0 be a positive
constant, W ⪰ 0, and define function f[W,T(z), γ] as

f[W,T(z), γ] = γ−2(∥W − γI∥2F + 2tr[WT(z)]). (26)

Then, the rank-minimization problem is equivalent to minimiz-
ing f[W,T(z), γ] under the constraints tr[WT(z)] ≤ 0 and
W ⪰ 0. Hence, both rank functions in (24) are reformulated
to the corresponding multi-convex functions. Similar to the
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DANM, we use the same initialized signal as in (14) for
reconstruction. Then, problem (24) is reformulated as

min
zp,zf ,Wp,Wf ,Xv

f[Wp,T(zp), γp] + f[Wf ,T(zf), γf ]

subject to ∥Xv ◦B− X̃v∥2F ≤ η,

tr[WpT(zp)] ≤ 0,Wp ⪰ 0,

tr[WfT(zf)] ≤ 0,Wf ⪰ 0,[
T(zp) Xv

XH
v T(zf)

]
⪰ 0. (27)

Notice in (26) that the minimization of f[W,T(z), γ] involves
the minimization of tr[WT(z)]. The constraints with respect
to the latter can be utilized as a stopping condition for the
algorithm. In addition, as function f[W,T(z), γ] is multi-
convex, (27) is a multi-convex optimization problem. That
is, if we fix Wp and Wf , variables zp, zf , and Xv can be
conveniently optimized. Subsequently, Wp and Wf can be
optimized alternately by fixing the other.

We further reformulate the first constraint in (27) as a
regularization term of the optimization function controlled by
µ. As such, the proposed alternative optimization problems for
CRM to minimize as per (27) are respectively given as

z(i)p , z
(i)
f ,X(i)

v =arg min
zp,zf ,Xv

f[W(i−1)
p ,T(zp), γp]

+ f[W(i−1)
f ,T(zf), γf ] + µ∥Xv ◦B− X̃v∥2F

subject to
[
T(zp) Xv

XH
v T(zf)

]
⪰ 0, (28)

W(i)
p =argmin

Wp

f[Wp,T(z(i)p ), γp] subject to Wp ⪰ 0,

(29a)

W
(i)
f =argmin

Wf

f[Wf ,T(z
(i)
f ), γf ] subject to Wf ⪰ 0,

(29b)

where (·)(i) denotes the respective value of the variables in
the i-th iteration.

Regarding the computational complexity, the algorithm ter-
minates when tr[W

(i)
p T(z

(i)
p ) + W

(i)
f T(z

(i)
f )] converges or

when the maximum number of iterations N iter
max is reached.

Both (28) and (29) are convex SDP problems. In order to
further lower the complexity, a closed-form solution [38] of
(29) can be obtained by the eigen-decomposition of Hermitian
and Toeplitz matrices T(zp) and T(zf). We first perform the
following eigen-decomposition,

T(z) = UΣUH, Σ = diag[{λl[T(z)]}2L+1
l=1 ], (30)

where λ1[T(z)] ≥ λ2[T(z)] ≥ · · · ≥ λ2L+1[T(z)] ∈ R
are the eigenvalues of T(z). We then define an operator as
Ωγ,0[T(z)] ≜ UΓΣU

H, where

ΓΣ=diag
[
{max[γ − λ2L−l[T(z)], 0]}2L+1

l=1

]
. (31)

As such, the closed-from solution of (29) can be derived as

W(i)
p = Ωγ,0

[
T
(
z(i)p

)]
, W

(i)
f = Ωγ,0

[
T
(
z
(i)
f

)]
. (32)

Algorithm 2 DoF-enhanced joint DoA-range estimation
method based on cyclic rank-minimization.

Input: Received signal {x(t)}Tt=1 .
Output: DoAs θk and ranges rk, k = 1, · · · ,K.
Initialize: Wp, Wf ← Two random Hermitian matrices, and
define γp, γf µ, ϵ, and N iter

max.
1: Derive the covariance matrix R̂x using (7);
2: Obtain the equivalent coarray signal vector ẋv using (8);
3: Initialize the interpolated coarray signal vector x̄v using

(14);
4: Reshape x̃v as coarray signal matrix X̃v = matrix(x̃v);
5: Use a binary matrix B to distinguish the elements in the

interpolated coarray;
6: for i = 1 to N iter

max do
7: Optimize T(z

(i)
p ) and T(z

(i)
f ) using (28);

8: if∣∣∣tr [W(i)
p T

(
z(i)p

)
+W

(i)
f T

(
z
(i)
f

)]
−tr

[
W(i)

p T
(
z(i−1)
p

)
+W

(i−1)
f T

(
z
(i−1)
f

)]∣∣∣ > ϵ

then
9: Optimize W

(i)
p and W

(i)
f using (32);

10: else
11: Break;
12: end if
13: end for
14: Perform SST and 2D MUSIC on Xv in order to estimate

θk and rk according to Fig. 2 and (12).

As for (28), there is no closed-form solution but it can be easily
solved using available SDP solvers. Overall, the minimization
problem (27) can be efficiently solved within a few iterations.
After the coarray signal Xv is reconstructed, we can jointly
estimate the DoA and range of the targets based on SST and
2D MUSIC of Xv. The proposed method is summarized in
Algorithm 2.

Remark 5: We argue that the CRM performs better than the
DANM due to the following reasons:

• First, optimization problem (27) introduces two new
matrices Wp and Wf . As both T (z) and W are PSD,
tr [WT (z)] ≤ 0 implies that W must be in the noise
subspace of T (z), i.e., tr [WT (z)] = 0. Thus, each
problem in (28) and (29) cyclically estimates the signal
and noise subspaces until they become orthogonal.

• To account for the effect of weight coefficients in the
performance, we denote Np and Nf as the basis vectors
of the noise subspaces for T(zp) and T(zf), respec-
tively. We additionally set Wp = γpNpN

H
p and Wf =

γfNfN
H
f in problem (26). Then, the optimization terms

tr[WpT (zp)] and tr[WfT (zf)] can be rewritten as
tr[γpNpN

H
pT(zp)] and tr[γfNfN

H
f T(zf)], respectively.

Thus, the impact of the weight coefficients on the opti-
mization terms is revealed, which leads to performance
trade-off between the DoA and range estimations. We
will show this impact in the numerical simulations.

• In addition, the DANM employs convex-relaxation to
approximate the original atomic l0-norm. From the view-
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point of low-rank matrix reconstruction, the DANM min-
imizes the sum of the eigenvalues of T (zp) and T (zf).
In the noisy case, the errors of eigenvalues increase.
This in turn leads to perceptible approximation losses
of the DANM. Different from the DANM, the CRM
instead minimizes the number of nonzero eigenvalues of
T (zp) and T (zf). On this basis, the equivalent rank-
minimization problem is reformulated to a multi-convex
form and is solved using cyclic iterations. Therefore, the
coarray signal Xv can be reconstructed more accurately.

