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ABSTRACT

Massive multiple-input multiple-output (MIMO) systems equipped
with a high number of antenna elements are becoming one of the
most exciting emerging technologies in next-generation wireless
communication systems. The use of a high number of anten-
nas makes it challenging to implement separate radio frequency
front-end circuits for each antenna due to hardware cost and power
consumption restrictions. To make massive MIMO feasible, an ef-
ficient solution is to perform hybrid beamforming that compresses
the received signals at the MIMO receiver before the signals are dig-
itized. We have proposed optimized compressive measurement by
maximizing the mutual information between the compressed mea-
surement and the signal directions-of-arrival (DOAs) by utilizing a
coarse a priori probability distribution of the signal DOAs. Despite
its superior performance to effectively reduce the number of required
front-end circuits, the requirement of a coarse a priori distribution
of signal DOAs makes it difficult to apply in some situations where
such information is unavailable. In this paper, we propose a data-
driven approach based on neural network to iteratively update the
signal DOA distribution. The neural network estimate signal DOA
spectrum, which is then fed back to refine the prior information,
thereby making this method practical even in the situations where
no prior information of the signal DOAs is available.

Index Terms— Massive MIMO, compressive measurement,
neural network, iterative learning.

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technology is a
key enabler in next-generation wireless communications. Massive
MIMO systems provide spectrum-efficient, energy-efficient, robust,
and secure solutions due to the large number of antenna elements
deployed in the base station [1–7]. The utilization of a large num-
ber of antennas enables the systems to serve multiple users with
a high array gain and reduced multiuser interference. Massive
MIMO systems address the issues of high propagation attenuation
of millimeter-wave communications and make effective bandwidth
utilization [8–10]. Massive MIMO systems are also becoming
increasingly important in radar sensing [11–13].

Despite all these offerings of massive MIMO systems, the high
number of antenna elements require considerably high hardware cost
and power consumption. In particular, it is challenging and imprac-
tical to dedicate a separate radio frequency (RF) front-end chain and
a high-resolution analog-to-digital converter (ADC) to each antenna
element. To make massive MIMO practicable, one solution is to
use hybrid analog-digital beamforming, in which a reduced number
of RF chains and ADCs are used. Toward this end, compressive
sampling technique can be used to project a high-dimensional array
signal into a low-dimensional manifold by exploiting the sparsity na-
ture of signals. A common way to perform compressive sampling is

to use random measurement matrices [14–16]. Although adopting
random measurement matrices is robust as it guarantees the sparse
signal recovery with a high probability [17–19], such approaches
generally cause severe information losses [20].

In [21, 22], a coarse probability distribution of the user directions-
of-arrival (DOAs) is exploited to optimize the compressive measure-
ment matrix. By maximizing the mutual information between the
compressed measurements and the signal DOA, this approach ef-
fectively reduces the number of front-end circuits with negligible
performance loss. In some applications, however, the required
knowledge of a coarse a priori distribution of the signal DOAs may
not be available. To optimize the compressive measurement matrix
without such a priori information, an iterative learning scheme is
proposed in [23] which uses the estimated DOA spectrum as the
prior information for the subsequent iteration.

In this paper, we propose a data-driven approach based on neu-
ral network to estimate the signal DOAs from the compressed mea-
surement and feed this information from the neural network output
as a priori knowledge back to the system to further optimize the
compressive measurement matrix. Adopting data-driven approach
is advantageous compared to the minimum variance distortionless
response (MVDR) spectrum estimator used in [23]. First, model-
driven approaches, such as the MVDR spectrum estimator, formulate
a parametric mapping from the signal direction to the compressed
measurement of the array output. As such, it does not address the in-
formation loss incurred in the compression process. In the proposed
data-driven approach, on the other hand, a nonlinear relationship is
optimized to minimize a loss function that relates the compressed
measurements and the actual DOAs in the training process based
on a large number of training data, thereby achieving improved per-
formance. Second, data-driven approaches further provide resilient
solutions in the presence of impaired array model [24, 25]. When
the array model is impaired, such as imperfect calibration or knowl-
edge of the sensor gain, phase, position, and mutual coupling, the
forward mapping from signal DOAs to array input signals becomes
complicated. Without a precise formulation of these impairements,
parametric approaches like the MVDR spectrum estimator degrade
in performance. On the other hand, the proposed data-driven ap-
proach does not rely on any presumptions but learns the impairment
from the data, thus resulting in a robust optimization approach.

