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Abstract—In this paper, we develop a general framework of
multi-frequency sparse array to estimate the direction-of-arrival
(DOA) of a significantly higher number of targets than the
number of physical sensors. The multi-frequency sparse arrays
are designed to offer zero lag redundancy in the rendered differ-
ence coarray so that the available degrees of freedom are fully
utilized to enable high-resolution DOA estimation. A modified
sensor interpolation technique is developed to accurately estimate
the signal correlation matrix so that the effect of holes in the
difference coarray is mitigated. The proposed technique accounts
for both self-lags between signals corresponding to the same
frequencies and the cross-lags between signals corresponding to
different frequencies. As such, it enhances the DOA estimation
performance compared to existing methods that either perform
array interpolation utilizing only the self-lags or carry out group
sparse reconstruction without exploiting array interpolation.
Simulation results verify the offerings of the multi-frequency
sparse arrays.

Index Terms—Array interpolation, direction-of-arrival estima-
tion, multi-frequency sparse array, zero lag redundancy, group
sparsity.

I. INTRODUCTION

ONE of the fundamental research problems in array sig-
nal processing is direction-of-arrival (DOA) estimation,

which determines the spatial spectrum of the impinging elec-
tromagnetic waves. DOA estimation finds broad applications
in radar, radio astronomy, navigation, sonar, wireless com-
munications, and seismology [3], [4]. Traditionally, uniform
linear arrays (ULAs) are commonly adopted as a result of the
Nyquist sampling theorem. An N -element ULA resolves up to
N−1 sources or targets, and subspace-based DOA estimation
methods, such as MUltiple SIgnal Classification (MUSIC) [5]
and Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [6], are popularly used to estimate the
signal DOAs.

Sparse array designs have attracted significant interests due
to its superiority over ULAs in improving the resolution
by providing a larger array aperture compared to the ULA
counterparts with the same number of sensors [7]–[9]. In the
context of difference coarray equivalence, sparse arrays can
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achieve a higher number of consecutive as well as unique
lags, thus significantly increasing the number of degrees-of-
freedom (DOFs). A well designed N -sensor sparse array can
achieve O(N2) DOFs [9]–[16]. A series of signal processing
algorithms have been developed to achieve effective DOA
estimation using sparse arrays [17]–[25].

Minimum redundancy array (MRA) [7] and minimum hole
array (MHA) [9], [26] are two traditional sparse array designs.
For a given number of physical sensors, MRA provides the
maximum number of consecutive difference lags [7]. MHA,
also called Golomb array, provides zero-redundancy difference
lags with the minimum number of holes [9], [26]. However,
both MRA and MHA do not have general expressions. As
a result, they cannot be systematically designed, and their
lags and achievable DOFs cannot be easily analyzed. Such
shortcomings motivated the development of alternatives sparse
array configurations. For example, the nested array [10] con-
sists of two uniform linear subarrays, in which one subarray
has a unit interelement spacing. Unlike the MRA and MHA,
the sensor positions and the achievable DOFs can be easily
determined for a nested array. However, the nested array is
sensitive to mutual coupling effects since some of its sensors
are closely located. Several variants of the nested array, such
as super nested array [13], [14] and augmented nested array
[15], are developed to reduce the mutual coupling effect.
Another important alternative for mutual coupling reduction is
the coprime array. The prototype coprime array [11] consists
of a pair of uniform linear subarrays, in which one is of M
sensors with an interelement spacing of N units and the other
is of N elements with an interelement spacing of M units,
where, M and N are a pair of coprime integers. The coprime
array was generalized by two operations in [12]. One is the
compression of the interelement spacing of one subarray by a
positive integer, resulting in a coprime array with compressed
interelement spacing (CACIS). The other one is to introduce
a displacement between the two subarrrays, resulting in a
coprime array with displayed subarrays (CADiS). Compared to
the prototype coprime arrays, CACIS and CADiS respectively
increase the number of consecutive lags and unique lags.
Compared with the nested array, coprime arrays are less
sensitive to mutual coupling effects because the array elements
are located with a wider spacing. However, the number of
DOFs achieved by coprime arrays is generally lower than that
of the nested array counterpart and there are holes in the
rendered difference coarray. Some recent efforts have been
made to alleviate this problem such as the thinned coprime
array [27] and the k-times extended coprime array [28]. The
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recently developed maximum interelement spacing constraint
(MISC) [16] uses three sparse uniform linear subarrays to
obtain more DOFs and reduced mutual coupling effects than
super nested arrays and augmented nested arrays.

By exploiting the important property that the array manifold
is associated with the signal carrier frequency, the concept
of constructing a virtual coprime array using a single ULA
with two frequencies was developed in [29]. When the two
frequencies are associated with a coprime relationship, the
signals observed at a single ULA using two frequencies re-
semble to those observed at a coprime array which consists of
two uniform linear subarrays. Accordingly, the coprime array
concept is extended to a joint spatio-spectral domain, thereby
achieving high flexibility in array structure design to meet
both DOF and system complexity constraints. The extension
to multiple coprime frequencies, together with the analysis of
the achievable number of DOFs, are provided in [30]–[35]. In
[33], a method is developed for fast DOA estimation using
multi-frequency sparse ULA when the number of sources is
less than that of physical sensors. The Cramer-Rao lower
bound of the dual-frequency coprime array is analyzed in
[34]. Frequency diversity has also been exploited to suppress
grating lobes in coherent multi-input multi-output (MIMO)
radar with separated subapertures [36]. A wavelength-diverse
MIMO radar exploiting multi-frequency signals is considered
in [37] where all virtual antenna positions obtained from the
MIMO sum coarray and multi-frequency scaling are taken into
account.