B. Low Complexity Solution Using ADMM

Compared to the DANM which solves the SDP problem
(23) for only once, the SDP problem (28) involves much higher
computational complexity because of the iterations involved
in the CRM, even though partial closed-form solutions are
derived in (32) to reduce the computational load. To further
improve the efficiency, we derive the following ADMM-based
solver:

z(i)p , z
(i)
f ,X(i)

v =

arg min
zp,zf ,Xv

f[W(i−1)
p ,T(zp), γp] + f[W(i−1)

f ,T(zf), γf ]

subject to C =

[
µI Xv ◦B− X̃v

XH
v ◦B− X̃H

v µI

]
,

C =

[
T(zp) Xv

XH
v T(zf)

]
,C ⪰ 0,C ⪰ 0. (33)

Next, the equality constraints in (33) are combined in the
augmented Lagrangian as

L
[
zp, zf ,Xv,C,C,R,R

]
= f[W(i−1)

p ,T(zp), γp] + f[W(i−1)
f ,T(zf), γf ]

+
ρ

2

∥∥∥∥C− [
µI Xv ◦B− X̃v

XH
v ◦B− X̃H

v µI

]
+ρ−1R

∥∥∥∥2
F

+
ρ

2

∥∥∥∥C− [
T(zp) Xv

XH
v T(zf)

]
+ρ−1R

∥∥∥∥2
F
, (34)

where ρ > 0 is the augmented Lagrangian parameter, whereas
R and R are dual variables. As such, the ADMM for (28)
consists of the following optimization problems, each with a
single variable:

z(j)p = argmin
zp

L
[
zp,

(
zf ,Xv,C,C,R,R

)(j−1)
]
, (35)

z
(j)
f = argmin

zf

L
[
z(j)p , zf ,

(
Xv,C,C,R,R

)(j−1)
]
, (36)

X(j)
v = argmin

Xv

L
[
(zp, zf)

(j)
,Xv,

(
C,C,R,R

)(j−1)
]
, (37)

C
(j)

= argmin
C⪰0
L
[
(zp, zf ,Xv)

(j)
,C,

(
C,R,R

)(j−1)
]
, (38)

C(j) = argmin
C⪰0
L
[(
zp, zf ,XvC

)(j)
,C,

(
R,R

)(j−1)
]
, (39)

R
(j)

= R
(j−1)

+ ρ

C
(j)−

 µI X
(j)
v ◦B−X̃v(

X
(j)
v

)H

◦B−X̃H
v µI

 ,

(40)

R(j) = R(j−1) + ρ

C(j) −

 T(z
(j)
p ) X

(j)
v(

X
(j)
v

)H

T(z
(j)
f )

 ,

(41)

where (·)(j) denotes the respective value of the variables in
the j-th iteration of the ADMM. Each optimization problem
of the ADMM can be computed in a closed form iteratively
until convergence. As a result, the optimization result of the
SDP problem (28) can be obtained by iterations of several
closed-form solutions. Due to the limit of space, the detailed
derivations of the closed-form solutions are given in the
Supplement File.

V. PERFORMANCE ANALYSIS OF SPACE-FREQUENCY
COARRAY

In this section, we provide the theoretical analyses in terms
of the identifiability, the convergence of the CRM method,
and the reconstruction performance, to demonstrate the effec-
tiveness of the proposed joint estimation framework with an
increased number of DoFs.

A. Identifiability

As introduced in Algorithm 1 and Algorithm 2, the
subspace-based 2D MUSIC algorithm is applied to the
smoothed coarray signal Rss to identify the sources. We first
assume that the interpolated virtual coarray perfectly fits the
ideal fully observed one. In this case, the only difference
between the virtual coarray and the physical array is that the
coarray sensors are virtually generated using fewer number
of physical sensors [39]. Thus, we explore the identifiability
conditions for the space-frequency coarray as same as that of
traditional subspace-based methods applied to physical arrays.

Assume that K sources are randomly distributed at K DoA-
range pairs T = {(θk, rk), 1 ≤ k ≤ K} with K ≤ L2 + 2L
as described in Remark 2 of Section III-B. The identifiability
of the space-frequency coarray is provided by the following
theorem.

Theorem 1: Let the K DoA-range pairs T = {(θk, rk), 1 ≤
k ≤ K} satisfy both of the following conditions:

• C1: Assume that T1 = {(θ, rk), 1 ≤ k ≤ K1} and T2 =
{(θk, r), 1 ≤ k ≤ K2} are two types of subsets of T
such that sources in T1 share the identical DoA value
but have different ranges, whereas those in T2 have the
identical range but have distinct DoAs. The size of the
subsets satisfies K1 ≤ L and K2 ≤ L.

• C2: Assume that T3 = {(θk, rk)|e−ȷπ sin θk =
eρȷ4π∆frk/c, 1 ≤ k ≤ K3} is a subset of T. The size
of the subset satisfies K3 ≤ ρ(L− 1) + L.

Then, the 2D MUSIC spectrum will exhibit a peak if and only
if the steering vector ap,f corresponds to one of the K sources
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in T = {(θk, rk), 1 ≤ k ≤ K} with probability one almost
surely (a.s.).

Proof: The following lemma is utilized to provide a
statistical bound on the rank of the 2D array manifold.

Lemma 1 [40]: For a pair of Vandermonde matrices A ∈
CK×F and B ∈ CL×F , with generators on the unit circle,

rank(A⊙B) = min(KL,F ), PL(U2F )-a.s., (42)

where U is the unit circle, and PL(U2F ) is the distribution used
to draw the 2F generators for A and B, which is assumed
continuous with respect to the Lebesgue measure in U2F .

This lemma with respect to the Khatri-Rao product ensures
that the array manifold of the space-frequency coarray Ap,f =

Ap⊙Af ∈ CL2×K is full rank with probability one. However,
when the distribution of the sources do not follow the condition
C1 or C2, the array manifold will be rank-deficient. In this
case, false peaks may appear in the spectrum.

Reason: For the first case, the K1 sources in T1 give rise
to the K1 columns of the array manifold in the form

Ap,f =
1

e−ȷπ sin θ

...
e−ȷ(L−1)π sin θ

⊗


1 · · · 1

e
ȷ4π∆fr1

c · · · e
ȷ4π∆frK1

c

...
...

e
ȷ4π(L−1)∆fr1

c · · · e
ȷ4π(L−1)∆frK1

c


︸ ︷︷ ︸

Af∈CL×K1

.

(43)

If K1 > L, Af is a Vandermonde matrix of rank L, which
indicates that these K1 columns are linearly dependent. Thus,
the array manifold Ap,f is rank-deficient in this case. Likewise,
the K2 sources in T2 leads to a similar result. For the second
case, the rank of array manifold Ap,f corresponding to T3

is min(ρ(L− 1) + L,K3) [39] and has the same rows when
K3 > ρ(L − 1) + L, which leads to the linear-dependence
between steering vectors.

