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Abstract—Group sparsity based method is applied to the
2q-th order difference co-array for underdetermined wideband
direction of arrival (DOA) estimation. For complexity reduction, a
focused compressive sensing based approach is proposed, without
sacrificing its performance. Different from the conventional
focusing approach, in the proposed one, focusing is applied to the
virtual arrays and no preliminary DOA estimation is required.
Simulation results are provided to demonstrate the effectiveness
of the proposed methods.

Index Terms—High-order difference co-array, direction of
arrival estimation, compressive sensing, focusing, group sparsity.

I. INTRODUCTION

Recently, underdetermined DOA estimation has received
considerable attention [1]–[5]. Sparse arrays based on the
second-order difference co-array (SODC) equivalence have
been proposed to increase the number of degrees of freedom
(DOFs) beyond those offered by the physical array. Com-
monly used sparse configurations include nested [6] and co-
prime arrays [7], [8]. For the narrowband case, both subspace
methods and compressive sensing (CS) techiniques have been
applied for DOA estimation, irrespective of the employed
array configuration [6]–[11]. CS and sparse reconstruction
techniques exploit all DOFs of the SODC, leading to improved
performance [12]–[16]. However, the CS framework can entail
a high computational complexity, specifically, under large
virtual array extent and increased number of search grid points.

The CS-based DOA estimation for narrowband arrays can
be extended to wideband. In [17], sparse reconstruction of the
source DOAs is performed for SODC with group sparsity (GS)
applied across the different signal frequencies. However, in
such a case, computational complexity increases significantly
with the number of employed frequencies. On the other
hand, to further increase the DOFs of the system, high-order
cumulant-based methods were developed as part of the 2q-th
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(q ≥ 2) order difference co-array concept, which have the
additional advantage of improved robustness against strong
background Gaussian noise [5], [18]. Moreover, the fourth-
order difference co-array based estimation method for quasi-
stationary sources was proposed in [19], where the source
signals can be either Gaussian or non-Gaussian. In general,
for the 2q-th (q ≥ 2) order difference co-arrays [20], O(N2q)
DOFs are provided with only N physical sensors.

This paper considers the underdetermined wideband DOA
estimation problem for high-order difference co-arrays. We
propose a focusing based method within the CS frame-
work, in lieu of GS, which achieves significant reduction in
computations without a noticeable sacrifice in performance.
However, unlike conventional focusing algorithms for physical
arrays [21]–[23], we apply focusing to the virtual array corre-
sponding to the 2q-th order difference co-arrays. The proposed
CS-focusing method does not require a preliminary estimate
of the DOAs, and avoids the accumulated error caused by a
mismatched focusing matrix.

II. WIDEBAND SIGNAL MODEL

Consider a general linear array structure with N physical
sensors distributed in the set of positions S,

S =
{
αn, 0 ≤ n ≤ N − 1

∩
n ∈ Z

}
, (1)

where Z is the integer set and αn the n-th sensor position.
Denote sk(t) with incident angles θk, k = 1, . . . ,K, as K

independent far-field zero-mean wideband signals impinging
on the array [24]. After sampling with a frequency fs, an
L-point discrete Fourier transform (DFT) is applied and the
output signal model in the frequency domain is expressed as

X[l, p] = A(l,θ)S[l, p] +N[l, p] , (2)

where X[l, p] is the N × 1 observed signal vector at the p-
th discrete-time segment and the l-th frequency bin, S[l, p] =
[S1[l, p], . . . , SK [l, p]]

T with Sk[l, p] as the DFT of the sig-
nals sk[i] and {·}T denotes transpose. N[l, p] represents
the corresponding column noise vector in the frequency do-
main, whose elements are uncorrelated zero-mean Gaussian.
A(l,θ) = [a(l, θ1), . . . ,a(l, θK)] is the steering matrix, with
each column vector a(l, θk) representing the steering vector at
frequency fl and angle θk, expressed as

a(l, θk) =

[
e
−j

2πα0
λl

sin(θk), . . . , e
−j

2παN−1
λl

sin(θk)

]T
, (3)
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where λl = c/fl and c is the propagation velocity of the signal.
For each frequency bin, the 2q-th order circular auto-

cumulant of Sk[l, p] is given by [25]

c2q,Sk
[l] =

Cum
{
Sk1 [l, p], . . . , Skq [l, p], S

∗
kq+1

[l, p], . . . , S∗
k2q

[l, p]
}
,

(4)

where km = k, 1 ≤ m ≤ 2q and 1 ≤ k ≤ K. Cum{·} is the
cumulant operator and {·}∗ the conjugate operation.