Notations: We use lower-case (upper-case) bold characters to
denote vectors (matrices). In particular, IN denotes the N×N iden-
tity matrix. (·)T and (·)H respectively represent the transpose, and
Hermitian operations of a matrix or vector. triu(·) returns the upper
triangular part of an matrix. In addition, vec(·) vectorizes a matrix
and Tr(·) represents the trace operator, and diag(·) forms a diagonal
matrix. Eθ[·] denotes the statistical expectation with respect to θ. R
and I respectively extract the real and imaginary parts of a complex
entry. CM×N denotes the M ×N complex space, and |A| denotes
the determinant of matrix A.



2. SIGNAL MODEL

Consider D uncorrelated signals that are impinging on a mas-
sive MIMO system equipped with N antennas from directions
θ = [θ1, θ2, · · · θD]T. The baseband vector of the array received
signal at time t is modeled as

x(t) =

D∑
d=1

a(θD)sd(t) + n(t) = Ā(θ)s(t) + n(t), (1)

Where Ā(θ) = [a(θ1),a(θ2), · · · ,a(θD)] ∈ CN×D denotes
the presumed array manifold matrix whose column a(θd) ∈ CN

represents the presumed steering vector of the dth user with DOA
θd, s(t) = [s1(t), s2(t), · · · , sD(t)]T ∈ CD represents the sig-
nal waveform vector, and n(t) ∼ CN (0, σ2

nID) represents the
zero-mean additive white Gaussian noise (AWGN) vector.

When an array sensor contains calibration errors, we describe
the gain and phase errors of the nth sensor as gn = αne

ȷβn for
n = 1, · · · , N , and denote g = [α1e

ȷβ1 , · · · , αNeȷβN ]T. Then, the
actual array manifold A(θ) is expressed as

A(θ) = diag(g)Ā(θ). (2)

Denote Φ = [ϕT
1 ,ϕ

T
2 , · · · , ϕT

M ]T ∈ CM×N with M ≪ N
as the compressive measurement matrix, where ϕm ∈ C1×N is a
row vector denoting the measurement kernel for m = 1, · · · ,M . Φ
is designed to be row-orthonormal, i.e., ΦΦH = IM , to keep the
noise power unchanged after applying the compression. Projection
of the high-dimensional signal vector x(t) into the mth measure-
ment kernel ϕm yields the mth compressive measurement ym(t) =
ϕmx(t). Stacking the M compressed measurement vector yields
y(t) = [y1(t), y2(t), · · · , yM (t)]T ∈ CM , which is given as

y(t) = Φx(t) = ΦA(θ)s(t) +Φn(t), (3)

where ΦA(θ) ∈ CM×D represents the compressed array manifold
with significantly reduced dimension.

This paper aims to optimize the compressive measurement ma-
trix Φ based on the maximization of mutual information I(y; θ) be-
tween the compressed measurements y and the signal DOA θ with-
out assuming any knowledge about the signal DOA distribution. The
problem is formulated as

max
Φ

I(y; θ)

s.t. M = CRN,
(4)

where CR < 1 denotes the desired compression ratio. We use a
neural network to refine the prior information for further optimizing
Φ in an iterative manner.

3. OPTIMIZATION OF COMPRESSIVE MEASUREMENT
MATRIX

In this section, we summarize the optimization approaches of the
compressive measurement matrix developed in [21–23], whereas the
proposed data-driven iterative learning is presented in Section 4.