On the basis of Lemma 1, we assume that the K sources
in T follow both C1 and C2. Then, the array manifold
Ap,f is full column rank a.s. As such, the null-space UN

is spanned by (L2 −K)-dimensional orthogonal components
of the range space of Ap,f . For each source in T, we
have aHp,f(θk, rk)UN = 0T, which leads to a peak in the
2D MUSIC spectrum. Then, we consider a DoA-range pair
(θK+1, rK+1) /∈ T and assume that aHp,f(θK+1, rK+1)UN =

0T. The orthogonality between the steering vectors and the
null-space can be expressed as

aHp,f(θ1, r1)

aHp,f(θ2, r2)
...

aHp,f(θK+1, rK+1)

UN =


0T

0T

...
0T

 . (44)

We first assume that aHp,f(θK+1, rK+1) is linearly independent
of the other steering vectors. Combining this assumption with
(44) yields to an (L2−K− 1) dimensional null-space, which
is contradict with UN ∈ CL2×(L2−K). On the other hand, if
aHp,f(θK+1, rK+1) is linearly dependent on the other steering

vectors, neither the condition C1 nor C2 is met. Hence,
aHp,f(θK+1, rK + 1)UN ̸= 0T holds for any DoA-range pair
falling outside T.

For the interpolation framework, even though the proposed
methods uniquely map partial observed signal X̃v to the hole-
free signal Xv, the interpolated coarray inevitably contains
fitting errors. Essentially, the detection is still governed by
the non-negative unique lags. Thus, the number of sources
K in Theorem 1 should not exceed D2 + 2D to guarantee
the identifiability for the interpolated coarray. However, the
proposed methods have the ability to identify more than
D2 + 2D sources using the maximum L2 + 2L DoFs in
some well-reconstructed cases as shown in the simulations.
Due to the limit of the space, we provide the simulation
results that compare the identifiability between the interpolated
coarray, coarray without interpolation, and uniform linear
coarray in Section B of the Supplement File. The analysis of
the reconstruction performance is provided in the sequel of this
section. This completes the explanation on the identifiability
issue in joint DoA-range estimation using a space-frequency
virtual difference coarray.

B. Convergence of CRM

To prove the convergence of the proposed CRM method,
similar to [33], we first consider a perturbed version of
subproblem (28) and reformulate the regularization term in
the constraint of (27). Concretely, we respectively added
small perturbation terms νpI and νfI to matrices W

(i−1)
p and

W
(i−1)
f . Then, the perturbed subproblem is given as

z(i)p , z
(i)
f ,X(i)

v =arg min
zp,zf ,Xv

f[W(i−1)
p + νpI,T(zp), γp]

+ f[W(i−1)
f + νfI,T(zf), γf ]

subject to {Xv, zp, zf} ∈ Z, (45)

where Z = {{Xv, zp, zf}|∥Xv ◦ B − X̃v∥2F ≤
η, [T(zp) Xv;X

H
v T(zp)] ⪰ 0}. Then, we derive the

following lemma to demonstrate that T(z
(i)
p ) and T(z

(i)
f ) are

bounded during the iterations of CRM, which is a condition
for the proof of convergence.

Lemma 2: Let {XD
v , z

D
p , z

D
f } be the optimal solution of the

DANM problem (23) and {Ẋv, żp, żf} be the optimal solution
of the perturbed subproblem (45). Then, we have

νptr[T(żp)] + νftr[T(żf)] ≤ (νp + γp)tr[T(zDp )] (46)

+(νf + γf)tr[T(zDf )].

Proof: Notice that, according to (26), the perturbed sub-
problem (45) is equivalent to the following problem

z(i)p , z
(i)
f ,X(i)

v =arg min
zp,zf ,Xv

tr[(W(i−1)
p + νpI)T(zp)]

+ tr[(W
(i−1)
f + νfI)T(zf)]

subject to {Xv, zp, zf} ∈ Z. (47)

Let w denote the optimal value of the objective function in
(47). Since all matrices in the problem are PSD, we have
w = tr[W

(i−1)
p T(żp)] + νptrT(żp) + tr[W

(i−1)
f T(żf)] +

νftrT(żf) ≥ νptrT(żp) + νftrT(żf). From the closed-form
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solutions in (32), we readily observe that γpI ⪰ Wp and
γfI ⪰ Wf , which means w ≤ tr[(W

(i−1)
p + νpI)T(zp)] +

tr[(W
(i−1)
f + νfI)T(zf)] ≤ (νp + γp)tr[T(zp)] + (νf +

γf)tr[T(zf)]. Letting the matrices equal to the optimal so-
lution of the DANM in (23), i.e., {XD

v , z
D
p , z

D
f }, we have

w ≤ (νp + γp)tr[T(zDp )] + (νf + γf)tr[T(zDf )]. These results
collectively lead to (46).

Due to the CRM procedure with the perturbed subproblem
(called perturbed CRM) and PSD-ness of the matrices, we
have the following inequalities

0 ≤ f[W(i)
p + νpI,T(z(i)p ), γp] + f[W(i)

f + νfI,T(z
(i)
f ), γf ]

= f[W(i)
p ,T(z(i)p ), γp] + f[W(i)

f ,T(z
(i)
f ), γf ]

+ 2γ−2
p νptr[T(z(i)p )] + +2γ−2

f νftr[T(z
(i)
f )]

≤ f[W(i−1)
p ,T(z(i−1)

p ), γp] + f[W(i−1)
f ,T(z

(i−1)
f ), γf ]

+ 2γ−2
p νptr[T(z(i−1)

p )] + +2γ−2
f νftr[T(z

(i−1)
f )]. (48)

Hence, the objective function of the perturbed CRM is non-
increasing and bounded. Therefore, from the monotone con-
vergence theorem, the objective value in the iterations of the
perturbed CRM converges to a finite limit.

Next, we provide a proposition which proves that each limit
point of the iterations in the perturbed CRM is a stationary
point. Toward this end, we first introduce a lemma with respect
to the stationary point in an alternative optimization.

Lemma 3 [41]: Consider the problem

min
x,y

f(x,y) subject to x ∈ X,y ∈ Y, (49)

where f(x,y) is a continuously differentiable function, and
X, Y are closed, nonempty and convex sets. Assuming that
{(x(i)), (y(i))} is the sequence generated by the alternative
optimization and has limit points. Then, every limit point of
{(x(i)), (y(i))} is a stationary point.

Proposition 2: Let {(z(i)p , z
(i)
f ,X

(i)
v ), (W

(i)
p ,W

(i)
f )} be the

sequence generated in the iterations of the perturbed CRM and
{(z(i,s)p , z

(i,s)
f ,X

(i,s)
v ), (W

(i,s)
p ,W

(i,s)
f )} be a subsequence

converging to a limit point ((z̄p, z̄f , X̄v), (W̄p,W̄f)). Then,
((z̄p, z̄f , X̄v), (W̄p,W̄f)) satisfies the Karush–Kuhn–Tucker
(KKT) condition.