Define Nµ × 1 column vector a(l, θk)
⊗µ , a(l, θk) ⊗

a(l, θk)⊗. . .⊗a(l, θk) as the Kronecker product of µ vectors of
a(l, θk). Then, the 2q-th order circular cumulant of Xn[l, p]
at the l-th frequency bin for the arrangement indexed by µ
(0 ≤ µ ≤ q) is given by [4], [20]

C2q,x[l, µ] =
∑K

k=1
c2q,Sk

[l]
[
a(l, θk)

⊗µ ⊗ a(l, θk)
∗⊗(q−µ)

]
×

[
a(l, θk)

⊗µ ⊗ a(l, θk)
∗⊗(q−µ)

]H
+ σ2

n̄[l]INq · δ(q − 1),

(5)

where {·}H denotes Hermitian transpose, σ2
n̄[l] is the noise

power at the l-th frequency bin, INq is the Nq ×Nq identity
matrix, and δ(·) is the Kronecker delta function. For zero-
mean white Gaussian noise, its 2q-th order cumulant (q ≥ 2)
is zero. Therefore, the noise term is equal to zero for q ≥ 2.
For the sensor positions given in (1), the set of the 2q-th order
difference co-array is defined as [20]

Φ2q =

{
q∑

m=1

αnm −
2q∑

m=q+1

αnm , 0 ≤ nm ≤ N − 1

}
. (6)

According to Theorem 1 in [20], the model obtained by
vectorizing C2q,x[l, µ] is independent of µ and its equivalent
steering matrix behaves like the manifold of virtual sensors
corresponding to the 2q-th order difference co-array with
a large number of DOFs provided. This virtual model is
expressed as

z[l] = vec {C2q,x[l, µ]}
= B(l,θ)u[l] + σ2

n̄[l]̃iN2q · δ(q − 1) ,
(7)

where B(l,θ) = [b(l, θ1), . . . ,b(l, θK)] with each N2q × 1
column vector b(l, θk) =

[
a(l, θk)

⊗µ ⊗ a(l, θk)
∗⊗(q−µ)

]∗ ⊗[
a(l, θk)

⊗µ ⊗ a(l, θk)
∗⊗(q−µ)

]
, and the equivalent signal vec-

tor u[l] = [c2q,S1 [l], . . . , c2q,SK
[l]]

T . In addition, ĩN2q =
vec {INq} is an N2q × 1 column vector. For q = 1, i.e., the
more familiar SODC, the above formulation becomes

z[l] = vec {C2,x[l, µ]} = B(l,θ)u[l] + σ2
n̄[l]̃iN2 . (8)

III. DOA ESTIMATION UNDER THE CS FRAMEWORK
BASED ON THE 2q-TH ORDER DIFFERENCE CO-ARRAY

A. Group sparsity based wideband extension

For single-frequency signals, a CS-based method can be
applied directly to exploit the increased DOFs provided by
the high-order difference co-array. First, we rewrite (7) as

z[l] = B◦(l,θ)u◦[l] , (9)

where B◦(l,θ) =
[
B(l,θ), δ(q − 1)̃iN2q

]
, and u◦[l] =[

uT [l], σ2
n̄[l]

]T . After generating a search grid of Kg po-
tential incident angles θg,0, . . . , θg,Kg−1, we construct an
N2q×Kg steering matrix over the search grid as Bg(l,θg) =[
b(l, θg,0), . . . ,b(l, θg,Kg−1)

]
with θg =

[
θg,0, . . . , θg,Kg−1

]
,

where the subscript {·}g is used to describe matrices, vectors
or elements related to the generated search grid. Denote

B◦
g(l,θg) =

[
Bg(l,θg), δ(q − 1)̃iN2q

]
,

u◦
g[l] =

[
uT
g [l], σ

2
n̄[l]

]T
,

(10)

where ug[l] is a Kg × 1 column vector with its entries
representing the potential source signals over the generated
search grids, and u◦

g[l] includes the unknown noise power to
be estimated. Then, the CS-based DOA estimation for a single-
frequency case is formulated as

min
∥∥u◦

g[l]
∥∥
1

subject to
∥∥z[l]−B◦

g(l,θg)u
◦
g[l]

∥∥
2
≤ ε, (11)

where ε is the allowable error bound, ∥·∥1 is the ℓ1 norm and
∥·∥2 the ℓ2 norm. The first Kg entries of u◦

g[l] represent the
DOA results over the generated Kg search grids.