3.1. Probabilistic Signal Model

Consider signal DOA θ as a random variable with a probability den-
sity function (PDF) f(θ). In [21, 22], it is assumed that coarse
knowledge of f(θ) is available. In this case, according to the law of

the total probability, the PDF of the compressed measurement vector
y is expressed as

f(y) = Eθ{f(y|θ)} =
∫
θ∈Θ

f(y|θ)f(θ)dθ, (5)

where Θ is the angular region of observation. We discretize the PDF
f(θ) into K angular bins with an equal width of ∆θ̄ so that the
probability of the kth angular bin is given as pk ≈ f(θ̄k)∆θ̄ with∑

k∈K pk = 1, where θ̄k is the nominal angle of the kth angular bin
and K = {1, 2, · · · ,K}. As a result, the PDF of y becomes

f(y) ≈
∑
k∈K

pkf(y|θ̄k). (6)

Considering a signal impinging from the kth angular bin with a
nominal DOA θ̄k, the compressed measurement vector is given as

y|θ=θ̄k
= Φ(a(θ̄k)s(t) + n(t)), (7)

and the corresponding conditional PDF is

f(y|θ̄k) =
1

πM |Cyy|θ̄k |
e
−yHC−1

yy|θ̄k
y
, (8)

where Cyy|θ̄k = Φ(σ2
sa(θ̄k)a

H(θ̄k) + σ2
nI)Φ

H is the covariance
matrix of the compressed measurement y|θ=θ̄k

and σ2
s is the esti-

mated signal power. Therefore, the PDF of y is approximated as a
Gaussian mixture distribution.

3.2. Optimization of the Compressive Measurement Matrix

To optimize the compressive measurement matrix Φ through the
maximization of the mutual information between the compressed
measurement vector y and the DOA θ, the gradient of the mutual
information I(y; θ) with respect to Φ is obtained as

∇ΦI(y; θ) = ∇Φh(y)−∇Φh(y|θ), (9)

where ∇Φ represents the gradient operator with respect to Φ,
h(y) = −Ey{log[f(y)]} is the differential entropy of y, and
h(y|θ) = −Ey,θ{log[f(y|θ)]} is the conditional differential en-
tropy of y given the signal DOA θ. An approximation of the mutual
information gradient can be derived as [21, 22]:

∇ΦI(y; θ)

≈

∑
k∈K

pk∣∣∣Cyy|θ̄k
σ2
n

∣∣∣
[
Cyy|θ̄k

σ2
n

]−1

Φ

(
σ2
s

σ2
n

a(θ̄k)a
H(θ̄k) + I

)
∑
k∈K

pk

∣∣∣Cyy|θ̄k
σ2
n

∣∣∣−1

−
∑
k∈K

[
Cyy|θ̄k

σ2
n

]−1

Φ

(
σ2
s

σ2
n

a
(
θ̄k
)
aH (

θ̄k
)
+ I

)
,

(10)

where σ2
s/σ

2
n represents the estimated signal-to-noise ratio (SNR) of

the input signal.
The obtained mutual information gradient ∇ΦI(y; θ) is used

to iteratively update the compressive measurement matrix Φ in a
gradient ascent manner, i.e.,

Φ← Φ+ γ∇ΦI (y; θ) , (11)

where γ > 0 is the step size.



Fig. 1: Proposed iterative learning framework.

3.3. Iterative Learning Scheme

An MVDR estimator computes the spatial spectrum as [23]

P (i)(θ) =
aH(θ)(Φ(i))HΦ(i)a(θ)

aH(θ)(Φ(i))H
(

R̂
(i)

yy

)−1

Φ(i)a(θ)
, (12)

where superscript (i) is added to indicate the ith iteration. When
the signal DOA distribution is not available, We normalize the esti-
mated spatial spectrum and use it as the prior distribution in the sub-
sequently iteration, i.e., p̂(i+1)

k = P (i)(θk)/
∑

j∈K P (i)(θj). This
learning process can be iterated. In the initial condition, when there
is no prior information about the signal arrivals, a random compres-
sive measurement matrix consisting of row-orthonormal Gaussian
random elements is used.

4. NEURAL NETWORK-BASED ITERATIVE LEARNING

In this section, we propose a data-driven framework to estimate the
signal DOAs from the compressed measurement and use the esti-
mated spatial spectrum as the the prior information for the next it-
eration for further compression, as shown in Fig. 1. The subscript
ij in Fig. 1 denotes the ith stage and the jth element. While the
basic concept of iterative learning is similar to [23], the neural net-
work output, in lieu of the MVDR estimates, is used to improve the
accuracy and robustness against imperfections.