Proof: As we will demonstrate in the ADMM solution
(see next subsection), the objective function of the CRM
is continuously differentiable. Besides, the feasible subset
is closed, nonempty, and convex, thus satisfying the condi-
tions of Lemma 3. We have already observed that the ma-
trices {(z(i)p , z

(i)
f ,X

(i)
v ), (W

(i)
p ,W

(i)
f )} are bounded because

of the constraint ∥Xv ◦ B − X̃v∥2F ≤ η and the result
νptr[T(żp)] + νftr[T(żf)] ≤ (νp + γp)tr[T(zDp )] + (νf +
γf)tr[T(zDf )] in Lemma 2. As such, we can conclude that
((z̄p, z̄f , X̄v), (W̄p,W̄f)) is a stationary point of the perturbed
CRM and satisfies the KKT conditions. This implies the
convergence of the perturbed CRM.

Finally, we prove the equivalence between the perturbed
CRM and the CRM in (27). To this end, we introduce the
following proposition.

Proposition 3: Let {X̊v, z̊p, z̊f} be the minimum trace
solution of non-perturbed subproblem (45) (νp=νf = 0), i.e.,

z̊p, z̊f , X̊v=arg min
zp,zf ,Xv

tr[T(zp)] + tr[T(zf)] subject to

(Xv, zp, zf) is a solution of non-perturbed (45). (50)

When νp and νf satisfy 2γ−2
p νptr[T(̊zp)]+2γ−2

f νftr[T(̊zf)] <
1, the perturbed CRM and the CRM are equivalent.

Proof: Due to the limit of space, the detailed proof is
given in Section C of the Supplement File.

In this case, ((z̄p, z̄f , X̄v), (W̄p,W̄f)) is also a stationary
point of the CRM (27) and follows the KKT condition. This
concludes the convergence of the proposed CRM method.

C. Reconstruction Performance of Interpolation

We now analyze the reconstruction performance of the inter-
polation methods by providing the theoretical reconstruction
error of the virtual signal matrix. Denote the theoretical virtual
signal matrix (without noise) as Ẋv and the optimal solution to
the DANM problem (23) as X̂v. Generally, the reconstruction
error between the theoretical and the optimal solutions is
evaluated in terms of ∥X̂v ◦ B − Ẋv ◦ B∥2F . Then, the
following proposition is derived to theoretically demonstrate
the reconstruction performance of the DANM method.

Proposition 4: There exists a constant C > 0 such that
the regularization parameter µ ≥ L2/

√
T (

∑K
k=1 pk + σ2

n) is
sufficient to guarantee the reconstruction performance of (23)
as

∥X̂v ◦B− Ẋv ◦B∥2F ≤ µ+

√
µ2 +

L

2µ

(∑K

k=1
pk + σ2

n

)
(51)

with probability at least 1− 2e−2C
√
T .

Proof: Due to the limit of space, the detailed proof is
given in Section D of the Supplement File.

According to Proposition 4, we conclude that the recon-
struction performance of the DANM method is related to the
number of snapshots and the power of the receive signal,
i.e., the trace of the covariance matrix Rv. Notice that, the
objective function of the DANM method (23) is also the trace
function. This observation reveals again that the essence of
sparse reconstruction using DANM is power minimization.

Similar to the analysis of DANM, we provide the theoret-
ical reconstruction error of the CRM method, given in the
following proposition.

Proposition 5: There exists a positive constant C such that
the regularization parameter µ ≥ L2/

√
T (

∑K
k=1 pk + σ2

n) is
sufficient to guarantee the reconstruction of (27) as

∥X̂v ◦B− Ẋv ◦B∥2F ≤ µ+

√
µ2 +

2K

µ
(52)

with probability at least 1− 2e−2C
√
T .

Proof: Due to the limit of space, the detailed proof is
given in Section D the Supplement File.

We observe in (52) that the reconstruction performance of
the CRM method is mostly related to the number of snapshots
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Fig. 3. 2D estimation results of the space-frequency difference coarray. Red ‘x’ marks denote the true target locations. (a) CMT-BCS, 49 targets; (b) SST, 49
targets; (c) DANM, 49 targets; (d) CRM, 49 targets; (e) CMT-BCS, 63 targets; (f) SST, 63 targets; (g) DANM, 63 targets; (h) CRM, 63 targets; (i) CMT-BCS,
74 targets; (j) SST, 74 targets; (k) DANM, 74 targets; (l) CRM, 74 targets; (m) CMT-BCS, 132 targets; (n) DANM, 132 targets; (o) CRM, 132 targets.

and the rank of the covariance matrix Rx. This observation
further reveals that the essence of the CRM method is l0-norm
minimization.

VI. SIMULATION RESULTS AND ANALYSES

In this section, we demonstrate the effectiveness of joint
DoA-range estimation using space-frequency difference coar-
ray of FDCA. We consider coprime numbers with M = 3
and N = 5. Thus, the FDCA under simulation has a
total of M + N − 1 = 7 physical sensors located at
{0d, 3d, 5d, 6d, 9d, 10d, 12d}, and the frequency offsets are set
as {0∆f, 3∆f, 5∆f, 6∆f, 9∆f, 10∆f, 12∆f}. We assume
that the FDCA operates at the X-band with a carrier frequency
f0 = 10 GHz and the unit frequency offset is ∆f =

30 KHz. As such, the observed space-frequency difference
coarray has a total of 21 sensors located from [−12d, 12d]
with ‘holes’ at {−11d,−8d, 8d, 11d}. Likewise, the frequency
offset of the coarray are set as [−12∆f, 12∆f ] with ‘holes’
at {−11∆f,−8∆f, 8∆f, 11∆f}. The numbers of sensors,
frequency offsets, and theoretic DoFs are listed in Table I for
the four types of signal models and the corresponding methods
under investigation, namely, the physical FDCA (2D MUSIC),
the difference coarray (CMT-BCS), the consecutive coarray
(SST), and the interpolated coarray (DANM and CRM).

In the following simulations, the regularization coefficient
µ for DANM and CRM is empirically set to 50 (except for
the simulations in Figs. 6(c) and 6(e), where µ varies), and
the weight coefficients γp and γf are respectively set to 0.6
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Fig. 4. Performance comparison between different methods. (a) RMSE of DoA versus SNR; (b) RMSE of range versus SNR; (c) RMSE of DoA versus
number of snapshots; (d) RMSE of range versus number of snapshots.

and 0.4 normalized by ∥X̃v∥F (except for the simulations in
Figs. 6(a), 6(b), 6(d) and 6(e), where γp and γf vary). The
SDP problems in DANM and CRM are solved by CVX [42]
(except for ADMM in Fig. 7).