From signal processing perspective, a unique problem to
be considered in the DOA estimation using multi-frequency
sparse arrays is that, the impinging signals corresponding to
different frequencies are not phase synchronized because of
unknown phase differences in the target reflection coefficients
as well as that in the propagation delays. Therefore, the
correlations obtained from self-lag pairs (between signals
obtained using the same frequency) and those from cross-lag
pairs (between signals obtained using different frequencies)
cannot be directly combined [31], [33]. To fuse such self-
lag and cross-lag correlation results, existing works on multi-
frequency sparse arrays [2], [22], [29], [31] commonly exploit
the group-sparsity of these correlation results, i.e., they share
a common spatial sparse support corresponding to the signal
directions but their values differ.

In [1], we proposed a modified array interpolation method
which improves from group sparsity-based methods. The self-
lags obtained at each frequency component are incorporated
to synthesize the correlation matrix, and a modified structured
matrix completion scheme is followed to recover the missing
entries in the resulting correlation matrix. As such, the correla-
tion matrix corresponding to the full ULA is recovered, which
enables high-resolution and gridless DOA estimation of more
sources than the number of self-lags using subspace-based
DOA estimation methods. However, such approach only uses
the self-lags and, as such, the potential benefits offered by the
multi-frequency sparse arrays are not fully exploited. In this
paper, we devise a novel approach to enable full utilization of
both self- and cross-lags to reconstruct the correlation matrix
corresponding to a larger ULA based on structured matrix

completion.
Difference coarray-based DOA estimation generally re-

quires a high number of snapshots to enable high-accuracy
correlation matrix estimation [38]. In some real-world applica-
tions, e.g., automotive radar [39], [40], the requirement of high
number of snapshots may not be satisfied because of the rapid
variation of the operation environment. In such highly dynamic
application scenarios, only a small number of array snapshots
are available, particularly when range-Doppler mapping is
first considered before performing DOA estimation. In the
context of the proposed multi-frequency sparse arrays, on the
other hand, the multi-frequency signal observations combined
with structured matrix completion offer a high number of
DOFs, thereby enabling robust DOA estimation with few data
snapshots [1]. It is noted that the proposed method only uses
multiple sparse carrier frequencies and, thus, requires a low
spectrum occupancy.

To summarize, in this paper, we propose an enhanced DOA
estimation framework utilizing generalized multi-frequency
sparse arrays. Our contributions are mainly two-fold.

1) We provide flexible multi-frequency sparse array designs
to offer a high number of DOFs. Unlike the existing
coprime-frequency ULA-based array designs which ren-
der high redundancies in the resulting difference lags
[29], [31], we exploit nonuniform linear prototype array
structures to avoid the lag redundancy issue so that
the number of the achieved lags is maximized for the
given number of sensors. In the proposed designs, the
frequencies do not need to satisfy a coprime relationship,
thus providing greater flexibility in the array design.

2) We integrate both self- and cross-lag correlations to
synthesize the correlation matrix by exploiting the group
sparsity among the signals corresponding to all frequen-
cies, and a modified structured matrix completion scheme
exploiting the Hermitian and Toeplitz structures of the
correlation matrix reconstructs the full correlation matrix
through robust interpolation. As a result, the proposed
method allows array designs with a larger aperture com-
pared to [1].

Notations: We use lower-case (upper-case) bold characters
to describe vectors (matrices). In particular, IL stands for the
L×L identity matrix, and 0L is the L×1 vector with all zero
elements. (·)T and (·)H respectively denote the transpose and
conjugate transpose of a matrix or vector, and diag(·) denotes
a diagonal matrix with the elements of a vector constituting
the diagonal entries. ‖ ·‖∗ and ‖ ·‖F respectively represent the
nuclear norm and Frobenius norm. Moreover, | · | denotes the
cardinality of a set. ◦ is the Hadamard product and ⊗ denotes
the Kronecker product. In addition, T (x) denotes a Hermitian
Toeplitz matrix with x as its first column and Tr(·) represents
the trace operator for a matrix.  =

√
−1 denotes the unit

imaginary number. E(·) denotes the expectation. Finally,
⋃

denotes the union operator.

