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Abstract

Bilinear time-frequency (TF) analyses provide high-resolution time-varying
frequency characterization of nonstationary signals. However, because of
their bilinear natures, such TF representations (TFRs) suffer from crossterms.
TF kernels, which amount to low-pass weighting or masking in the ambigu-
ity function domain, are commonly used to reduce crossterms. However,
existing fixed and adaptive kernels do not guarantee effective crossterm sup-
pression and autoterm preservation, particularly for signals with overlap-
ping autoterms and crossterms in the ambiguity function. In this paper,
we develop a new method that offers high-resolution TFRs of nonstationary
signals with desired autoterm preservation and crossterm mitigation capabili-
ties, especially for signals with slowly time-varying instantaneous frequencies.
The proposed method exploits a convolutional autoencoder network which is
trained to construct crossterm-free TFRs. For the signals being considered,
the proposed technique with properly trained networks offers the capabil-
ity to outperform state-of-the-art TF analysis algorithms based on adaptive
kernels and compressive sensing techniques.

Keywords: Crossterm mitigation, deep neural network, nonstationary
signal, time-frequency analysis.

1. Introduction

Nonstationary signals are naturally observed in many real-world appli-
cations, such as radar, sonar, satellite navigation, seismology, and biomedi-
cal applications [1–11]. One important class of nonstationary signals is re-
ferred to as frequency-modulated (FM) signals that are characterized by
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time-varying instantaneous frequencies (IFs). For such signals, joint time-
frequency (TF) domain representations are most suited for their analyses and
classification as they effectively provide time-varying spectra along the true
signal IFs.

TF representations (TFRs) can be generally classified into linear and
bilinear. For example, short-time Fourier transform is a commonly used
linear TFR approach whose TF resolution is restricted to a fixed sliding
time window. Compared to linear counterparts, bilinear TFRs generally
provide higher TF concentration. However, due to the nonlinearity of the
bilinear TFRs, crossterms unavoidably appear in between signal autoterm
components in the case of nonlinear or multi-component FM signals. Heavy
presence of crossterms prohibits accurate signal analysis and estimation of
signal IF signatures [6].

The Wigner-Ville distribution (WVD) is commonly referred to as the
prototype bilinear TFR with a high impact of crossterms. Various TF kernels
have been developed to suppress crossterms while preserving autoterms [4,
6, 12, 13]. Essentially, a TF kernel acts as a two-dimensional (2-D) low-pass
filter or mask multiplied in the ambiguity function (AF) domain, expressed
with respect to time lag and frequency shift. TF kernels are designed based
on the fact that, typically, autoterms have high values around the origin
of the AF domain whereas crossterms tend to be scattered away from the
origin. Because the AF and the TF domains are associated by a 2-D Fourier
transform relationship, a kernel effectively becomes a 2-D convolution in
the TF domain. Because autoterm preservation and crossterm mitigation
are conflicting objectives, designing TF kernels that meet both objectives
has been a challenging task in the past several decades and motivated the
development of a high number of TF kernels. The shape and extent of
the 2-D smoothing kernel can be predetermined (fixed kernel) or optimized
(data-dependent or adaptive kernel). Compared to fixed TF kernels, adaptive
TF kernels, such as the adaptive optimal kernel (AOK) [12], provide data-
dependent optimization and thus generally yield better performance.

While all existing fixed and adaptive kernels utilize certain properties
to mitigate crossterms while preserving autoterms, there is no assurance to
achieve these two conflicting objectives. Because existing TF kernels do not
have the capability to explicitly distinguish crossterms from autoterms, there
is no guarantee that crossterms are effectively mitigated and autoterms are
preserved. In particular, existing TF kernel designs generally assume that
crossterms are well separated from signal autoterms in the AF domain. When
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such assumption is not satisfied, e.g., autoterms and crossterms highly over-
lap, TF kernels would compromise one or both of their desired objectives.
Inseparable autoterms and crossterms are commonly observed when signals
involve highly nonlinear FM and intersecting FM components. Another prob-
lem associated with adaptive kernels is that the rendered kernels are highly
impacted by strong signal components. As a result, multiplicative kernels
further weaken weak signals, making them more easily obscured by strong
ones.

A recent trend to achieve high-resolution TF analyses is through the uti-
lization of the sparsity of FM signals in the TF domain. Depending on the
domain of observations, the incorporation of TF sparsity has been imple-
mented in two ways. The first class of approaches utilizes the 2-D Fourier
transform relationship between the AF and the TF domains [14–17]. In
these methods, a proper mask around the AF origin is selected to mitigate
the effects of crossterms. The desired TFR is then found as the sparse solu-
tion of the vectorized TFR entries. On the other hand, the second class of
approaches is based on the one-dimension (1-D) Fourier transform relation-
ship that relates the instantaneous autocorrelation function (IAF) and the
TF domains, and sparsity-based TFRs are obtained by performing compres-
sive sensing on the prototype or kernelled IAF for each time instant [18–20].
In this case, TF kernels can still be applied either directly in the IAF do-
main or by converting kernelled AF to the IAF domain through 1-D Fourier
transform. By using IAF domain observations to perform sparse TFR recon-
struction, the second class of approaches offers multi-fold merits, including
reduced complexity because the 1-D Fourier transform relationship between
the IAF and the TF domains requires a much smaller dictionary matrix,
insensitivity to time-dependent signal fluctuation or fading because the spar-
sity is considered locally for each time instant, and the capability to account
for the continuity of frequency signatures over closely spaced time samples
[21].