A. Number of DoFs

In the first set of simulations, we confirm the increased
number of DoFs achieved by the space-difference coarray
of the FDCA. The input signal-to-noise ratio (SNR) and the
number of snapshots are respectively fixed to 15 dB and 400.
We first consider 49 uncorrelated targets that are uniformly
distributed in seven azimuth angles between [−60◦, 60◦] and
seven ranges between [400 m, 4600 m]. Four different methods
are adopted to localize the targets, which are CMT-BCS,

TABLE I
NUMBER OF SENSORS AND FREQUENCY OFFSETS FOR DIFFERENT

ARRAY MODELS

Type Method Sensors Frequencies DoF

FDCA 2D MUSIC 7 7 48

Difference Coarray CMT-BCS 21 21 121

Consecutive Coarray SST 15 15 63

Interpolated Coarray DANM & CRM 25 25 168

SST, DANM and CRM based on the space-frequency differ-
ence coarray. The dictionary matrices of CMT-BCS are as-
sumed to contain all possible grid entries within [−70◦,−70◦]
and [0 m, 5000 m] with uniform intervals ∆θ = 1◦ and
∆r = 100 m, respectively. The estimation results are given
in Figs. 3(a)–3(d), which clearly showcase the effectiveness
of the space-frequency difference coarray in increasing the
number of DoFs. For the on-grid CMT-BCS, the algorithm
resolves all targets when the locations are included in the
dictionary matrices. For the gridless methods, the 2D spectra
of interpolation-based methods (DANM and CRM) are more
focused than that of the SST because of the utilization of non-
consecutive part.

Next, we consider the case that the number of uncorre-
lated targets reaches the maximum number of DoFs of the
coarray without interpolation, which is 63. For clear illustra-
tion, we assume that 63 targets are uniformly distributed in
seven azimuths between [−60◦, 60◦] and nine ranges between
[500 m, 4500 m]. The result shown in Fig. 3(f) confirms that
the SST fail to function in this case because of the information
loss as the non-consecutive part is discarded. In comparison,
CMT-BCS and the interpolation-based methods still accurately
estimate all 63 targets.

In the following, we assume that 74 targets are randomly
and non-uniformly distributed in the DoA-range plane, which
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Fig. 5. Performance comparison of different methods, 63 targets. (a) RMSE of DoA versus SNR; (b) RMSE of range versus SNR.

is an off-grid case for CMT-BCS. As shown in Fig. 3(i), CMT-
BCS fails to resolve all targets due to grid mismatch, and
some false and miss alarms can be observed. By contrast,
the proposed interpolation-based methods can still accurately
estimate all the peaks of 74 targets in the 2D spatial spectra.

Finally, we confirm the feasibility of the proposed
interpolation-based methods, i.e., DANM and CRM, when the
number of targets exceeds the maximum number of DoFs of
the difference coarray. We provide the DoF comparison for
CMT-BCS and the proposed interpolation methods (DANM
and CRM) in a 132-targets case, which is already beyond
the capacity of the CMT-BCS. We assume that 132 targets
are uniformly distributed in 11 azimuths between [−60◦, 60◦]
and 12 ranges between [300m, 4700m]. The results shown
in Figs. 3(m)–3(o) confirm that the CMT-BCS performs in-
correctly as the maximum DoF of the difference coarray is
limited by the number of non-negative unique lags. However,
the proposed interpolation methods can still roughly resolve
all the targets. These results further demonstrate the advantage
of the interpolation-based methods in terms of DoF compared
to CMT-BCS.

B. Coarray CRB and RMSE

To theoretically evaluate and analyze the performance of the
proposed space-frequency coarray scheme for joint DoA-range
estimation as well as the proposed reconstruction algorithms,
we derive the CRB as a statistical benchmark. For the FDCA
receive signal (25), the unknown parameters can be written in
a vector form

ζ =
[
θ1, · · · , θK , r1, · · · , rK , p1, · · · , pK , σ2

n

]T
=

[
θT, rT,pT , σ2

n

]T
∈ R3K+1. (53)

As indicated in (8), the covariance matrix Rx generates the
virtual signal of the space-frequency coarray. Thus, the Fisher
information is obtained from Rx. The Fisher information with
respect to the ĩ-th and j̃-th parameters ζĩ and ζj̃ in ζ can be
represented as

Jĩ,j̃ = T · tr

[
R−1

x

∂Rx

∂ζĩ
R−1

x

∂Rx

∂ζj̃

]
. (54)

When the number of targets is higher than the number of
DoFs provided by the physical FDCA, the Fisher information
matrix (FIM) J in (54) is singular [43]. As a result, a CRB
cannot be derived from (54). To the best of our knowledge,
the CRB has not been derived for space-frequency coarrays
in such an underdetermined case. To provide a benchmark for
performance evaluation, therefore, we derive a coarray CRB
analysis in the Supplement File.

In the second set of simulations, statistical results in terms
of the RMSE are used to compare the estimation accuracy
of CMT-BCS, SST, DANM and CRM. The covariance-based
DANM methods, normal DANM (NDANM) [36], and low
rank structured covariance reconstruction DANM (LRSCR-
DANM) [37] are also included for comparison. The RMSE
of a certain parameter ξ is defined as

RMSE (ξ) =

√
1

KP

∑K

k=1

∑P

p=1

(
ξ̂k (p)− ξk

)2

, (55)

where ξ̂k (p) denotes the estimation result of the k-th target
in the p-th Monte Carlo trial, and P is the total number of
Monte Carlo trials.

We first examine the RMSE performance in a single-target
case. The DoA and range are randomly generated for 1000
Monte Carlo trials from their respective Gaussian distributions
θ ∼ N (30◦, (1◦)2) and r ∼ N (2500 m, (10 m)2). The
dictionary matrices of CMT-BCS contain steering vectors over
all possible values in [25◦, 35◦] and [2450 m, 2550 m] with
uniform intervals ∆θ = 0.2◦ and ∆r = 1 m, respectively.
We first fix the number of snapshots to 200 and let the input
SNR vary between −15 dB and 30 dB, and the RMSE
results are shown in Fig. 4. As indicated in Fig. 4(a), as the
input SNR increase, the coarray CRB is asymptotically linear
and approaches the asymptotic CRB which is precisely linear
[45]. This is one of the typical behaviors of coarray CRB,
which explains the similar trends of RMSEs for both SST
and interpolation-based methods. In particular, the RMSE with
respect to DoA asymptotically approaches to the coarray CRB
when the input SNR is between −15 dB and 0 dB. The gaps
between the RMSE and the CRB almost remain unchanged
when the input SNR is between 0 dB and 30 dB.

Next, we compare the RMSE performance for different
gridless algorithms. Compared to the other methods, the gap
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Fig. 6. Impact of different selections of optimization coefficients γp, γf and µ. The results with respect to γp and γf are presented via the contour plots of
MAPE. The results with respect to µ are compared via RMSE.

between the RMSE and the coarray CRB in Fig. 4(a) is
approximately twice as large in SST, except for LRSCR-
DANM in the low-SNR region and NDANM in the high-
SNR region. This is because the fitting threshold of NDANM
is fixed, while the proposed DANM can adaptively optimize
the fitting term owing to the regularization. As for LRSCR-
DANM, the measurement is not observed directly but rather
over a linear compressive kernel, which may suffer from
information loss in the low-SNR region [44]. For the pro-
posed interpolation-based algorithms, the RMSE of CRM is
consistently lower than that of DANM; and in the DANM case,
the gap between coarray CRB is approximately twice that of
CRM for input SNR between −5 dB and 30 dB as well. The
improved DoA estimation performance is obtained because the
problem is more accurately reformulated and solved without
approximation in CRM. On the other hand, the floor of the
RMSE performance for CMT-BCS is because this method is
grid-based and, thus, suffers from performance loss due to
basis mismatch.