II. MULTI-FREQUENCY SENSOR ARRAY

A. Signal Model
Consider a DOA estimation problem in which I continuous-

wave signals with carrier frequencies fi, i = 1, 2, · · · , I , are
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TABLE I
COMPARISON BETWEEN THE PREVIOUS AND THE PROPOSED MULTI-FREQUENCY ARRAY DESIGN

GIVEN L PHYSICAL SENSORS AND I FREQUENCIES

Previous multi-frequency array design [31] Proposed multi-frequency array design

Physical array Uniform linear array Nonuniform sparse linear array
Relationship among different frequencies Coprime Flexible

Maximum number of unique lags (L− 1)2I2 + (−L2 + 4L− 3)I + 1 (L− 1)2I2 + (L− 1)I + 1

simultaneously emitted from a single transmit sensor. Exten-
sion to multiple transmitter cases is straightforward based on
the well-known MIMO radar concept [41]. Assume an L0-
sensor ULA with interelement spacing d, and denote P =
{0, 1, 2, · · · , L0−1}. In this paper, we only consider scenarios
where Mi takes integer values and satisfies Miλi/2 = d,
where λi is the wavelength corresponding to fi.

The set Si containing the sensor positions for the ith
frequency, i = 1, 2, ..., I , is expressed as:

Si = {Mild̄ | l ∈ P}, (1)

where d̄ denotes half-wavelength in a normalized frequency
sense (i.e., no specific frequency is referred to).

As we discussed earlier, difference coarray reconstruction
based on a ULA inherently causes lag redundancies. More
specifically, for an L0-sensor ULA, lag d is repeated by L0−1
times, lag 2d is repeated by L0 − 2 times, and so on. In
order to avoid such redundancies and achieve redundancy-
free difference coarrays, we consider an L-sensor sparse
array design by choosing l from P′ ⊂ P with cardinality
|P′| = L < L0 (refer to the design example in Section II-D).
In this case, the virtual sensor locations for frequency fi are
given by:

Si = {Mild̄ | l ∈ P′}. (2)

For K uncorrelated far-field targets whose respective DOAs
are θk, k = 1, 2, · · · ,K, the return signal vector associated
with the ith frequency component is expressed as:

x̃Si(t) = e2πfit
K∑
k=1

ρ
(i)
k (t)aSi(θk) + ñSi(t), (3)

where ρ(i)k (t) is the reflection coefficient of the kth target for
the ith frequency, which is in general frequency-dependent
because both target reflectivity and propagation phase delay
vary with frequency. In addition,

aSi(θk)=

[
1, e

− 2πd1λi
sin(θk), · · · , e−

2πdL−1
λi

sin(θk)

]T
(4)

is the steering vector corresponding to θk, where dl is the
physical location of the lth element with respect to the
reference sensor, and L is the number of physical sensors.
The sensor indexed by l = 0 is defined as the reference sensor,
i.e., d0 = 0. Furthermore, ñSi(t) ∼ CN (0, σinIL) denotes the
additive white Gaussian noise vector.

After downconverting the received signal vector through
separated low-pass filtering corresponding to the respective
frequencies, we obtain the following baseband signal model:

xSi(t) =

K∑
k=1

ρ
(i)
k (t)aSi(θk) + nSi(t)

= ASiρ
(i)(t) + nSi(t),

(5)

where ASi = [aSi(θ1), · · · ,aSi(θK)] and ρ(i)(t) = [ρ
(i)
1 (t),

· · · , ρ(i)K (t)]T.

B. Lag Analysis

By incorporating the virtual sensors due to all I frequencies,
we define the set S of the combined sensor positions as:

S =

I⋃
i=1

Si =

I⋃
i=1

{Mild̄ | l ∈ P′}. (6)

Note that the reference sensors of all I virtual arrays overlap
at the zeroth position. Therefore, the cardinality of S, repre-
senting the number of unique virtual sensor positions, is given
by

|S| ≤ (L− 1)I + 1, (7)

where the equality is achieved when all virtual sensors do not
overlap except at the reference sensor position.

Define the self-lag set as the difference coarray virtual
sensor positions obtained from the same frequency, i.e.,

Cself =

I⋃
i=1

Si 	 Si =

I⋃
i=1

{Mi(l1 − l2)d̄}, (8)

where 	 computes the lags between two sets [42]. Similarly,
cross-lags are obtained from all pairs with different frequen-
cies, defined as

Ccross =
⋃

∀i,j,i 6=j

Si 	 Sj =
⋃

∀i,j,i 6=j

{(Mil1 −Mj l2)d̄}, (9)

where l1, l2 ∈ P′ and 1 ≤ i, j ≤ I . The complete set of
the coarray positions constituting all the correlation lags is
represented by C = Cself ∪ Ccross, and the corresponding set
of all non-negative correlation lags is denoted as C+.

While the most important contribution of using multi-
frequency signals is to populate the lags significantly be-
yond that offered by the single-frequency counterparts, it
also enables effective mutual coupling mitigation by properly
choosing the physical sensor positions and the frequencies that
keep a sufficiently large value of l1 − l2 while synthesizing
different lags from Mil1 −Mj l2.
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C. Analysis of Achievable DOFs

For I mutually coprime frequencies, there are I(I − 1)/2
co-prime frequency pairs. Given a ULA with L physical
sensors, the maximum number of achievable unique lags of the
difference coarray generated from different coprime frequency
pairs is given by [31]

η =
(
L2 − 1

) (
I2 − I

)
− 2(L− 1)

(
I2 − 2I

)
+ 1

= (L− 1)2I2 + (−L2 + 4L− 3)I + 1.
(10)

To achieve this upper-bound, a large separation between
different frequencies is required to minimize the number of
overlapping lags between different frequency pairs.