Recently, deep learning techniques [22] have achieved great success in
many applications, such as image recognition [23], speech recognition [24],
electroencephalogram (EEG) interpretation [25], crack detection [26], human
motion recognition [27], and spectral recovery [28]. In the area of TF anal-
ysis, Jiang et al [17] recently developed a U-Net aided iterative shrinkage-
thresholding algorithm to learn the structural sparsity in the TF domain.
However, its TFR reconstruction performance is still restricted by the selec-
tion of the AF samples.
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In [29], the concept of training a deep neural network (DNN) to achieve
autoterm preservation and crossterm mitigation was briefly described, and
fully convolutional neural network (FCNN) and convolutional autoencoder
(CAE) were exploited and compared. It is shown that the CAE may achieve
comparable performance as the FCNN using less layers, and the use of max-
pooling further reduces the computational complexity. In this paper, we will
further explore this concept to obtain high-resolution crossterm-free TFRs.
Because of the clear advantage of CAE over FCNN as indicated in [29],
only the CAE is considered in this paper. The CAE is trained to provide
high-resolution autoterms while completely suppress crossterms, even when
autoterms and crossterms highly overlap in the AF domain.

In this paper, ideal TF model constructed based on true signal IFs is
served as the training label. The convolutional layers capture the abstrac-
tion of the autoterms while eliminating crossterms. Deconvolutional layers
are used to upsample the feature maps and recover the autoterms details.
Unlike TF kernel designs which are optimized based on the signal char-
acteristics observed in the TF or AF domain, the proposed method offers
optimized end-to-end learning with loss function minimized at the network
output. Therefore, it provides significant improvement in the TFR recon-
struction performance and it works well even when autoterms and crossterms
highly overlap in the AF. It is worth noting that desired performance relies
on adequately trained networks, and the performance may degrade when
the test signal deviates from the training dataset. The superiority of the
proposed method is demonstrated for a set of examples which represent dif-
ferent nonstationary signals with slowly time-varying IFs. Developing more
comprehensive training strategies is out of the scope of this paper.

Notations : Lower-case (upper-case) bold characters are used to denote
vectors (matrices). (·)∗, (·)T and (·)H denote complex conjugation, trans-
pose and the Hermitian transpose, respectively. Fs(·) represents the discrete
Fourier transform (DFT) with respect to x. Re(·) represents the real part of
a complex value, | · ‖2 denotes the `2-norm and ‖ · ‖F denotes the Frobenius
norm. ∗ denotes the 2-D convolution.
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2. Signal Model and Time-Frequency Analysis

2.1. Signal Model

Consider a P -component discrete-time FM signal

s(t) =
P∑
p=1

sp(t) =
P∑
p=1

ape
φp(t), t = 1, · · · , T, (1)

where ap and φp(t) respectively denote the amplitude and the phase law of
the pth component for p = 1, · · · , P . The IF of the pth signal component is
given by fp(t) = dφp(t)/(2π dt).

The IAF of s(t) is defined as

Rss(t, τ) = s (t+ τ) s∗ (t− τ)

=
P∑
p=1

sp (t+ τ) s∗p (t− τ) +
P∑

p=1

P∑
q=1
q 6=p

sp (t+ τ) s∗q (t− τ) ,
(2)

where τ is the time lag. The first term in the right-hand expression im-
plies autoterms of the P components, whereas the last term represents their
crossterms.

The DFT of the IAF Rss(t, τ) with respect to τ is the well-known WVD,
which is considered as the prototype bilinear TFR since it does not apply a
TF kernel. The WVD of s(t) is given as

Wss(t, f) = Fτ [Rss(t, τ)] =
∑
τ

Rss(t, τ)e4πfτ . (3)

Note that, in the above expression, 4π is used because only integer values of
τ is used in (2) and the actual lag is thus 2τ . The WVD can be divided into
the autoterms and crossterms, given by

Wss(t, f) =
P∑
p=1

Wspsp(t, f)︸ ︷︷ ︸
Autoterms

+ 2
P∑
p=1

P∑
q=p+1

Re
[
Wspsq(t, f)

]
︸ ︷︷ ︸

Crossterms

. (4)

The two terms at the right-hand side respectively show the autoterms and
crossterms. Similarly, the AF is obtained by applying 1-D DFT to the IAF
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Rss(t, τ) with respect to t, expressed as

Ass(θ, τ) = Ft[Rss(t, τ)]

=
P∑
p=1

Aspsp(θ, τ)︸ ︷︷ ︸
Autoterm AF

+ 2
P∑
p=1

P∑
q=p+1

Re
[
Aspsq(θ, τ)

]
︸ ︷︷ ︸

Crossterm AF

. (5)

where θ denotes the frequency shift or Doppler. The AF has a 2-D Fourier
transform relationship with the WVD.

2.2. Kernel Design

The last term in (4) represents undesirable crossterms, which are byprod-
ucts induced by the bilinear nature of the WVD and appear in the midway
between any pair of autoterm components. TF kernels for crossterm mitiga-
tion are often implemented in the AF domain as a 2-D multiplicative filter
preserving the region around the origin since, typically, autoterms are cen-
tered around the origin whereas the crossterms are dislocated from the origin.
However, as the exact characteristics of autoterms and crossterms vary with
each signal, there is no single TF kernel that fits all signals. Optimized de-
sign of TF kernels has been an important task in TF analyses in the past
several decades.

As we discussed earlier, TF kernels can be classified into two general
types, i.e., data-independent (fixed) and data-dependent (adaptive). Adap-
tive kernels are designed to maximize certain performance measure under
some constraints and generally provide better performance compared to fixed
kernels. To depict the nature and the limitation of adaptive kernels, we briefly
describe a commonly used AOK [12].