When we fix the input SNR to 20 dB and vary the number
of snapshots, the results in Fig. 4(c) confirm again that CMT-
BCS renders higher error due to the basis mismatch. Whereas,
the off-grid methods achieve better performance and, in partic-
ular, CRM outperforms other methods. As for the behavior of
coarray CRB, (87) in the Supplement File indicates that the
Fisher information is proportional to T , which is consistent
with traditional CRB. We now observe the RMSE curves
with respect to range in joint estimation, which are given in

Figs. 4(b) and 4(d). Compared with Figs. 4(a) and 4(c), very
similar trends can be observed for gridless methods based on
the specific decoupled design in (17), thereby demonstrating
the superiority of joint estimation. However, the RMSE of
CMT-BCS performs worse due to error propogation in muti-
task BCS, i.e., errors in the DoA estimation stage yield
additional perturbations in the range estimation.

In the following, we consider the scenario where the number
of targets is greater than the number of DoFs of the physical
FDCA, i.e., 48. The parameters (θ, r) of the targets are
similar to those (θ̆, r̆) used in Figs. 3(c)–3(e), with two
additional two targets generated from Gaussian distributions
[θ ∼ N (θ̆, (1◦)2), r ∼ N (r̆, (5 m)2)]. The results are given
in Figs. 5(a) and 5(b). In this scenario, as shown in Fig. 3(d),
the SST does not resolve all targets and renders a high RMSE
with respect to both DoA and range in all SNR region. Fig. 5
also includes the coarray CRB which gradually converges
as the input SNR increases, which shows the saturation
behaviors of coarray CRB due to the positive definiteness of
the FIM in the underdetermined problem with K exceeding
the number of DoFs of physical FDCA [45]. In addition,
the RMSEs of DANM and CRM exhibit similar trends, and
CRM consistently outperforms DANM in both DoA and range
estimation. In particular, the advantage of CRM with respect
to DoA is more evident owing to the selection of the weight
coefficients γp and γf .
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C. Impact of Coefficient Settings

In the third set of simulations, we observe and analyze the
impact of coefficient settings in DANM and CRM. Further-
more, we provide both theoretical and empirical guidelines
to reduce the cost of cross-validation in practice. The impact
of the weight coefficients on the performance of the CRM
is evaluated in terms of the mean absolute percentage error
(MAPE), which is defined as

MAPE (ξ) =

∑K
k=1

∑P
p=1 |ξ̂k (p)− ξk|

P
∑K

k=1 |ξk|
× 100%. (56)

The input SNR and the number of snapshots are respectively
fixed to 20 dB and 200. We first analyze the single target case
where the target location remains the same as that used in
Fig. 4. Note that, the parameters γp and γf are normalized by
∥X̃v∥F . The results in Figs. 6 (a) and 6(c) show that CRM is
insensitive to γp and γf in the single target case as the MAPE
of both DoA and range remains low (MAPE (θ) < 0.03% and
MAPE (r) < 0.018%), and the contour plots are irregular.
Nevertheless, this is not the case in the other observations
when the number of targets is increased to 63. We similarly
assume that the locations of targets are identical to those in
Fig. 5. The contour plots in Figs. 6(b) and 6(e) display regular
boundaries for both MAPE (θ) and MAPE (r) in the sense
that line γp = γf divides the contour plots into two regions.
Specifically, MAPE (θ) decreases as γp/γf increases, while
MAPE (r) shows a reverse result. As mentioned in Remark
5 of Section IV-A, the optimization terms tr[WpT(zp)] and
tr[WfT(zf)] are respectively weighted by γp and γf . Thus, ra-
tio γp/γf represents the trade-off preference between the DoA
and range estimation performance. By comparing Figs. 6(a)
and 6(d) to 6(b) and 6(e), we observe that the CRM-based
method exhibits the coupling effect between DoA and range
estimation exists in multiple-target cases. To summarize, in
the single-target case, fine tuning of γp and γf is not required.
In multi-target scenarios, the values of γp and γf should be
adjusted to trade off between the DoA and range estimation
performances. Concretely, a higher γp/γf ratio provides a
better DoA estimation, whereas a larger γf/γp ratio yields
a higher range estimation accuracy.

In the following, we evaluate the RMSE performance with
respect to the regularization coefficient µ in a single target
case, where the input SNR is 20 dB and the number of
snapshots is T = 200. The other parameters remain unchanged
from those used in Fig. 4. DANM and CRM are examined. As
shown in Figs. 6(c) and 6(f), the RMSE of the DANM remains
unchanged for most of the values of µ. Different from DANM,
the RMSE of CRM fluctuates and becomes lower when µ > 5.
This suggests higher dependency of the performance for CRM
on the regularization term µ than the DANM. Empirically,
µ ≥ 50 is recommended for CRM to achieve a satisfactory
performance.

D. Computational Complexity

The last simulation compares the computational efficiency
of DANM, NDANM, LRSCR-DANM, CRM-CVX, CRM-
ADMM, CMT-BCS through 100 Monte Carlo trials using an
Intel(R) Core(TM) i7-8700 CPU in three different SNR cases.
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Fig. 7. Comparison of computation time between different algorithms.

The dictionary matrices of the CMT-BCS are consistent with
the setting in Fig. 4. The result is shown in Fig. 7. Compared to
DANM, NDANM, and LRSCR-DANM which only optimize
the signal subspace, the computational complexity of CRM
is slightly higher as it needs to optimize both the signal and
noise subspaces. Particularly, the runtime of LRSCR-DANM is
the lowest by utilizing compressed sensing. On the other hand,
the computational efficiency is significantly improved by using
ADMM-based closed-form solutions, rendering a comparable
computational time as the LRSCR-DANM method. Compared
to the off-grid algorithms, the complexity of CMT-BCS is
much higher due to the multi-task structure and the grid
density.

VII. CONCLUSION

In this paper, we presented joint DoA-range estimation
algorithms using space-frequency virtual difference coarray
of the FDCA. Compared to existing 2D SST method which
only utilizes consecutive coarray lags and frequency shifts,
we propose interpolating the virtual signal to fully utilize the
underlying received information in the presence of missing
elements in the coarray and achieve a higher number of DoFs,
and the joint DoA-range estimation is solved using three
novel algorithms. The first one, termed DANM, simplifies
the computationally prohibitive doubly-Toeplitz reconstruction
problem as a decoupled atomic norm minimization problem
which is then solved utilizing convex relaxation. To avoid
the approximation loss, the second approach recasts the prob-
lem as a dual-variable rank minimization problem which is
solved using an iterative CRM-based algorithm. The third
approach provides ADMM-based closed-form solutions for the
SDP problem with significant reduction in the computational
complexity. The improved joint DoA-range estimation perfor-
mance of the proposed techniques is clearly demonstrated by
theoretical analyses using coarray CRB and is verified using
extensive numerical results.
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In this supplement file, we provide the closed-form solutions
of ADMM for the SDP problem (33), the simulation result
with respect to identifiability, the proof of Proposition 3, the
derivation of reconstruction performance and the derivation of
the coarray CRB.