In this paper, a nonuniform sparse array is utilized such
that the lag redundancies are reduced [2]. Following (7), the
maximum number of achievable unique lags in the proposed
design is given by

ηproposed = 2

(
(L− 1)I + 1

2

)
+ 1

= (L− 1)2I2 + (L− 1)I + 1.

(11)

It indicates that we can achieve (ηproposed+1)/2 DOFs. We
enlist the comparison between the two array configurations in
Table I. The difference in the maximum number of achievable
unique lag between [31] and the proposed design is given by

ηdifference = ηproposed − η = (L− 2)(L− 1)I. (12)

Because L > 2 is always satisfied, ηdifference is always positive.

D. Design Example

To have an intuitive understanding, we use a simple example
of multi-frequency sparse array configuration with I = 3
frequencies as illustrated in Fig. 1(a). We set f2 = 7f1/6
and f3 = 3f1/2. The three frequencies are sparsely separated
with a relative bandwidth span of 40%. The sensor positions
are chosen for the first frequency as:

S1 = {0, 6, 24}λ1/2, (13)

i.e., M1 = 6 and P′ = {0, 1, 4}. From the frequency ratios,
we have M2 = f2M1/f1 = 7 and M3 = f3M1/f1 = 9. Note
in this case that M1 and M3 are not coprime.

The corresponding sensor locations at the other two fre-
quencies are obtained as:

S2 = {0, 7, 28}λ2/2, S3 = {0, 9, 36}λ3/2. (14)

As a result, the collective sensor positions are given by:

S = S1 ∪ S2 ∪ S3 = {0, 6, 7, 9, 24, 28, 36}d̄. (15)

The non-negative self- and cross-lag sets are respectively
obtained as:

C+
self = {0, 6, 7, 9, 18, 21, 24, 27, 28, 36}d̄, (16)

C+
cross = {1, 2, 3, 4, 8, 12, 15, 17, 19, 22, 29, 30}d̄. (17)

It is noted that the zeroth sensor position is only used to
compute the self-lags.

f1

f2 =7f1/6

f3 =3f1/2

0 6 24

0 7 28

0 9 36

(a) Configuration of multi-frequency sparse array

(b) Histogram of corresponding non-negative difference coarray lags

Fig. 1. Illustration of array configuration and histogram of corresponding
non-negative difference coarray lags (3 physical sensors and 3 frequencies)

The corresponding non-negative difference coarray posi-
tions are obtained as:

C+ = C+
self

⋃
C+

cross

= {0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 15, 17, 18,

19, 21, 22, 24, 27, 28, 29, 30, 36}d̄.
(18)

The sensor positions and the difference coarray positions are
shown in Fig. 1. This design does not provide a high number
of consecutive lags. However, it achieves the highest number
of unique lags (i.e., 43 lags) because there are no redundancies
in all lags except the unavoidable ones for lag 0.

E. Correlation Matrix
We can estimate the I2 correlation matrices as:
RxSixSj

= E{xSi(t)x
H
Sj (t)}

=

{
ASiP i,iASi + σ2

nIL, i = j,
ASiP i,jASj , i 6= j,

(19)

where P i,i = E
{
ρi(t)ρ

H
i (t)

}
is a diagonal matrix with

positive real values, and P i,j = E
{
ρi(t)ρ

H
j (t)

}
is a diago-

nal matrix whose diagonal elements generally take complex
values. The phase terms between xSi(t) and xSj (t), 1 ≤
i, j ≤ I, i 6= j, depend not only on the spatial angles of the
impinging signals but also on the unknown phase difference
between the reflection coefficients ρ(i)k (t) and ρ(j)k (t) [29].

In practice, the correlation matrix RxSixSj
is unavailable

and is approximated by its sample correlation matrix as:

R̂xSixSj
=

1

T

T∑
t=1

xSi(t)x
H
Sj (t), (20)

where T is the number of snapshots.
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III. DOA ESTIMATION EXPLOITING ARRAY
INTERPOLATION

In this section, we propose a novel DOA estimation algo-
rithm exploiting multi-frequency sparse array interpolation and
group sparsity. The concept of array interpolation is employed
to generate the same aperture as the L0-sensor ULA. The
resulting correlation matrix enables DOA estimation of much
more targets than the number of physical sensors.

A. Array Interpolation with Self-lags

The received signals of the interpolated ULA can be initial-
ized by augmenting xSi(t) as

〈yU(t)〉` =

{
〈xSi(t)〉` , `d̄ ∈ Si,
0, `d̄ ∈ U\Si,

(21)

where U = Pd̄ and 〈·〉` denotes the element corresponding
to the sensor located at `d̄. Accordingly, we define an L0-
dimensional binary vector bi to describe the presence of virtual
sensors indexed in the ULA U. Elements of vector bi with
value 1 imply the existence of virtual sensors with frequency
fi, whereas 0 stands for missing virtual sensor positions that
have to be interpolated, i.e.,

〈bi〉` =

{
1, `d̄ ∈ Si,
0, `d̄ ∈ U\Si.