The AOK is designed based on radially Gaussian windows with an angle-
dependent window size, given by:

Φopt(r, ψ) = arg max
Φ(r,ψ)

∫ 2π

0

∫ ∞
0

|A(r, ψ)Φ(r, ψ)|2rdrdψ

s.t. Φ(r, ψ) = exp

(
− r2

2σ2(ψ)

)
,

1

4π2

∫ 2π

0

σ2(ψ)dψ ≤ α,

(6)
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Figure 1: Results for a noiseless signal consisting of one SFM and LFM. (a) WVD of
s(t) = s1(t) + s2(t); (b) AF of s(t) = s1(t) + s2(t); (c) auto AF of s(t) = s1(t) + s2(t); (d)
cross AF between s1(t) and s2(t); (e) cross AF between s2(t) and s1(t); (f) TFR obtained
by the AOK for s(t) = s1(t) + s2(t); (g) proposed method.

where A(r, ψ) represents the AF of the signal in polar coordinates, r and
ψ denote the radius and radial angle, respectively, and α denotes the kernel
volume constraint. In short, the AOK optimizes the width of radial Gaussian
function in different directions to maximize the overall volume of the kernelled
AF, Ā(r, ψ) = A(r, ψ)ΦOPT(r, ψ) in the entire polar coordinate system.

Denote Ā(θ, τ) as the corresponding AF in the rectangular coordinate
system. Then, the corresponding TFR is given by

ρAOK(t, f) = Fτ
{
F−1
θ [Ā(θ, τ)]

}
. (7)

2.3. Demonstration Example

As an example, we consider a two-component signal s(t) = s1(t) + s2(t)
consisting of sinusoidal FM (SFM) component s1(t) = eφ1(t) and linear FM
(LFM) component s2(t) = eφ2(t). In this case, the instantaneous phase laws
of the two components are as respectively given as:

φ1(t) = 2π (T/(20π) cos (2πt/T + π) + 0.22t) ,

φ2(t) = 2π
(
0.12t+ 0.15t2/T

)
.

(8)

No noise is considered in this example.
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Figure 1(a) depicts the WVD of s(t) in which severe crossterms exist
due to the intersection of two signal components and the nonlinearity of
the SFM component. As a result, recognition of true IFs becomes difficult.
Figure 1(b) shows the AF of s(t). To clearly understand how the autoterms
and crossterms of this signal overlap in the AF domain, we depict in Figure
1(c) the autoterm AF, i.e., the superposition of the AF of s1(t) and that
of s2(t). Figure 1(d) shows the crossterm AF between s1(t) and s2(t) and
Figure 1(e) shows the crossterm AF between s2(t) and s1(t). Note that,
although these crossterm plots in Figures 1(e) and 1(d) look similar, they
differ in their shapes and positions. It is clear from Figures 1(b)–1(e) that it
is difficult to separate the crossterm AFs from the autoterm AF. As a result,
obtaining a desired TFR with preserved autoterms and mitigated crossterms
is challenging. As shown in Figure 1(f), the AOK is not able to handle
such challenging situation, and renders poor TFR particularly for the SFM
component. Figure 1(g) shows the result of the proposed method which
successfully reconstructs both components without distortion.

3. Convolutional Autoencoder-based Crossterm-Free TFR

In this section, we describe the proposed deep learning-based crossterm-
free TFR reconstruction by exploiting the CAE architecture. In the proposed
method, obtaining crossterm-free TFR is considered as a generative learn-
ing problem which, in essence, provides supervised TF kernel optimization
capability to minimize the reconstruction error at the network output. As
such, the CAE acts as an optimized TF kernel which, unlike any existing
TF kernel, is trained to output TFRs which are conceptually ensured to pre-
serve autoterms and mitigate crossterm through the minimization of the loss
function evaluated at the network output. It is noted that, while the CAE
architecture is used in this paper to provide high flexibility to optimize the
TF kernel with a low complexity, other deep learning network architectures
can also be used to implement the proposed crossterm-free TFR method.

In the following, we first describe the CAE architecture, and then present
the network training process.

3.1. Proposed Convolutional Autoencoder Architecture

A high-level diagram of the CAE architecture used in this paper is de-
picted in Figure 2. We adopt the WVD of a signal as the input image X
of the CAE, and the corresponding training label Y is constructed from the
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Figure 2: CAE architecture to achieve the high-resolution crossterm-free TFR.

IF law of the signal components scaled by their respective power. It is clear
that the label Y is crossterm-free and reflects high-resolution autoterms. The
CAE extracts features from the WVD to reconstruct the TFR, and minimizes
the difference between the reconstructed TFR and the corresponding label
in the minimum mean square error sense. The CAE can be considered as the
concatenation of two sections, i.e., an encoder and a decoder.

3.1.1. Encoder

The encoder consists of N network layers. Each network layer includes
several functional layers, namely, a convolutional layer followed by a rectified
linear unit (ReLU, max(0, ·)) and a max-pooling layer.

• Convolutional layer: In a convolutional layer, a neuron is only con-
nected to a local region called the receptive field. Neurons in a con-
volutional layer compute the inner product between their weights and
the receptive field of the input image to generate the activation map or
feature map. For each convolutional layer, C filters of size D ×D are
used to generate C feature maps. We use the “same” padding for the
convolutional layers so the image size of a convolutional layer output is
kept the same as its input size. The use of ReLU introduces nonlinear-
ity and pushes negative outputs to actual zeros, thus further enhancing
the TF sparsity at the network output.

