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Abstract—Intelligent reflecting surface (IRS) is a promising
next-generation technology for increasing channel capacity and
reducing power consumption. In this paper, we present a novel
IRS configuration consisting of a small number of active elements
in an optimized L-shaped sparse array to separately estimate the
channels between the base station and the IRS, and the channel
between multiple user equipment and the IRS. Structured matrix
completion techniques are used to attain superior direction-of-
arrival estimation performance with an increased number of
degrees of freedom. The training overhead is minimized in the
proposed system and is not directly related to the number of
IRS reflecting elements. The proposed sparse array strategy
simultaneously resolves multiple sources with a high accuracy
and outperforms the L-shaped uniform array counterpart using
the same number of active elements. The effectiveness of the
proposed strategy is confirmed using simulation results.
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I. INTRODUCTION

Intelligent reflecting surface (IRS) has the capability of
reconfiguring the wireless channel between the communicat-
ing nodes and is considered as a promising next-generation
technology for 5G and beyond [1]. An IRS consists of a
large planar surface with passive elements that can control the
phase of the incident signals and thereby transmit the reflected
signals in the desired directions. As such, IRS creates an extra
link between the base station (BS) and user equipment (UE) by
exploiting a low-cost large-size fully passive two-dimensional
(2-D) array [2].

Achieving the full potential of IRS requires estimation of the
complete channel state information (CSI). Compared to signals
in the sub-6 GHz band, millimeter wave (mmWave) signals are
naturally less scattering and thus sparse. By taking advantage
of such channel sparsity, efficient compressive sensing tech-
niques can be applied to perform sparse channel estimation [3–
5]. In [5], multi-user joint channel estimation was formulated
as a multi-user joint sparse matrix recovery problem based on
the common channel between the BS and the IRS. However,
because the sparsity in the angular cascaded channel is less
significant, its CSI estimation is less effective compared to
that in conventional communications [6]. In [4], the double
structured sparsity of the angular cascaded channel involving
the common non-zero rows and the partially common non-
zero columns of the received sparse signal was solved by using
the double-structured orthogonal matching pursuit (DS-OMP)
algorithm. However, the assumption that common channels

are shared not only between the BS and the IRS but also
between the UE and the IRS may not be practically feasible for
mobile users. For multi-antenna users, another way to estimate
the channel parameters of the BS-IRS-UE sparse channels is
through the use of atomic norm minimization. In all channel
estimation techniques discussed above, All IRS elements are
passive and the number of pilot overhead depends on the
number of these passive elements [7–11].

An attractive alternative effective solution is to use a hybrid
analog/digital architecture [12]. By utilizing a small number
of active elements, an IRS can further aid in high-precision
performance in terms of channel estimation and channel
reconfiguration. Because equipping each IRS element with
a separate radio frequency (RF) front-end circuit requires
high hardware and computational complexities [13], only a
small number of IRS elements are made active to keep a
low complexity. Toward this end, random deployment of a
small number of active IRS elements is proposed in [3]. In
[14], an L-shaped array of uniformly placed active elements
was considered and channel estimation was performed by
estimating the direction-of-arrival (DOA) and the associate
gain of each path.

In this paper, we develop a new approach to perform channel
estimation using sparse active elements in a rectangular IRS.
The proposed approach enables separate estimation of the BS-
IRS channel and the UE-IRS channel with a reduced number
of pilot overhead. Because the BS and IRS are typically placed
in fixed positions, the BS-IRS channel can be considered
stable over a long time. On the other hand, the UEs are
cellular devices and their channel may vary rapidly, thereby
necessitating frequent channel estimation between the UEs and
the IRS. The two linear arrays that constitute the L-shaped
array have their active elements placed in a sparse manner,
and the optimized non-redundant array with minimum array
aperture (ONRA) structure developed in [15] is used as an
example. Separate sparse covariance matrices are formulated
based on the two constituting linear arrays of the IRS, and
the matrix interpolation technique is employed to fully inter-
polate Hermitian-Toeplitz covariance matrices. The multiple
signal classification (MUSIC) algorithm is used to separately
estimate the azimuth and elevation DOAs which are then
paired. At last, the path gains are calculated to produce the
full geometric BS-IRS-UE CSI corresponding to each UE.
Simulation results verify that the proposed L-shaped sparse



Fig. 1: The BS-IRS-UE channel model.

structure outperforms the L-shaped array using uniform linear
structure given the same number of the active elements [14].