(22)

We initialize the received signals of the interpolated ULA
yU(t) by

yiU(t) = xiU(t) ◦ bi, (23)

where xiU(t) is the theoretical received signal for frequency
fi using the ULA and is modeled as follows:

xiU(t)=

K∑
k=1

ρ
(i)
k (t)aU(θk)+niU(t)=AUρ

(i)(t)+niU(t), (24)

where AU = [aU(θ1), · · · ,aU(θK)] and aU(θk), k =
1, · · · ,K is the array manifold vector of the interpolated ULA
corresponding to the kth source and is expressed as:

aU(θk)=

[
1, e
− 2πd1λi

sin(θk),· · · ,e−
2πdL0−1

λi
sin(θk)

]T
. (25)

As we described earlier, unlike coprime array interpolation
discussed for the single-frequency arrays in [21], [22], the
underlying problem deals with I virtual arrays that share
the same L sensors, where the phase terms between xSi(t)
and xSj (t) depend on both the impinging angles and the
unknown phase difference between the reflection coefficients.
The existence of such unknown phase difference prohibits
the direct utilization of the cross-lags obtained from the
different frequency pairs, since ρ

(i)
k (t) and ρ

(j)
k (t) differ in

general. Therefore, the array interpolation method developed
in [21], [22] cannot be readily applied to the underlying DOA
estimation problem.

Based on the fact that the self-lags corresponding to each
single-frequency component are not affected by the unknown
phase shift, we employ the self-lag set for the array inter-
polation purpose. To enable effective information fusion of
the correlation matrices associated with different frequencies,

f3f2f1f1,   f2,  f3Missing
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Fig. 2. Binary mask for correlation matrix interpolation using auto-lags.

we define Bi = bib
T
i as the mask whose entries distinguish

the known and unknown elements in R̂
i

yUyU
. The synthesized

correlation matrix exploiting the I frequencies is given by

R̂yUyU =

(
I∑
i=1

R̂
i

xUxU
◦Bi

)
◦D, (26)

where D is the redundancy averaging matrix. The (m,n)th
element in D for (m,n) ∈ {1, · · · , L0}2 is obtained by taking
the inverse of the overlapping times, expressed as:

D(m,n) =
1∑I

i=1Bi(m,n) + ε
, (27)

where ε is a small positive value in order to ensure stability.
Accordingly, the L0 ×L0 binary matrix B distinguishing the
observed and missing elements in R̂yUyU is

B = D ◦
I∑
i=1

Bi. (28)

For the design example illustrated in Fig. 1(a), the positions
of the zero entries are represented by the empty boxes depicted
in Fig. 2. Red, green and cyan colors respectively denote the
entries resulting from frequencies f1, f2, and f3.

As pointed out in [22], conventional matrix completion
methods fail to fill in the missing entries in R̂yUyU since a
number of columns or rows are completely missing. Recalling
that, as we consider uncorrelated targets and spatially white
noise, the theoretical correlation matrix of a ULA has a
Hermitian and Toeplitz structure. Therefore, assuming that the
number of targets is smaller than the number of sensors in
the interpolated ULA, i.e., K < L0, we can reformulate the
correlation matrix recovery problem as the following low-rank
structured matrix completion problem [1]:

min
w

rank(T (w))

s.t.
∥∥∥T (w) ◦B − R̂yUyU

∥∥∥2
F
≤ δ

T (w) � 0,

, (29)

where δ is user-defined parameter, which is related to the
noise power. Note that the problem (29) is NP-hard due to
the rank minimization [43]. In the following, we relax the
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(a) Observed entries in the synthesized correlation matrix
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(b) Equivalent observed entries incorporating the Toeplitz structure in the
synthesized correlation matrix

Fig. 3. Observed entries from self-lags and cross-lags in the synthesized
correlation matrix.

rank minimization objective by exploiting the nuclear norm
minimization. The nuclear norm of T (w) can be expressed as

‖T (w)‖∗ = Tr(
√
T H(w)T (w)) = Tr(T (w)). (30)

Then, using the method of Lagrange multipliers [45], we
reformulate (29) as the following convex optimization problem
[1]:

min
w

∥∥∥T (w) ◦B − R̂yUyU

∥∥∥2
F

+ ζ Tr (T (w))

s.t. T (w) � 0,
(31)

where ζ is a regularization parameter.
The optimization problem in (31) exploits the special prop-

erties of the theoretical correlation matrix for the ULA, i.e.,
Toeplitz and Hermitian, low rank, and positive semidefinite-
ness. By taking such advantages, we are able to accurately
recover the ULA correlation matrix from a small number of
virtual sensors and even with a small number of snapshots [1].