Denote W
[n]
c and b

[n]
c as the weight coefficient matrix and the bias of

the c-th channel at the n-th layer. Then, the activation from the n-th
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convolutional layer is given by:

L[0](X) = X,

L[n]
c (X) = ReLU

(
W[n]

c ∗ L[n−1](X) + b[n]
c

)
,

n = 1, · · ·N, c = 1, · · · , C,
(9)

where L[n−1]
c is the c-th output feature map from the (n−1)-th network

layer from the max-pooling layer as describe below, and is fed into the
n-th network layer as the input. The first layer (n = 1) takes the
input TF image X as the network input which is defined as L[0](X) for
mathematical convenience.

• Max-Pooling layer: The ReLU output is followed by a max-pooling
layer, which performs three functions, namely, reducing the size of the
input image by a factor determined by the filter size and stride, adding
translational invariancy to the feature maps thus enhancing the model’s
generalization capability, and keeping the most prominent feature val-
ues by avoiding trivial solutions [30].

The max-pooling layer divides the feature map into several non-overlapping
regions, and maps the largest values from each region to its output fea-
ture map. The i-th element of the c-th feature map output from the
n-th max-pooling layer is given as

L[ni] = max(L[ni]
c ), (10)

where L[ni]
c is the i-th region of the c-th feature map resulted from the

n-th convolutional layer.

After repeating the above procedures for all N network layers in the en-
coder section, we obtain a number of feature maps with a reduced size. Ac-
cordingly, the input TFR is encoded to the feature maps with a significantly
reduced dimension.

3.1.2. Decoder

The decoder section reconstructs the TFR from the encoded feature map
from the encoder section. A deconvolutional layer, a ReLU, and an up-
sampling layer are stacked together to form each network layer of the decoder
section. The hyperparameters such as filter size and number of filters used
for the decoder section are kept the same as those in the encoder section.
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• Deconvolutional layer: A deconvolutional layer performs the reverse op-
eration of the corresponding convolutional layer and restores the TFR
from the captured features. It performs the transposed convolutional
operation to distribute the features of a feature map within its neigh-
borhood.

The output from the nth deconvolutional layer can be expressed as,

L[n]
Dc

(X) = ReLU
(
W

[n]
Dc
∗ L[n−1]

Dc
(X) + b

[n]
Dc

)
,

n = 1, · · ·N, c = 1, · · · , C.
(11)

• Up-sampling layer: The up-sampling layer is introduced to reconstruct
the original dimension of the TF images. The up-sampling operation
preserves the location of the maximum values from pooling and zeros
for the rest.

In addition to the encoder and decoder sections, one additional convolu-
tional layer consisting of a single filter of size D×D is utilized to reconstruct
the output TFR.

3.2. Neural Network Training

As examples, we consider two-component FM signals, expressed as:

x(t) = eφ1(t) + eφ2(t), (12)

for t = 0, 1, · · · , T − 1. We assume T = 128, and the resulting size of
each input TFR image is 128× 128. Two types of signals are considered for
training. The first one consists of two NLFM signal components, whereas the
second one consists of an LFM component and an SFM component. 2, 000
samples are randomly generated for each class with different parameters,
such as the respective initial frequencies, frequency slope, and frequency
difference. 90% of the samples are utilized for training and the remaining
10% are utilized for validation.

We adopt the mean square error between the estimated TFR Ŷ and label
Y as the loss function, described as

Loss{i} =
1

2M

M∑
m=1

‖Ŷ{i}m −Y{i}m ‖2
F , (13)
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(a) 2 layers (b) 3 layers (c) 4 layers (d) 6 layers

Figure 3: Performance comparison with respect to the number of layers.

where M is the number of samples in each batch, and i denotes the batch in-
dex. Minimizing the mean square error will force Ŷ

{i}
m to match Y

{i}
m as close

as possible and the minimum value is achieved when Ŷ
{i}
m = Y

{i}
m . Minimizing

the mean square error is equivalent to maximizing the peak signal-to-noise
ratio (PSNR), which is a popular image quality measure.

In this paper, we empirically set N = 3, C = 40, D = 5, and M =
113 that well balance the complexity and the performance. The optimizer
implements the Adam algorithm [32], with all its hyperparameters set to their
default values. Discussions on parameter selection are provided in Section 4.

To verify the noise robustness of our proposed method, we consider four
noise levels, i.e., noise-free (“inf” dB), 10 dB, 5 dB, and 0 dB. The same
parameters are shared to generate the training dataset at different noise
levels.

4. Parameter Selection

In this section, we discuss parameter selection in the proposed CAE to
obtain the crossterm-free TFR from the WVD.

4.1. Number of Layers

When processing a TF image, low level features like horizontal lines, ver-
tical lines, and edges are learned in the lower layers, whereas more complex
features are learned in the higher layers [31]. Considering crossterm-free
TFR reconstruction, therefore, signals with a highly time-varying TFR sig-
natures require a higher number of network layers to describe its features
[31]. As a general rule, when the number of the network layers is insufficient,
the network may not have the capability to learn all the useful features to
describe the input TF image. Therefore, there is high probability that the
training dataset is underfitted. On other hand, using a higher number of
network layers will not only increase the computation cost, but may also
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Figure 4: Performance comparison with respect to the number of filters.

risk the overfitting problem and does not necessarily further improve the
performance.