A. Closed-Form Solutions of ADMM Approach
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The closed-form solutions can be obtained by the derivatives
with respect to each optimization variable [46]. Concretely, the
closed-form solution of one particular variable is computed
by fixing the others. Hence, we first derive the solution of

T (zp). Denote
∥∥∥∥C− [T(zp) Xv

XH
v T(zf)

]
+ρ−1R

∥∥∥∥2

F
as g(M̃).

According to the chain rule and the derivative of a Toeplitz
matrix, we have
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where α (Wp) is given in (58), shown on the bottom of this
page. The second term of (57) can be reformulated as
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where 1̊ =

[
1̇i,j 0
0 0

]
, and 1̇i,j represents a matrix in which

the entries on the (i− j)-th diagonal are 1 whereas the others

are 0. We further rewrite C and R as C =
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and
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where the operation (·)Σ(i−j) sums up the (i− j)-th diagonal.
Finally, when (57) equals to zero, T (zp) can be obtained by
its entries as
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Similarly, a closed-form solution of T (zf) is obtained as
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Next, we derive a closed-form solution for Xv. Likewise, we

denote
∥∥∥∥C− [ µI Xv ◦B− X̃v
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g(Ñ). Then, the derivative of Xv can be written as
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Again, we rewrite C and R respectively as C =

[
C1 C2

C3 C4

]
and R =
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R3 R4

]
. Then, (63) is further expressed as
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where 1i,j and Bi,j represent two selective matrices with the
(i, j)-th entries respectively equal to 1 and Bi,j while the
others are zero. Notice that, tr (1i,j ·A) = Aj,i and, thus,
we have(
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According to the augmented Lagrangian (33), we readily
observe that C2 = C

H

3 , C2 = CH
3 ,R2 = R

H

3 and R2 = RH
3 .

As such, the closed-form solution of Xv is given by
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Additionally, taking into account the similarities among the
solutions of such problems [47], the solutions of C and C are

respectively derived as

C =
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µI Xv ◦B− X̃v

XH
v ◦B− X̃H

v µI
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, (69)
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)
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where the operator (·)+ computes the eigen-decomposition of
the matrix and let the negative eigenvalues be zero to guarantee
PSD. �

B. Comparison of Identifiability

To further validate the approximate identifiability of the
proposed interpolation-based framework and compare it to
the uniform linear coarray case, we investigate a non-uniform
physical array which is associated with a hole-free uniform
linear coarray. In particular, we place receive sensors at
position 11d to form a different non-uniform configuration
compared to the FDCA depicted in Fig. 1. Correspondingly,
the holes at ±8d and ±11d in the coarray are respectively
padded by the correlation of (3d, 11d) and (0d, 11d). This
uniform linear coarray serves as a reference in the compar-
ison of the identifiability. Similar with the parameter setting
used in Figs. 3(m)–3(o), we first assume that 132 targets are
distributed in 11 azimuth angles θ ∈ [−60◦, 60◦] and 12
ranges r ∈ [300 m, 4700 m] with respective uniform intervals
∆θ = 12◦ and ∆r = 400 m. The DoAs and ranges of the 132
targets are randomly generated for 1,000 Monte Carlo trials
from their respective Gaussian distributions θ̃ ∼ N (θ, (1◦)2)
and r̃ ∼ N (r, (10 m)2). Then, we compare the identifiability
of the interpolated coarray, the coarray without interpolation,
and the uniform linear coarray in the 132-target case. The
cumulative distribution function (CDF) curves of the number
of unidentified targets are compared in Fig. 9.
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Fig. 9. Comparison of identifiability for different types of coarray.

The following facts can be readily observed from Fig. 9.
• As expected, the uniform linear coarray has the best

performance with a 41.4% probability to identify all 132
targets. For the worst case, the CDF curve of the uniform
linear coarray terminates at 11, which indicates that at
least 121 targets are identified in all the Monte Carlo
trials.
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• For the interpolation framework, the probability of i-
dentifying all the targets is 14.6%, which implies that
the extra DoFs of the interpolated coarray sensors can
be potentially obtained. Besides, the CDF curve of the
interpolated coarray terminates at 13, which is slightly
worse than that of the uniform linear coarray.

• As for the coarray without interpolation, the starting point
of the corresponding CDF curve is 11. This phenomenon
agrees with our common sense that the maximum number
of DoFs of the coarray without interpolation cannot
exceed the number of the non-negative unique lags.
Besides, due to the grid mismatch of the CMT-BCS, the
maximal number of unidentified targets reaches 36. The
missing lags and the grid mismatch conspire the worst
identifiability of the coarray without interpolation.

These results validate the extra number of DoFs available
to improve the identifiability using the interpolation compared
to the coarray without performing interpolation.

C. Proof of Proposition 3

From the definitions of the two group solutions {Ẋv, żp, żf}
and {X̊v, z̊p, z̊f}, we respectively have

f[W̊p,T(̊zp), γp] + f[W̊f ,T(z̊f), γf ] ≤
f[Ẇp,T(żp), γp] + f[Ẇf ,T(żf), γf ], (71)

and

f[W̊p,T(̊zp), γp] + f[W̊f ,T(z̊f), γf ]

+ 2γ−2
p νptr[T(̊zp)] + 2γ−2

f νftr[T(̊zf)] ≥
f[Ẇp,T(żp), γp] + f[Ẇf ,T(żf), γf ]

+ 2γ−2
p νptr[T(żp)] + 2γ−2

f νftr[T(żf)]. (72)

The inequalities (71) and (72) lead to the following expression

0 ≤ f[W̊p,T(̊zp), γp] + f[W̊f ,T(z̊f), γf ]−
(f[Ẇp,T(żp), γp] + f[Ẇf ,T(żf), γf ])

≤ 2γ−2
p νptr[T(̊zp)] + 2γ−2

f νftr[T(̊zf)]. (73)

When 2γ−2
p νptr[T(̊zp)] + 2γ−2

f νftr[T(̊zf)] < 1, we have
rank [T(̊zp)] + rank [T(̊zf)] = rank [T(żp)] + rank [T(żf)],
which implies that the objective functions of CRM and per-
turbed CRM are equivalent. �

D. Proof of Propositions 4 and 5

To derive the reconstruction error ‖X̂v ◦B− Ẋv ◦B‖2F , we
first introduce the following lemma.