B. Array Interpolation Using Both Self- and Cross-lags
Let R̂yUyU = UΣUH denote its singular value decompo-

sition. Ignoring the noise, the diagonal elements of Σ is k-
sparse. The coherence of U is given by [43]

µ (U) =
L0

K
max

1≤l≤L0

‖U(l, :)‖2 ∈
[
1,
L0

K

]
, (32)

where U(l, :) denotes the lth left singular vector of R̂yUyU .
Matrix R̂yUyU has coherence with parameters µ0 and µ1 if

1) µ (U) ≤ µ0 holds for some positive µ0;
2) The maximum element of matrix

∑
1≤k≤K uku

H
k is

upper bounded by µ1

√
K/L0 in absolute value for some

positive µ1, where uk denotes the kth column of U.
It is shown in [43] that, if the entries of ma-

trix R̂yUyU are observed uniformly at random, then
there exist constants C and c such that if |Ω| ≥
C max(µ2

1, µ
1/2
0 µ1, µ0L

1/4
0 )ηKL0 logL0 holds for some η >

2, the solution is unique and equal to R̂yUyU with probability
of 1− cL−η0 . Therefore, if matrix R̂yUyU has a low coherence
parameter, it can be completed using a less number of observed
entries. For structured matrix completion, the incoherence
condition is further relaxed. It is shown that the number of
the observed entries in the synthesized correlation matrix must
exceed O(K log4(L0)) to guarantee perfect recovery with a
high probability under some mild incoherence conditions [44].

From the above analysis, it is clear that more observed
entries are required to synthesize a large ULA aperture and
detect more targets. The maximum number of non-overlapped
entries resulting from the self-correlation matrices R̂xSixSi

is
given by

Nself = L2I − I + 1, (33)

and the maximum number of non-overlapped entries resulting
from the cross-correlation matrices R̂xSixSj

, i 6= j, is

Ncross = (L2 − L)I(I − 1)− 2(L− 1)I

= (L2 − L)I2 − (L2 + L− 2)I.
(34)

If we can utilize all the information from all self-lags and
cross-lags, the total number of the observed entries becomes:

Ntotal = Nself +Ncross

= (L2 − L)I2 − (L− 1)I + 1.
(35)

The utilization of cross-lags could greatly increase the number
of observed entries. For intuitive illustration, the observed
entries from the self-lags and cross-lags of the design example
in Subsection II-D are shown in Fig. 3(a). By incorporating the
Toeplitz property, the equivalent observed entries is depicted
in Fig. 3(b). The lag set in Eqs. (16), (17), and (18) are respec-
tively associated to the purple, blue, and their combinations in
Fig. 3(b). In Fig. 3(b), we see that the synthesized convariance
matrix incorporating the Hermitian Toeplitz property now
has entries in each column and each row, thereby enabling
convariance matrix reconstruction in the context of regular
matrix completion.

By vectorizing the correlation matrices, we obtain vector
zSiSj ∈ CL

2×1 as [31], [32]:

zSiSj = vec(R̂xSixSj
) ≈

{
ÃSiSipi,i + σ2

niSiSi , i = j,

ÃSiSjpi,j , i 6= j,
(36)

where ÃSiSj = [ãSiSj (θ1), · · · , ãSiSj (θK)] with ãSiSj (θk) =
a∗Si(θk) ⊗ aSj (θk), k = 1, · · · ,K, and iSiSi = vec(IL). We
can reformulate (36) as follows:

zSiSj = ΦSiSjri,j , i 6= j, (37)

where ΦSiSj = [ãSiSj (θ1), · · · , ãSiSj (θG),0L2 ] ∈ CL2×(G+1)

is the dictionary matrix, G is the size of search grid in spatial
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angles. The positions and values of the non-zero entries in the
first G elements of ri,j represent the estimated signal DOAs
from cross-lag correlations and the corresponding powers,
whereas the last element of ri,j is the estimated noise power.

Given (31), we define

zUU = vec(T (w)) = ΦUUr ∈ CL
2
0×1, (38)

where ΦUU = [ãUU(θ1), · · · , ãUU(θG), iUU] is the dictionary
matrix corresponding to the interpolated L0-sensor ULA with
ãUU(θg) = a∗U(θg)⊗ aU(θg), g = 1, · · · , G, iUU = vec(IL0

),
and r denotes the DOAs estimated from the self-lag correla-
tions. The combined model error accounting for both (37) and
(38) is described as∑

1≤i<j≤I

‖(zSiSj −ΦSiSjri,j)‖2 + ‖(zUU −ΦUUr)‖2 . (39)

As indicated in [2], [31], [34], the received signal vectors
corresponding to different frequencies share a common spatial
support representing the same signal DOAs, but generally have
distinct coefficients. Therefore, we can view the DOA esti-
mation problem as a group-sparse reconstruction problem to
incorporate the cross-lags in the array interpolation procedure.

Based on the above discussion, the array interpolation prob-
lem in (31) is modified to further account for the constraint
described in (39) using the method of Lagrange multipliers and
to utilize the group-sparsity in the spatial support among differ-
ent frequencies, yielding the following optimization problem:

min
w,R

∥∥∥T (w) ◦B − R̂yUyU

∥∥∥2
F

+ ζ Tr (T (w))

+ β1
∑

1≤i<j≤I

‖(zSiSj −ΦSiSjri,j)‖2

+ β1 ‖(zUU −ΦUUr)‖2 + β2 ‖R‖1,2
s.t. T (w) � 0,

(40)

where R = [r1,2, r1,3, · · · , rI−1,I , r] ∈
C(G+1) × (I(I−1)/2+1) and its mixed `1,2-norm is defined as

‖R‖1,2 =

G+1∑
m=1

I(I−1)/2+1∑
n=1

R(m,n)R∗(m,n)

1/2

, (41)

with R(m,n) denoting the element of R located at the
mth row and the nth column. In addition, β1 and β2 are
regularization parameters which respectively control the data-
fitting error and the group-sparsity term. We see that the
proposed method degenerates to (31) [1] when β1 = β2 = 0.
In general, a higher value of β1 will put more weights to the
cross-lags in determining the solutions, and high values of ζ
and β2 would yield more sparse DOA estimates.