Figure 3 compares the TFR reconstruction performance of the proposed
method that handles an LFM component and an SFM component using the
CAE architecture with different numbers of layers. Figure 3(a) shows the
results for the case of N = 2 network layers, where we see that the SFM
component is distorted at the right edge. Increasing the number of network
layers improves its performance as the network can capture more useful fea-
tures. For the case of N = 3, Figure 3(b) shows improved reconstruction
performance with smooth and continuous TFRs. The result for N = 4 de-
picted in Figure 3(c) shows comparable reconstruction performance. For the
case of N = 5, however, we notice in Figure 3(d) that the LFM component
becomes blurred at the edges. In fact, adding more layers might lead to
overfitting, which indicates that the model cannot be well generalized to the
testing data.

4.2. Number of Filters

The deeper convolutional layers stack low-level features from its previous
layers to make meaningful abstract shapes [31]. As the features detected at
the higher layers are a combination of those at the prior layers, any features
that are previously undetected can no longer be detected in later layers. In
each layer, a plurality of filters are used to detect different types of features.
A sufficient number of filters must be used in each layer to ensure that no
useful features are lost. Therefore, if the number of filters is too small at a
layer, it takes a high risk of not adequately capturing all useful features, thus
degrading the performance. On the other hand, using too many filters in a
layer may introduce the overfitting problem.
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Comparing Figures 4(a) and 4(b), it is observed that, when using a small
number of C = 5 filters, the performance of the CAE architecture is poor,
whereas using an adequate number of C = 40 filters provides desired per-
formance. On the other hand, in Figure 4(c) where C = 55 filters are used,
the crossterms are not effectively mitigated due to the over-trained model.
Consequently, it is vital to find an optimal number of filters that achieve high
TFR reconstruction performance with a low computational complexity.
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(a) Filter size: 3× 3 (b) Filter size: 5× 5 (c) Filter size: 11× 11

Figure 5: Performance comparison for different filter sizes.

4.3. Filter Size

In general, filters with a small size are useful for extracting meaningful
local information and finer details, whereas large filters are used to extract
global and more generalized information. However, using a large filter size
will require a high complexity and may risk the overfitting problem.

In this paper, we select D = 5 × 5 as the filter size since this size is
suitable to capture the continuity of frequency signatures over a short time
period. Figure 5 presents a performance comparison for three different filter
sizes, i.e., 3 × 3, 5 × 5, and 11 × 11. We can see that the filter of size
D = 5×5 provides the best reconstruction performance in terms of crossterm
mitigation and autoterm preservation as compared with the filters of size
D = 3 × 3 and D = 11 × 11. When we have filters of size D = 11 × 11,
one LFM component cannot be fully detected, indicating that larger filter
size might lead to overfitting since more parameters are utilized during the
training procedure.

5. Simulation Results

In this section, we compare the proposed CAE-based learning method
with the prototype WVD and five TFR reconstruction algorithms, namely,
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(b) WVD
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(d) AOK
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(e) AOK+OMP
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(f) `1-prox
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(g) S-method
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(h) RSPWVD
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Figure 6: Reconstructed TFR results for the five cases. For all results, amplitudes are
coded logarithmically with a dynamic range of 20 dB.
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AOK[12], AOK+OMP [18], `1-prox [16], S-method [33], and reassigned smoothed
pseudo WVD (RSPWVD) [34]. The `1-prox algorithm [16] takes a rectangu-
lar sampling area of size 13×13 in the AF domain centered at the AF-domain
origin.

5.1. Case Studies

To demonstrate the effectiveness of the proposed method, both synthetic
and real-world signals are taken into account. For synthetic signals, we con-
sider five different cases which include signals with one component, two com-
ponents, and three components. These comparisons verify the generalized
learning capability and effectiveness of the proposed approach for crossterm
mitigation irrespective of the number of signal components and types used in
testing to some extent. The TFR reconstruction results of different methods
are depicted in Figure 6 in a noise-free case. In this figure, columns 1 through
5 are respectively associated with cases 1 through 5. For real-world signals,
the bat echolocation signal is considered in Section 5.1.6.

5.1.1. Case 1: One SFM Component

We first consider the following signal with a single SFM component whose
phase law is given as,

φ(t) = 2π (0.06T/π cos(2πt/T + π) + 0.25t) . (14)

This case is represented in the first column of Figure 6. The AOK and
AOK+OMP methods do not accurately capture the local information as
AOK attempts to linearize the IF law of the reconstructed TFR. Comparing
with the AOK-based method, the `1-prox method, S-method, and RSPWVD
provide much better capability to preserve the smoothness of the sinusoidally
time-varying IF signature. In particular, RSPWVD provides an accurate and
high-resolution TF signature which is very close to the ground truth except
minor smearing at both edges. The result presented in the first column of
Figure 6(i) shows that the proposed method provides accurate and high-
resolution TFR including both edges.

5.1.2. Case 2: Two Intersecting NLFM Components

Two intersecting NLFM components are considered, and their instanta-
neous phase laws are respectively given by:

φ1(t) = 2π
(
0.35t− 0.50t2/T + 0.33t3/T 2

)
φ2(t) = 2π

(
0.10t+ 0.50t2/T − 0.33t3/T 2

)
.

(15)
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Compared to case 1, the signal consisting of two intersecting NLFM com-
ponents generates much higher crossterms and, as a result, is much more
challenging to handle. In the plot depicted at the second column of Figure
6(e), we observe that the AOK+OMP substantially eliminates crossterms,
but it cannot correctly detect the overlapped spectrum around t = 110.
Compared with AOK+OMP, the `1-prox approach renders TFR with less IF
distortions, especially in the middle section. However, it fails to reconstruct
IFs in the overlapped portion on the right hand side because, in this case,
the autoterms and crossterms are difficult to be separated in the AF domain.
Both S-method and RSPWVD obtain a cleaner and more consistent TFR
compared with the AOK method. However, the TFR is distorted at the in-
tersections of the two signal components. The proposed method is the only
method among those compared to accurately obtain TFR for the entire time
period including the intersections.