The proposed framework is divided into two stages. The first
stage estimates the coarse probability distributions whereas the sec-
ond stage refines the spatial spectrum. Note that a single distribution
is used in the first stage for all observations and a single compressive
measurement matrix Φ is optimized. Once Φ is optimized, it is kept
fixed for this stage and the obtained compressed data are then prepro-
cessed before they are fed into the neural network NN1. The neural
network is trained by exploiting the actual DOAs as the label and
produce B distributions which respectively correspond to different
observations of the training dataset. For each of the distributions, a
separate compressive measurement matrix is computed in the second
stage. Thus, the compression performed in the second stage utilizes
the specific prior corresponding to a particular observation. The pre-
processed compressed data are then fed into the neural network NN2
to refine the spatial spectrum estimate.

To preprocess the compressed data, we first compute the sample
covariance matrix of the compressed measurements from the avail-
able T sample as R̂y = 1

T

∑T
t=1 y(t)y

H(t). Exploiting the Her-
mitian property of the covariance matrix, we only consider the up-
per triangular elements, which are vectorized before feeding into the

neural network as r̄ = vec(triu(R̂y)). We then separate and stack
the real and imaginary part as r = [(R(r))T (I(r))T]T.

For a total of B observations, the complete training dataset is
formed by concatenating the vectors rb corresponding to the ob-
servations b ∈ {1, 2, · · · , B}. The complete training dataset X is
obtained by stacking all B vectors as X = [r1, r2, · · · , rB ].

The proposed neural network structure is depicted in Fig. 2,
where the fully connected network consists of 5 hidden layers. The
number of hidden layers and the number of nodes in each layer are
experimentally chosen to trade off between the optimization accu-
racy and the generalization capability of the network. Dropout regu-
larization is introduced at each layer of the network which randomly
discards a subset of neural network nodes to reduce overfitting.

Consider the L-layer neural network and use W [ℓ] and b[ℓ] to
respectively denote the weights and biases of the ℓth hidden layer
with ℓ ∈ {1, 2, · · · ,L}, andF [ℓ] is the nonlinear activation function
applied on the ℓth layer. The output resulted from the ℓth hidden
layer of the neural network can be expressed as

A[ℓ] = F [ℓ]
(
W [l]A[l−1] + b[l]

)
. (13)

As the activation function, we used rectified linear unit (ReLU) in
the hidden layer and the sigmoid function in the output layer.

DOA estimation is considered as a multilabel binary classifica-
tion problem, where the objective is to, for each grid point, make
a binary decision whether a signal is present or not. The sigmoid
activation function guarantees that the output nodes of the neural
network have values between 0 and 1, which can be interpreted as
the probability that a signal is present at a particular angle. There-
fore, the normalized output of the neural network is regarded as a
probability distribution of the signal DOAs and is used as the prior
information for the optimization of Φ in the subsequent iteration.

A binary cross-entropy loss function is exploited to train a binary
classifier. We exploit the Adam (adaptive moment estimation) opti-
mizer [26] to optimize the network parameters in order to minimize
the overall cost function, given as

min
W ,b
− 1

J

J∑
j=1

[
Y [i]

j log Ŷ [i]

j +
(
1−Y [i]

j

)
log

(
1− Ŷ [i]

j

)]
, (14)

where J is the number of training samples in the jth batch, and Ŷ [i]

j

and Y [i]
j are, respectively, the predicted output and the actual label

of the ith sample at the jth batch of the training data.



Fig. 2: Proposed neural network structure. The number in each
dense layer indicates the number of neurons being used.

5. SIMULATION RESULTS

We consider a massive MIMO system equipped with N = 50 an-
tennas which are arranged in a uniform linear fashion and are sep-
arated by half-wavelength. 9 uncorrelated far-field signals impinge
into the array with input SNR of 20 dB and the number of snapshots
is T = 100. We choose the compression ratio to be N/M = 5,
which results in the dimension of the compressed measurement vec-
tor to be M = 10. The PDF of signal DOA is uniformly discretized
with a width of ∆θ̄ = 0.1◦, rendering K = 1801 components in the
Gaussian mixture model. The step size in the iterative optimization
of the sensing matrix Φ is set as γ = 0.001.