It is noted that the on-grid assumption is required in (40)
due to the incorporation of the cross-lag correlations. The
problem (40) is convex [45] and can be solved using, e.g.,
CVX [46]. We obtain the estimated synthesis matrix T (ŵ)
and R̂. T (ŵ) is selected for further DOA estimation. On
one hand, T (ŵ) is strictly Toeplitz, which can help to obtain
a better performance. On the other hand, it is easier to
specify the number of the targets and avoid spurious peaks

if we apply the subspace-based DOA estimation method on
T (ŵ) instead of obtaining the DOA directly from R̂. In
this paper, we exploit the MUSIC algorithm [5] to perform
the DOA estimation, given its good angular resolution and
computational complexity.

IV. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the DOA estimation performance of the proposed method. The
design example in Section II-D is considered which exploits
I = 3 frequencies and L = 3 physical sensors. It corresponds
to |S| = 7 virtual sensors from the three frequencies and |P| =
L0 = 37 sensors in the interpolated ULA. The regularization
parameters ζ, β1, and β2 for correlation matrix recovery are
set to 0.5, 1, and 0.5, respectively. The noise power at the three
frequencies are assumed to be the same. Unless otherwise
specified, the input SNR values for all sources are assumed to
be identical. The phase difference between the received signal
corresponding to different frequencies is independently and
uniformly distributed in [0, 2π). The grid interval is set to 0.1◦.
We compare the proposed method with the structural matrix
completion method exploiting the self-lags [1] and the group
sparsity-based method using both self- and cross-lags without
array interpolation [2], [31]. Group lasso [47] is employed to
solve all group sparse reconstruction problems.

It is noted that the MUSIC pseudo-spectra are presented
in dB whereas the spectra obtained from the group lasso are
presented in the linear scale.

A. Example 1: K = 4 Nonuniform Distributed Targets

We first consider K = 4 targets that are nonuniformly
located at [−19◦,−15◦, 5◦, 9◦]. Note that the number of targets
exceeds the number of physical sensors. The input SNR is 10
dB for all targets and the number of snapshots is set to 50. We
observe in Fig. 4(a) that the group lasso-based method without
array interpolation detects the 4 targets but spurious peaks
appear in the estimated spatial spectrum. Such distorted spatial
spectrum is due to the inaccurate covariance matrix estimation
from a small number of snapshots. On the other hand, the two
array interpolation methods, respectively presented in Fig. 4(b)
using self-lag correlations and in Fig. 4(c) for the the proposed
method using both self- and cross-lags, resolve the 4 targets
accurately. The proposed method depicted in Fig. 4(c) provides
a lower spectrum floor compared to the results presented in
Fig. 4(b).

B. Example 2: K = 4 Nonuniform Distributed Targets with
Unequal Strength

In this example, we consider the same four targets as
considered in Section IV-A but they assume different input
SNR values of 5, 10, 12, and 15 dB. The group lasso-based
method is sensitive to the amplitude difference among targets.
As depicted in Fig. 5(a), the highest 4 peaks are no longer
correctly associated with the 4 targets, as the target at −19◦

yields a lower amplitude than the spurious peak at 54.8◦.
For the array interpolation method using only self-lags in
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(a) Group lasso without array interpolation [2]
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(b) Array interpolation with self-lags [1]
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(c) Proposed array using both self- and cross-lags

Fig. 4. Comparison of DOA estimation results. K = 4 targets located at [−19◦,−15◦, 5◦, 9◦]. Input SNR = 10 dB for all targets, and T = 50.
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(a) Group lasso without array interpolation [2]
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(b) Array interpolation with self-lags [1]
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(c) Proposed array using both self- and cross-lags

Fig. 5. Comparison of DOA estimation results. K = 4 targets, located at [−19◦,−15◦, 5◦, 9◦], have respective input SNR of 5, 10, 12, and 15 dB. T = 50.
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(a) Group lasso without array interpolation [2]
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(b) Array interpolation with self-lags [1]
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(c) Proposed array using both self- and cross-lags

Fig. 6. Comparison of DOA estimation results. K = 4 targets are uniformly distributed in [−6◦, 6◦]. Input SNR = 10 dB for all targets, and T = 50.

Fig. 5(b), the target at −19◦ appears as a biased and very
low peak whereas a spurious peak appears at 55.2◦. Fig. 5(c)
presents the result of the proposed method. The four targets
are detected at [−19.3◦,−15.2◦, 5.2◦, 9◦], respectively. We see
that the unequal SNR levels result in degraded DOA estimation
performance for the weak targets, and the proposed method
provides enhanced robustness.