Lemma 4 [48]: Let x(t), t = 1, · · · , T , be zero mean i.i.d.
Gaussian random vectors distributed as x(t) ∼ N (0,Rx).
Then,

P

{
‖Rx − R̂x‖2F ≥

tr(Rx)√
T

}
≤ 2e−2C

√
T , (74)

where P{·} denotes the probability.
In Section II, the virtual coarray signal is initialized by

selecting the corresponding cross-correlation in the estimated

covariance matrix R̂x. Thus, by considering the element-
wise property of the Frobenius norm, the relationship can be
generalized from the physical domain to the virtual domain as

P

{
‖Ẋv ◦B− X̃v‖2F ≤

tr(Rx)√
T

}
≥ 1− 2e−2C

√
T . (75)

Then, the regularization term can be written as

‖X̂v ◦B− X̃v‖2F = ‖X̂v ◦B + Ẋv ◦B− Ẋv ◦B− X̃v‖2F
= ‖X̂v ◦B− Ẋv ◦B‖2F + ‖Ẋv ◦B− X̃v‖2F

+2〈X̂v ◦B− Ẋv ◦B, Ẋv ◦B− X̃v〉F .
(76)

From the definition of the optimal solution of (23), we have

1

2L
(tr[T(ẑp)] + tr[T(ẑf)]) + µ‖X̂v ◦B− X̃v‖2F

≤ 1

2L
(tr[T(żp)] + tr[T(żf)]) + µ‖Ẋv ◦B− X̃v‖2F , (77)

which implies

‖X̂v ◦B− X̃v‖2F − ‖Ẋv ◦B− X̃v‖2F

≤ 1

2µL
(tr[T(żp)]− tr[T(ẑp)] + tr[T(żf)]− tr[T(ẑf)]).

(78)

Furthermore, combining the Cauchy-Schwarz inequality on the
Frobenius inner product term, we have

|〈X̂v ◦B− Ẋv ◦B, Ẋv ◦B− X̃v〉F |
≤ ‖X̂v ◦B− Ẋv ◦B‖F‖Ẋv ◦B− X̃v‖F . (79)

Without loss of generality, we consider the regularization
parameter µ to satisfy

µ ≥ Rx√
T

=
L2

√
T

(∑K

k=1
pk + σ2

n

)
. (80)

Let ξ denote the reconstruction term ‖X̂v ◦ B − Ẋv ◦ B‖F .
By considering the PSD-ness of the Toeplitz matrices T(ẑp)
and T(ẑf) and combining (76) with (78), (79), (80), we have(

ξ − µ−
√
µ2 +

1

2µL
(tr[T(żp)] + tr[T(żf)])

)
·
(
ξ − µ+

√
µ2 +

1

2µL
(tr[T(żp)] + tr[T(żf)])

)
≤ 0.

(81)

Thus, we have

‖X̂v ◦B− Ẋv ◦B‖2F

≤ µ+

√
µ2 +

1

2µL
(tr[T(żp)] + tr[T(żf)])

= µ+

√
µ2 +

L

2µ

(∑K

k=1
pk + σ2

n

)
. (82)

These derivations establish the relationship in Proposition 4.
Likewise, the reconstruction performance of the CRM

method can be derived by replacing the objective function and
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using the same steps. Specifically, (78) in the CRM method is
expressed as

‖X̂v ◦B− X̃v‖2F − ‖Ẋv ◦B− X̃v‖2F ≤
1

µ

(
f[Ẇp,T(żp), γp] + f[Ẇf ,T(żf), γf ]

−f[Ŵp,T(ẑp), γp]− f[Ŵf ,T(ẑf), γf ]
)
. (83)

As we have mentioned in Remark 5 of Section IV, the optimal
solution of (27) satisfies that Ŵ in the null-space of T(ẑ).
Further considering the inequality γ−2‖W−γI‖2F ≥ 0 yields(
ξ−µ−

√
µ2 +

1

µ

(
f[Ẇp,T(żp), γp] + f[Ẇf ,T(żf), γf ]

))
·
(
ξ−µ+

√
µ2 +

1

µ

(
f[Ẇp,T(żp), γp] + f[Ẇf ,T(żf), γf ]

))
≤ 0. (84)

Thus, we have

‖X̂v ◦B− Ẋv ◦B‖2F

≤ µ+

√
µ2 +

1

µ

(
f[Ẇp,T(żp), γp] + f[Ẇf ,T(żf), γf ]

)
= µ+

√
µ2 +

2K

µ
. (85)

These derivations yield the relationship in Proposition 5. �

E. Derivation of Coarray CRB
In this appendix, we derive the CRB for joint DoA-range

estimation as a statistical benchmark. For the DoF-enhanced
algorithms that utilize the space-frequency difference coarray,
we use the matrix identity tr[ÃB̃C̃D̃] = [vec(B̃)]H(ÃT ⊗
C̃)
[
vec
(
D̃
)]

, and reformulate the FIM as

J = T ·
[
vec

(
∂Rx

∂ζ

)]H (
RT

x ⊗Rx

)−1
[
vec

(
∂Rx

∂ζ

)]
.

(86)

The vectorization of Rx increases the dimension of J and
leads to valid CRB derivation. Specifically, for the space-
frequency difference coarray of FDCA, the FIM can be written
as

J = T ·
[
∂ẋv

∂ζ

]H (
RT

x ⊗Rx

)−1
[
∂ẋv

∂ζ

]
, (87)

where
∂ẋv

∂ζ
=

[
∂ẋv

∂θ1
,· · ·, ∂ẋv

∂θK
,
∂ẋv

∂r1
,· · ·, ∂ẋv

∂rK
,
∂ẋv

∂p1
,· · ·, ∂ẋv

∂pK
,
∂ẋv

∂σ2
n

]
(88)

with
∂ẋv

∂pk
= h∗ (θk, rk)⊗ h (θk, rk) , (89)

∂ẋv

∂σ2
n

= i =

 1 0 · · · 0︸ ︷︷ ︸
(M+N−1)2

0 1 · · · 0︸ ︷︷ ︸
(M+N−1)2

· · · 0 0 · · · 1︸ ︷︷ ︸
(M+N−1)2


︸ ︷︷ ︸

(M+N−1)4

, (90)

∂ẋv

∂θk
= pk

[
∂h∗p (θk)

∂θk
⊗ h∗f (rk)⊗ h (θk, rk)

+h∗ (θk, rk)⊗ ∂hp (θk)

∂θk
⊗ hf (rk)

]
, (91)

∂ẋv

∂rk
= pk

[
h∗p (θk)⊗ ∂h∗f (rk)

∂rk
⊗ h (θk, rk)

+h∗ (θk, rk)⊗ hp (θk)⊗ ∂hf (rk)

∂rk

]
. (92)

Hence, the CRB of joint DoA-range estimation for the k-th
target can be obtained as

CRB (θk) =
[
J−1

]
k,k

, CRB (rk) =
[
J−1

]
K+k,K+k

, (93)

for k = 1, · · · ,K. Note that we use the Slepian-Bangs formula
in deriving the CRB to allow the readers to evaluate the
RMSE performance of other array configurations, since the
proposed framework is general and is extensible to arbitrary
holed coarray. �
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