Now, we extend it to multiple frequencies through the
application of GS as follows. Assume that there are M ≤ L
DFT frequency bins within the bandwidth of signals, with
their indexes described as lm, 0 ≤ m ≤ M − 1. These
indexes may or may not be consecutive. The choice of the
bandwidth is made to include all or part of the spectrum of
each source. In this respect, sources could be fully, partially
or non-overlapping in frequency, and not all sources need
to be present at each frequency. However, the advantages
of GS become more pronounced when more sources share
the same frequencies. With the same Kg search grids, an
MN2q ×M(Kg +1) block diagonal matrix B̃◦

g is formulated
as

B̃◦
g(θg) = blkdiag

{
B◦

g(l0,θg), . . . ,B
◦
g(lM−1,θg)

}
. (12)

We then construct a (Kg + 1) × M matrix U◦
g =[

u◦
g[l0], . . . ,u

◦
g[lM−1]

]
, whose (kg,m)-th entry, 0 ≤ kg ≤

Kg−1, represents the estimate of the equivalent source signal
from the incident angle θkg at the lm-th frequency bin, while
the (Kg,m)-th entry represents the corresponding circular
auto-cumulant of the noise.

With u◦
g,kg

, 0 ≤ kg ≤ Kg , representing the kg-th row of
U◦

g, a new (Kg +1)× 1 column vector is generated based on
the ℓ2 norm of each row vector u◦

g,kg
, expressed as

û◦
g =

[∥∥u◦
g,0

∥∥
2
,
∥∥u◦

g,1

∥∥
2
, . . . ,

∥∥u◦
g,Kg

∥∥
2

]T
. (13)

Finally, our extended GS-based estimation method employing
the 2q-th order difference co-array concept is formulated as

min
U◦

g

∥∥û◦
g

∥∥
1

subject to
∥∥∥z̃− B̃◦

g(θg)ũ
◦
g

∥∥∥
2
≤ ε, (14)

where z̃ =
[
zT [l0], . . . , z

T [lM−1]
]T , ũ◦

g = vec{U◦
g} is a

(Kg + 1)M × 1 column vector, and the first Kg elements in
û◦
g are the corresponding wideband DOA estimation results

over the Kg search grids.
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B. Focused compressive sensing based DOA estimation

The main drawback of the GS-based method is its high
computational complexity. For complexity reduction, a novel
focusing based approach under the CS framework, referred to
as CS-focusing, is proposed in this section.

Traditional focusing algorithms construct focusing matrices
for the physical array based on the correlation matrix, provided
that a preliminary estimate of the DOAs is given [21], [22].
Then, the focussing process aligns the signal sub-spaces of the
narrowband components within the frequency band of interest
to a reference frequency using the generated focusing matrices
[21]. Their performance is sensitive to the estimation error of
the initial DOAs. In our method, we apply focusing to the
virtual array structure, in lieu of the physical array. Further,
the search grid generated for sparse signal representation is
utilized as the initial DOA estimate. As a result, preliminary
DOA estimates are no longer required.

Consider fr as the reference frequency corresponding to
the lr-th frequency bin. The focusing algorithm of rotational
signal-subspace (RSS) [26] is applied to the virtual array
structure in (7) with the vector θg containing all the Kg search
grids as the initial DOAs. Then, the RSS focusing matrix
T[l] with size of N2q × N2q at the l-th frequency bin can
be obtained by solving the following optimization problem:

min ∥Bg(lr,θg)−T[l]Bg(l,θg)∥F
subject to TH [l]T[l] = IN2q ,

(15)

where ∥·∥F is the Frobenius norm. Its solution is given
by T[l] = V[l]UH [l] [26], where the column vectors in
U[l] and V[l] are the left and right singular vectors of
Bg(l,θg)B

H
g (lr,θg), respectively.

The output model after focusing can be expressed as

y[l] = T[l]z[l]

= T[l]Bg(l,θg)ug[l] + σ2
n̄[l]T[l]̃iN2q · δ(q − 1)

≈ Bg(lr,θg)ug[l] + σ2
n̄[l]T[l]̃iN2q · δ(q − 1) .