5.1.3. Case 3: One SFM and One LFM Components

In this case, we consider a signal consisting of one SFM and one LFM
components. Their instantaneous phase laws are given as:

φ1(t) = 2π (0.12T/(1.20π) cos(1.20πt/T + π) + 0.25t) ,

φ2(t) = 2π
(
0.17t− 0.05t2/T

)
.

(16)

The results for case 3 are represented in the third column of Figure 6. The
AOK+OMP method well reconstructs the TFR of the LFM component, but
the SFM component is heavily distorted since it is difficult for the AOK to
handle highly nonlinear IF signatures. Compared with the AOK+OMP, the
`1-prox method provides better capability to handle the high IF nonlinearity,
but it does not preserve the shape of the autoterms at the edges. Both S-
method and RSPWVD also maintain the curvature well for the NLFM signal
component, and RSPWVD provides a high TFR resolution. In comparison,
the proposed TFR method provides cleaner and smoother TFR for both
components.

5.1.4. Case 4: Three LFM Components

In this case, the instantaneous phase laws of the three LFM components
are:

φ1(t) = 2π
(
0.02t+ 0.05t2/T

)
,

φ2(t) = 2π
(
0.15t− 0.05t2/T

)
,

φ3(t) = 2π
(
0.45t− 0.02t2/T

)
.

(17)
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We observe in the fourth column of Figure 6 that, for this relatively simple
case with three LFM components, all methods provide good TFR recon-
struction results. Among them, the compressive sensing-based methods, the
RSPWVD, and the proposed method provide higher TFR resolution as com-
pared to the AOK and the S-method.

5.1.5. Case 5: One SFM and Two LFM Components

Now, we consider a three-component signal with one SFM component
and two LFM components. Their respective instantaneous phase laws are
given as,

φ1(t) = 2π (0.07T/(1.20π) cos(1.20πt/T + π) + 0.15t) ,

φ2(t) = 2π
(
0.45t+ 0.02t2/T

)
,

φ3(t) = 2π
(
0.08t− 0.02t2/T

)
.

(18)

The AOK+OMP results depicted in the ((e)th row, 5th column) of Figure 6
does not detect the SFM component faithfully, especially when t is around
50. Compared to the AOK+OMP, the `1-prox method and S-method fail
to cleanly eliminate the crossterms. Moreover, they cannot separate the
SFM and the lower-frequency LFM component at the edges. The RSPWVD
provides a comparable performance as the proposed method, which detects
all IF components successfully. We notice that the proposed method has
some residual crossterms during 115 ≤ t ≤ 121. Nevertheless, the proposed
method maintains a clean and high-resolution spectrum for the entire time
period including both edges.

In all the above five cases, the proposed method consistently provides
near-ideal TFRs irrespective of the number of signal components and signal
types. These examples also verify that, while two-component FM signals
are used in our examples for training, the proposed method is not restricted
only to two-component FM signals but could be applied to general cases
with more or less than two components. Moreover, the proposed method is
insensitive to the finite sampling effect and maintains the signal energy along
the true signal IFs.

5.1.6. Real-life Bat Echolocation Signal

To demonstrate the superior performance of the proposed method in han-
dling real-life signals, we consider the commonly compared bat echolocation
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Figure 7: Performance of the model in case of reconstructing real-life bat echolocation
signal

exponential chirp signal emitted by Eptesicus fuscus 1. This 2.8 ms data
contains 400 samples with a sampling period of 7 µs. Particularly, this pulse
contains three gently curved harmonics, which are nearly linear if expressed
with respect to the logarithmic time [35].

Figure 7(a) depicts the waveform for the bat signal, which reflects the
signal energy distribution over a time period of 2.8 ms. Figure 7(b) rep-
resents the WVD of the bat echolocation signal, which is obscured by the
excessive crossterms. AOK, AOK+OMP, `1-prox, S-method, and RSPWVD
all provide good TFR reconstruction performance. However, the TFR result
obtained from the proposed method not only offers a high resolution, but
also well maintains the signal energy, especially for t > 2.1 ms.

5.2. Robustness Analysis

To quantitatively compare the performance of the proposed CAE-based
crossterm-free TFR reconstruction other TFR reconstruction methods, we
evaluate the TFRs from two different perspectives, i.e., fidelity and energy
concentration. We consider noisy signal measurements with different levels
of input SNR. Except for the noise-free case, K = 50 independent trials are
performed to obtain the average value.

1The authors wish to thank C. Condon, K. White, and A. Feng of the Beckman Institute
of the University of Illinois for the bat data and for permission to use it in this paper.
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(c) Trained SNR = 0 dB

0 50 100

0

0.1

0.2

0.3

0.4

0.5

0 50 100

0

0.1

0.2

0.3

0.4

0.5

0 50 100

0

0.1

0.2

0.3

0.4

0.5

0 50 100

0

0.1

0.2

0.3

0.4

0.5

(d) Trained SNR = 0 dB (one additional convolutional and deconvolutional layer in the model)

Figure 8: Effect of noises on the performance

At first, the normalized mean square error (NMSE) is adopted to measure
the fidelity, which is defined as follows:

NMSE = 10 log10

(
‖Y − Ŷ‖2

2/‖Y‖2
2

)
. (19)