We generate our training dataset by considering the signals im-
pinging from directions within the range of [−90◦, 90◦]. The entire
spatial space is discretized with a 0.1◦ interval, rendering 1801 di-
rection grids. The antenna gains are independently generated from
a uniform distribution between 0.5 and 1.5, whereas the phase er-
rors are independently generated from a uniform distribution be-
tween −6◦ and 6◦. We randomly take 50, 000 samples of the 9
sources from a uniform distribution to generate the training dataset,
and 1, 000 samples are similarly generated as the test dataset.

For N = 50 antennas and T = 100 snapshots, the dimension of
the array received signal is 50×100. Assuming no prior information
in the first iteration, we consider the signal DOAs to be uniformly
distributed over all angular bins. The compressive measurement ma-
trix Φ is optimized based on Eqs. (10) and (11). We then compute
the 10 × 1 compressed measurement vector y using Eq. (3). We
then compute the covariance matrices of the compressed measure-
ment vectors for all training data to feed to the neural network. The
neural network is trained to learn a nonlinear relationship between
the compressed measurements and the signal DOAs by minimizing
the binary cross entropy cost function. We use Adam optimizer with
a learning rate of 0.001 to train the network. The batch size is set to
M = 64 and 150 epochs are used for the training.

The normalized output of the neural network is regarded as the
probability distribution of the signal DOAs and is then used as the
prior knowledge for the optimization in the subsequent iteration.
Unlike in the first iteration, in the subsequent iterations, we have
50, 000 different prior distributions corresponding to the 50, 000
training observations, each renders a separate optimize matrix Φ as-
sociated with the specific observation.

In summary, we iteratively optimize the compressive measure-
ment matrix Φ. In the first iteration, we optimize a generic Φ which
is applicable for all observations based on a single uniform prior dis-
tribution. The neural network provides different outputs for different
observations, which are used as prior distributions for the subsequent
iteration. As we have specific priors for specific observations in this
case, we will obtain a specific Φ optimized for that specific observa-
tion, and the result is then used to compute the refined compressed
measurement vectors.

We used the test dataset to evaluate the effectiveness of the pro-
posed model. As an example, consider a test scenario where sig-
nals are impinging on the array with DOAs−64.3◦, −43.6◦, −11◦,

(a) Iteration 1

(b) Iteration 2

Fig. 3: Probability of presence of signals in each angular grids.

Fig. 4: Performance using the method in [23].

−8.2◦, 12.3◦, 17.1◦, 19.9◦, 50.7◦, and 67.6◦. Fig. 3(a) shows the
neural network output after the first iteration. Although the result
coarsely approximates the DOAs, it does not accurately resolve them
due to uniform priors. This coarse spatial distribution is normalized
and used as the prior in the next iteration. The results in the second
iteration provide an accurate and sharp spatial spectrum, as shown
in Fig. 3(b). For comparison, Fig. 4 shows the result obtained using
the method presented in [23]. The performance is degraded because
this method fails to learn the sensor impairments. It is noted that, in
Fig. 3, the Y -axis results represents the neural network output which
is obtained form a sigmoid activation function and depicts the prob-
ability in each angular grid. As such, it is different to the MVDR
spectrum showing in Fig. 4.

6. CONCLUSION

In this paper, we developed a neural network-based optimization
method of the compressive measurement matrix to reduce the num-
ber of RF front-end chains in a massive MIMO system. The op-
timization is based on the maximization of the mutual information
between the compressed measurements and the signal DOA with-
out assuming any prior distribution of signal DOAs. The proposed
method iteratively updates the signal DOA distribution used for op-
timization based on the network output of the spatial spectrum. The
network is further trained to account for sensor imperfections. The
proposed approach provides enhanced performance, faster conver-
gence, and robustness against array imperfections.
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