(16)

After focusing, the same equivalent steering matrix
Bg(lr,θg) is shared among all frequencies of interest. Such
transform requires that the focused model at the reference
frequency is aliasing-free. By averaging the signal at each
frequency bin, a single wideband model can be obtained as

ȳ =
1

M

M−1∑
lm=0

y[lm] = Bg(lr,θg)ūg +TĩN2qδ(q − 1), (17)

where ūg = 1
M

∑M−1
lm=0 ug[lm] is the Kg × 1 column vector

corresponding to the potential signals to be estimated under
the CS framework, and T = 1

M

∑M−1
lm=0{T[lm]σ2

n̄[lm]}. For
Gaussian white noise, we have σ2

n̄[lm] = σ2
n̄, 0 ≤ m ≤ M−1,

and as such, T = 1
M

∑M−1
lm=0 T[lm]σ2

n̄.
Finally, the proposed CS-focusing method for wideband

DOA estimation can be formulated as follows

min
ū◦

g

∥∥ū◦
g

∥∥
1

subject to
∥∥ȳ −B◦

g(lr,θg)ū
◦
g

∥∥
2
≤ ε, (18)

where ū◦
g =

[
ūT
g , σ

2
n̄

]T , and B◦
g(lr,θg) =[

Bg(lr,θg),
1
M

∑M−1
lm=0 T[lm ]̃iN2qδ(q − 1)

]
.

An important property that permits the development of
the proposed method is that, in the underlying 2q-th order
difference co-array, the ug[lm] terms have the same sign across
all frequency bins and, as such, their summation leads to
coherent signal combining for improved performance. This
property is verified below:

1). For q = 1, each entry in the row vector u◦
g,kg

represents a positive power value at a potential angle.
Then we can rewrite ūg as ūg = 1

M

∑M−1
lm=0 ug[lm] =

1
M

[∥∥u◦
g,0

∥∥
1
, . . . ,

∥∥u◦
g,Kg−1

∥∥
1

]T
.

2). For q > 1, assume that each source sk[i] is generated
by an autoregressive moving average (ARMA) process (with
impulse response h̃k[i]) driven by an independent and identi-
cally distributed (i.i.d.) input non-Gaussian signal wk[i], i.e.,
sk[i] = wk[i] ∗ h̃k[i], where ∗ represents convolution. For the
l-th frequency bin output Sk[l, p] of the DFT at instant p, the
operation applied to sk[i] can also be considered as a convo-
lution with hD[i, l] representing its impulse response. Sk[l, p]
can, therefore, be considered as a convolution between wk[i]
and the equivalent impulse response hk[i, l] = h̃k[i] ∗ hD[i, l].
By a straightforward extension of the properties given in [25]
to complex random processes, and with km = k, 1 ≤ m ≤ 2q
and 1 ≤ k ≤ K, (4) can be updated to

c2q,Sk
[l]

=Cum
{
wk1 [i] ∗ hk1 [i, l], . . . , wkq [i] ∗ hkq [i, l],

w∗
kq+1

[i] ∗ h∗
kq+1

[i, l], . . . , w∗
k2q

[i] ∗ h∗
k2q

[i, l]
}

=c2q,wk

+∞∑
µ=−∞

hk[µ, l] · · ·hk[µ, l]︸ ︷︷ ︸
q times

q times︷ ︸︸ ︷
h∗
k[µ, l] · · ·h∗

k[µ, l]

=c2q,wk

+∞∑
µ=−∞

∣∣hk[µ, l]
∣∣2q ,

(19)

where c2q,wk
is the 2q-th order auto-cumulant of wk[i], and

| · | is the absolute value operator. Clearly, c2q,Sk
[l] shares the

same sign with c2q,wk
since

∑+∞
µ=−∞

∣∣hk[µ, l]
∣∣2q is positive.

The CS-focusing method is proposed based on a general
linear array. As illustrated, for the SODC (q = 1), the sources
are assumed uncorrelated, while for q > 1, they are assumed
to be non-Gaussian and independent. For the off-grid problem
(also known as dictionary mismatch problem) caused by off-
grid sources [27], [28], a straightforward solution adopted here
is to construct a more accurate model by predefining a denser
search grid with an increased number of angles, which may
lead to further increased computational complexity. However,
under a coarser search grid, there are other methods available
to deal with this mismatch problem [29]–[32]. Moreover, due
to the DFT operation employed, to maintain a given level of
performance, with the increase of the DFT points, the total
number of snapshots required also increases.