Table 1 summarizes the NMSE results. We observe that the case of three
LFM components obtains the lowest NMSE among the five cases since LFM
components are relatively easier to be reconstructed. The S-method performs
better than the AOK method in most cases, especially when the signal con-
sists of NLFM components because AOK tends to linearize the TF signature.
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Table 1: NMSE (dB) comparison among WVD, AOK[12], AOK+OMP[18], `1-prox [16],
S-method [33], reassigned smoothed pseudo WVD (RSPWVD) [34], and the proposed
CAE-based method for different SNR values

Case SNR(dB) WVD AOK AOK+OMP `1-prox S-method RSPWVD Proposed

One SFM

Inf −0.33 3.14 0.34 −2.66 2.38 −2.95 −4.29
10 −0.10 2.99 0.22 −1.29 1.83 −1.49 −3.69
5 0.45 2.95 0.17 −0.71 1.72 −0.82 −3.08
0 2.33 2.98 0.12 −0.38 2.08 −0.39 −1.29

Two NLFMs

Inf 2.57 3.72 −0.35 −0.76 2.37 −1.78 −5.82
10 2.91 3.74 −0.10 −0.57 2.50 −1.59 −5.10
5 3.62 3.83 0.21 −0.38 2.76 −1.18 −3.23
0 5.22 4.42 1.06 −0.23 3.56 −0.51 −0.56

One SFM
and one LFM

Inf −0.38 0.36 −2.49 −2.20 −0.11 −2.31 −5.82
10 −0.20 0.37 −2.47 −1.41 −0.52 −1.59 −5.95
5 0.16 0.40 −2.42 −0.82 −0.63 −0.89 −5.32
0 1.07 0.57 −2.25 −0.44 −0.42 −0.77 −2.49

Three LFMs

Inf −0.97 0.81 −4.44 −2.60 −0.65 −2.61 −8.02
10 −0.88 0.79 −4.36 −1.53 −1.23 −1.53 −7.76
5 −0.71 0.77 −4.22 −0.93 −1.43 −1.30 −6.54
0 −0.16 0.72 −3.83 −0.47 −1.34 −1.12 −2.94

One SFM
and two
LFMs

Inf 0.35 1.49 −3.56 −1.76 −0.73 −2.03 −5.71
10 0.31 1.46 −3.52 −1.28 −1.20 −1.48 −5.36
5 0.43 1.43 −3.42 −0.83 −1.38 −1.37 −4.26
0 0.84 1.41 −3.09 −0.43 −1.39 −0.91 −1.77

Both `1-prox and RSPWVD provide good TFR reconstruction performance,
with the RSPWVD consistently offering slightly better performance than
`1-prox. Generally, the TFR reconstruction performance is improved as the
input SNR increases. However, for AOK, AOK+OMP, and S-method, the
NMSE does not necessarily decrease with the input SNR since they fail to re-
construct a high-fidelity TFR in some challenging cases even when no noise is
present. We notice in Table 1 that the proposed method consistently outper-
forms the other methods being compared in most scenarios. The effectiveness
and robustness of the proposed method is thus evidently verified.

The energy concentration measure is defined as [36]:

M2
2 =

 T∑
t=1

Nf∑
f ′=1

|ρ(t, f ′)|
1
2

2

(20)
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Table 2: M2
2 comparison among WVD, AOK[12], AOK+OMP[18], `1-prox [16], S-method

[33], reassigned smoothed pseudo WVD (RSPWVD) [34], and the proposed CAE-based
method for different SNR values

Case SNR(dB) WVD AOK AOK+OMP `1-prox S-method RSPWVD Proposed

One SFM

Inf 9692 5404 247 553 3630 1440 312
10 11979 7123 247 1547 6733 2052 315
5 12837 8649 246 4100 8571 2991 325
0 13270 10830 245 7606 10618 4077 392

Two NLFMs

Inf 11142 8270 743 762 5845 1369 610
10 12231 8865 742 1088 7251 1841 605
5 12823 9677 741 2398 8354 2467 630
0 13252 11071 738 6154 9902 5683 579

One SFM
and one LFM

Inf 10824 6857 719 784 4784 1289 567
10 11992 8196 719 1438 6800 1720 562
5 12662 9300 719 2838 8129 2441 566
0 13155 10919 720 6212 9885 3442 556

Three LFMs

Inf 11496 6215 1090 1073 5149 1909 819
10 12115 6575 1090 1852 6885 2113 819
5 12627 7267 1090 3232 8056 2645 819
0 13101 8878 1091 6365 9657 3588 819

One SFM
and two
LFMs

Inf 11674 6751 1443 1171 4992 1622 823
10 12299 7225 1445 1708 6259 1912 829
5 12769 7997 1446 3034 7335 2503 861
0 13163 9641 1450 6115 8962 3489 861

where ρ is the normalized TFD such that

T∑
t=1

Nf∑
f ′=1

|ρ(t, f ′)| = 1. (21)

Here, f ′ = 1, · · · , Nf denotes the frequency bin index and Nf stands for the
total number of frequency bins. A lower value of M2

2 indicates higher energy
concentration which corresponds to a smaller support region occupation. As
depicted in Table 2, the proposed method consistently provides the lowest
value of M2

2 among all the compared TFR reconstruction methods, thereby
demonstrating the highest energy concentration.

5.3. Generalization Capability Analysis

In this subsection, we investigate the generalization capability, i.e., the
capability to handle unseen data, of the proposed method. In other words,
we will look at different scenarios where the test signals deviate from the
training signals. Unless otherwise specified, a signal consisting of one LFM
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signal component and one SFM signal component is considered for illustra-
tion purpose, and the input SNR is 10 dB for both training and testing
signals.