C. Example 3: K = 4 Closely Distributed Targets

In this example, we change the four targets in Section
IV-A to angles [−6◦,−2◦, 2◦, 6◦], which are uniformly but
more closely distributed. The closer angle separations degrade
the group lasso-based method with more spurious peaks as
depicted in Fig. 6(a). From Fig. 6(b), for the array interpolation

method using only self-lag correlations, there exists a spurious
peak in 18.9◦ whose level is higher that the spectrum located
in 6◦. Fig. 6(c) presents the estimated spectrum of proposed
method which incorporates both self- and cross-lag correla-
tions, where all four targets are correctly detected without
spurious peaks.

D. Example 4: K = 8 Closely Distributed Targets

In this example, we consider a higher number of K = 8
targets which are uniformly distributed between −14◦ and
−14◦. The input SNR for all targets is 10 dB, and 100
snapshots are used. Note in this case that the number of targets
exceeds the number of virtual sensors (|S| = 7) resulting from
the three frequencies. Fig. 7(a) presents the spatial spectrum
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(b) Array interpolation with self-lags [1]
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(c) Proposed array using both self- and cross-lags

Fig. 7. Comparison of DOA estimation results. K = 8 targets are uniformly distributed in [−14◦, 14◦]. Input SNR = 10 dB for all targets, and T = 100.
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Fig. 8. RMSE versus the input SNR and the number of snapshots.

obtained by the group lasso-based method. While the highest
peaks indicate the targets, a high number of spurious peaks
appear with a moderate magnitude. For the array interpolation
exploiting only self-lags, as depicted in Fig. 7(b), one target
is missing and one high spurious peak appears in 18.8◦. By
utilizing both self- and cross-lags in the synthesis of the
correlation matrix, the proposed method provides accurate
DOA estimation of all targets with no spurious peaks, as
depicted in Fig. 7(c).

E. Robustness Analysis

In this subsection, we quantitatively compare the perfor-
mance of the proposed DOA estimation strategy in terms of

root mean squared error (RMSE) with respect to the input
SNR and the number of snapshots. The RMSE is defined as:

RMSE =

√√√√ 1

NK

N∑
n=1

K∑
k=1

(
θ̂k,n − θk

)2
, (42)

where θ̂k,n denotes the estimate of the kth target direction θk
in the nth Monte-Carlo trial. 500 independent trials are utilized
to generate each result. The case described in Section IV-C,
i.e., 4 targets uniformly distributed in [−6◦, 6◦], is selected
for RMSE comparison. It is noted that the group lasso-based
method is excluded for RMSE comparison due to the presence
of excessive amount of spurious peaks in its results.

Fig. 8(a) shows the RMSE performance with respect to
the input SNR, where 50 snapshots are used. It is observed
that the proposed method consistently outperforms the array
interpolation method utilizing only the self-lags, particularly
when the SNR is 10 dB and higher.

Fig. 8(b) depicts the RMSE performance with respect to the
number of snapshots. It is observed again that the proposed
method consistently achieves a much lower RMSE than the
array interpolation method using self-lag correlations.

F. Generalization Analysis

In this subsection, we consider another zero-redundancy
sparse array design which consists of 4 physical sensors and 3
frequencies. The sparse array and the corresponding lags are
illustrated in Fig. 9.

Consider that K = 15 targets are uniformly spaced between
−30◦ and 30◦. The input SNR is 10 dB for all targets and
200 snapshots are adopted. The DOA estimation results are
presented in Fig. 10. For the group lasso-based results depicted
in Fig. 10(a), we observe that a high number of spurious
peaks obscure the spatial spectrum. For the array interpolation
method using self-lags only, Fig. 10(b) shows that two targets
are not correctly detected. In comparison, the proposed method
successfully resolves all 15 targets.

Next, we compare the capability of the two proposed array
designs, namely the 3-element array depicted in Fig. 1(a)
and the 4-element array depicted in Fig. 9(a), in resolving
closely spaced targets. We consider two closely spaced targets
respectively located at [−0.5◦, 0.5◦], and the input SNR for
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Fig. 9. Illustration of array configuration and histogram of corresponding
non-negative difference coarray lags (4 physical sensors and 3 frequencies)

both targets is 10 dB. The number of snapshots is reduced to
20. The histogram of 500 Monte Carlo trials shown in Fig.
11 reveals that the result of the 4-element array gives more
accurate DOA estimation than that offered by the 3-element
array counterpart.

V. CONCLUSION

In this paper, we proposed a multi-frequency sparse array
framework that can provide high-resolution DOA estimation
capability and resolve much more targets than the number
of physical sensors. Both self- and cross-lags are utilized
for array interpolation. Therefore, the achievable DOFs have
been greatly enhanced. In particular, we incorporate the cross-
lags into the synthesized correlation matrix by exploiting the
group-sparsity among different frequencies. Simulation results
demonstrated that the proposed strategy provides promising
performance for the DOA estimation.
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(a) Group-lasso with self- and cross-lags [2]
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(b) Array interpolation with self-lags [1]
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(c) Proposed array using both self- and cross-
lags

Fig. 10. Comparison of DOA estimation results for the array depicted in Fig. 9. K = 15 targets are uniformly distributed in [−30◦, 30◦]. Input SNR = 10
dB and T = 200.
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