The procedure of our proposed CS-focusing method is
summarized as follows:

1. Generation of the virtual array at each frequency bin
based on the 2q-th order difference co-arrays in (7).

2. Focusing is applied to the virtual array and then, a single
wideband model is obtained by averaging the signal model at
each frequency bin as given in (17).
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TABLE I
NUMBER OF ENTRIES IN VECTORS/MATRICES

Vector / Matrix GS-Based Method CS-focusing Method
ũ◦
g / ū◦

g (Kg + 1)M Kg + 1

z̃ / ȳ N2qM N2q

B̃◦
g(θg) / B◦

g(lr,θg) (Kg + 1)N2qM2 (Kg + 1)N2q

Number of Entries and Computation Time for the Example
Vector / Matrix GS-Based Method CS-focusing Method

ũ◦
g / ū◦

g 10830 722

z̃ / ȳ 9375 625

B̃◦
g(θg) / B◦

g(lr,θg) 101531250 451250

Computation Time 700.146s 89.251s

3. Results are obtained by solving the problem in (18).

IV. SIMULATION RESULTS

In the simulations, the signals have a normalized frequency
range [0.5π;π], and fr = 0.75π, where the normalized
frequency is defined as ω = 2f

fs
π with f being the frequency

of interest. For the l-th frequency bin, the corresponding
normalized frequency is ωl =

2fl
fs

π = 2l
L π. We first consider

an example with signals at each frequency bin sharing the
same distribution (i.e., uniformly distributed phase on [0, 2π]
with the same magnitude). Then, the inverse DFT is utilized
to generate the signals in the time domain. A four-level
nested array (q = 2) with 5 sensors and a position set
S = {1d, 2d, 4d, 8d, 16d} is adopted, where d = λr/2 with
λr = c/fr, and its fourth-order difference co-array contains a
virtual ULA of 31 sensors [20]. L = 64-point DFT is applied,
and the frequency band of interest covers M = 15 frequency
bins with 17 ≤ lm ≤ 31. There are K sources with incident
angles uniformly distributed between −60◦ and 60◦. A search
grid of Kg = 721 angles with a step size of 0.25◦ is generated
from −90◦ to 90◦. The allowable error bound ε is chosen to
give the best result through trial-and-error in every experiment.
All the optimisation problems in (11), (14), and (18) are solved
using CVX, a software package for specifying and solving
convex optimization problems [33], [34].

For comparison of computational complexity, the number
of entries in the vectors/matrices involved is shown in Table
I, where the computation time under the environment of Intel
CPU I5-3470 (3.20 GHz) and 12 GB RAM is also listed.
Clearly, a significant complexity reduction has been achieved
by the CS-focusing method.

Fig. 1 compares the DOA estimation performance. The total
signal power and noise power within the entire frequency band
of interest are used to calculate the signal-to-noise ratio (SNR).
The input SNR is 0 dB, and K = 12. The number of samples
used to calculate the cumulant matrix at each frequency bin
is fixed at 10000. Fig. 1(a) shows the results by applying the
focusing algorithm to the physical array with perfect initial
DOAs (i.e., focusing followed by virtual array generation).
Clearly, this method fails to resolve all the sources due to
the increased model mismatch error in generating the virtual
array model with a much larger dimension from the focused
physical array, whereas for both the GS-based method and the
CS-focusing method, all the sources are successfully resolved.
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Fig. 1. DOA estimation results obtained by different methods. (a) Focusing
on the physical array with perfect initial DOAs. (b) Group sparsity based
method (RMSE: 0.4257◦). The CS-focusing method (RMSE: 0.4294◦) has
a similar figure as in (b) and it is not shown here to save space.
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Fig. 2. RMSE results of different wideband DOA estimation methods.

Next we show the root mean square error (RMSE) results to
compare the estimation accuracy of different methods through
Monte Carlo simulations of 500 trials. The narrowband method
uses only the 24-th frequency bin as it corresponds to the
largest inter-element spacing without aliasing. With K = 6,
the RMSE results obtained from the different methods with
respect to a varied input SNR are shown in Fig. 2(a), whereas
Fig. 2(b) gives the RMSE results versus the number of samples
in the frequency domain. The SS-MUSIC-F refers to an
approach by applying SS-MUSIC to the virtual model (17)
after the proposed focusing operation. It is evident that the
performances of the GS-based and the CS-focusing based
methods are nearly the same, and both outperform the narrow-
band method by a large margin. Furthermore, the CS-focusing
method consistently outperforms the SS-MUSIC-F method as
it exploits all unique difference co-arrays lags, whereas SS-
MUSIC-F only exploits the consecutive ones.

V. CONCLUSION

The CS-based wideband DOA estimation problem for the
2q-th order difference co-array was considered. We first for-
mulated the problem on a single frequency and then extended
it to multiple frequencies based on the GS concept. It is
effective, but has a very high computational complexity. To
tackle this problem, a low-complexity CS-focusing method
was introduced, with almost the same performance, as verified
by simulation results.
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