5.3.1. Effect of Noise Levels

First, we examine how noise on training as well as test signals affect the
performance of the proposed method. The model is trained using WVD
images with 10 dB, 5 dB and 0 dB input SNR, as respectively depicted in
Figures 8(a), 8(b), and 8(c). The columns from the left to right in Figure 8
represent the output of the model for test signals with 15 dB, 10 dB, 5 dB,
and 0 dB input SNR, respectively.

Figure 8(a) represents the case when the model is trained on 10 dB WVD
images. It is clear that the proposed model almost perfectly reconstructs the
model TFR for the cases of 15 dB, 10 dB and 5 dB input SNR. However, for
the test signal with 0 dB input SNR it performs poorly and the sinusoidal
component cannot be fully detected and the LFM component is distorted at
the right edge. Figure 8(b) shows that, when the network is trained using
signals with 5 dB input SNR, the TFR reconstruction result of the test
signals with 0 dB input SNR is improved, but the estimated signature for
the sinusoidal component is still discontinuous.

The performance of the CAE model trained using signals with 0 dB input
SNR is illustrated in Figure 8(c). In this case, the performance for the test
signal of 0 dB is substantially improved. However, it still does not completely
detect the SFM component especially at the right edge, whereas the left edge
of the LFM component is slightly deformed. When the network model is
trained using 0 dB input SNR training images, the performance improvement
is because the training and test signals have closer statistics.

We further add one pair of additional convolutional and deconvolutional
layers in the network model aiming to better detect noisy signals at 0 dB
input SNR, and the results are shown in Figure 8(d) where the network model
is trained using 0 dB SNR signals as well. In this case, it is noted that, the
CAE model with one pair of additional layers performs better in the 0 dB
case and detects both SFM and LFM components completely. Therefore,
increasing the number of layers enhances the reconstruction capability of our
model for extremely noisy circumstances.

It can be summarized from Figure 8 that it is best to match the input
SNR of the training signal with that of the tested signal. When the input
SNR of the training signal does not match that of the tested signal, the
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performance tends to degrade.

5.3.2. Effect of Amplitude Difference between Signal Components

Next, we investigate the effect of the mismatch in terms of the amplitude
difference on the performance of the proposed method. In Figure 9, the re-
sults of three different amplitude ratios are presented. For the three columns,
the magnitude of the first signal, a1, is kept as unity, whereas that of the
second signal, a2, is respectively set to 0.8, 0.5, and 0.4. It is observed in this
figure that the weak signal remains clearly detectable when the amplitude ra-
tio is 0.5. However, further reduction of the signal strength of the weak signal
component renders the resulting TFR reconstruction performance inconsis-
tent. On the other hand, we observe that the resulting TFR shows closer
amplitude ratio. It is mainly caused by the fact that the same magnitudes
are assumed in the two signal components of the training dataset.

5.3.3. Effect of Variation Speed of the IFs

Now we consider the test signal with different speed of variation of the IFs.
This is considered by exploiting the SFM signal component with different
number of cycles of frequency variation, namely, Nsine = 0.3, 1, 1.5, and 1.8
cycles. It is noted that in the training dataset, SFM signals with Nsine ∈
[0.5, 1.5] are considered.

As depicted in Figure 10, the proposed model works well when Nsine is
0.3 and 1. Note that Nsine = 1 is within the variation range of the training
signals whereas Nsine = 0.3 is outside of this range. On the other hand, the
reconstructed TFR starts degradation for Nsine = 1.5 and becomes worse for
when Nsine = 1.8. As such, the results indicate that the proposed method can
tolerate certain degrees of model deviation, but it becomes more challenging
to handle rapidly time-varying SFM signals.

5.3.4. Effect of Signal Fading

To consider the effect of signal fading, we set the signal magnitude of
one portion of the SFM signal component different from other portions. In
Figure 11, we set the magnitude of both components to be 0.5, 0.3, and 0.1
for t ∈ [41, 60], whereas the magnitude for the other portions to be 1. It
is observed that the proposed method is able to recover the faded portion
when the fading magnitude is 0.5 and 0.3, but the result does not correctly
reflect the actual fading magnitudes. When the fading magnitude is 0.3, the
estimated SFM signature is not properly recovered for the fading portion.
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Figure 9: Effect of amplitude differences on the performance

5.3.5. Effect of the Number of Signal Components

In the training dataset, we only utilized signals consisting of two com-
ponents. Here, we consider the performance of the proposed method when
the number of signal components is higher than 2. In Figure 12, the three
columns illustrate the results for 3-, 4-, and 5 component LFM signals, re-
spectively. It is observed that the proposed method still performs well for
the 3-component LFM signal case, but it starts to degrade when more than
3 signal components exist.

5.3.6. Effect of Spreading Effect

In the last example, we consider the scenario when one of the signal
components has frequency spreading. In Figure 13(a), we model this effect
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Figure 10: Effect of variation speed of the IFs on the performance

by including three closely spaced parallel LFM components and the results
are depicted in Figure 13(c). It is observed that both signal components are
successfully detected, but the result does not correctly reflect the spreading.

6. Conclusion

In this paper, we proposed a machine learning-based method using the
CAE architecture to obtain crossterm-free TFRs. In the proposed method,
a DNN is trained to provide effective generative learning capability to com-
pletely mitigate undesired crossterms while preserving signal autoterms. The
performance of the proposed method is not restricted by the geometrical
shapes in any domain as in the conventional TF kernel design. Simulation
results provided for different nonstationary signals with slowly time-varying
IFs show that, provided that the neural networks are adequately trained,
the proposed method works robustly and provides significant performance
improvement compared to existing TFR reconstruction algorithms.
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Figure 11: Effect of signal fading on the performance
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