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the N×
N identity matrix. (.)T and (.)H respectively represent the
transpose and conjugate transpose of a matrix or a vector, and
(·)† represents Moore-Penrose inverse of a matrix. In addition,
∥ ·∥F denote the Frobenius norm, ⊗ is the Kronecker product,
⊙ is the Hadamard product, T (x) denotes the Hermitian and
Toeplitz matrix with x as its first column, and Tr(·) represents
the trace operator. Furthermore, [A]u,v denotes the (u, v)-th
element of matrix A, [A]:,v denotes the v-th column of matrix
A, and A ≽ denotes matrix A to be positive semidefinite. E[·]
is the statistical expectation operator.

II. SYSTEM MODEL

Consider an IRS-enhanced multiple-input multiple-output
(MIMO) downlink communication system that consists of a
planar IRS with N reflecting elements, a BS with vertically
placed MT -antenna linear array, and K single-antenna users,
as shown in Fig. 1. Among the N reflecting elements, N̄
elements are active and are arranged in a sparse L-shaped
structure. Assuming a narrowband signal model, the downlink
channel matrix between the BS and the IRS can be expressed
as:

HBS,IRS =

L∑
l=1

αlaIRS(θ
IRS
l , ϕIRS

l )aHBS(θ
BS
l ), (1)

where L denotes the number of paths between the BS to the
IRS, αl is the path gain of the l-th path, θBS ∈ [0, π/2] is
the effective elevation direction-of-departure (DOD) from the
BS with respect to the z axis, whereas θIRS

l ∈ [0, π/2] and
ϕIRS
l ∈ [−π/2, π/2] are respectively the elevation and azimuth

angles for the IRS during BS-IRS channel estimation.

Fig. 2: The transmission frame structure.

Assuming half-wavelength spacing between BS antennas,
the steering vector aBS(θ) of the MT -element array at the BS
is expressed as:

aBS(θ) = [1, e−j 2π
λ d sin(θ), . . . , e−j 2π

λ d(MT−1) sin(θ)]T, (2)

where λ is the wavelength and d = λ/2. For an N -element
IRS uniform rectangular array separated by d, the 2-D steering
vector aIRS(ϕ, θ) can be written as [16]:

aIRS(ϕ, θ) = az(ϕ)⊗ ax(θ), (3)

where

ax(ϕ) = [1, e−j 2π
λ d sin(ϕ), . . . , e−j 2π

λ d(Nx−1) sin(ϕ)]T, (4)

az(θ) = [1, e−j 2π
λ d sin(θ), . . . , e−j 2π

λ d(Nz−1) sin(θ)]T, (5)

and Nx and Nz respectively denote the number of elements
in the x-axis and z-axis on the IRS surface.

On the other hand, since each UE contains a single antenna,
the channel between the IRS and user k is denoted as

hIRS,Uk
=

Lk∑
lk=1

βlka
H
IRS(θ

IRS
lk

, ϕlk
IRS), (6)

where Lk denotes the number of paths between user k and
the IRS, βlk is the path gain of the lk-th path, θIRS

lk
∈ [0, π/2]

and ϕIRS
lk

∈ [−π/2, π/2] are respectively the elevation and
azimuth angles of the lk-th UE-IRS channel from the IRS.
Because the direct paths between the BS and the UEs are
considered obstructed, the corresponding direct channel is not
formulated.

We assume that the channel is constant during a transmis-
sion interval T , as shown in Fig. 2. During the time interval
T1, the transmit antennas sequentially transmit their respective
pilot signals to estimate the channels between the BS and the
IRS [17]. The m-th transmit antenna uses a time period of
Ṫm to transit its pilot signal such that

∑MT

m Ṫm = T1. We
assume that the time interval T1 is equally distributed to all
MT transmit antennas, i.e., Ṫm = T1/MT for m = 1, ...,MT .

During the time interval T2, the channels between the IRS
and the K users are estimated. It is noted that, during the
channel estimation period, the active elements in the IRS
work in a sensing mode. On the other hand, during the data
transmission period, all the active and passive elements of the
IRS work as passive reflectors.



The DOAs and channel gains estimated at the IRS for both
the uplink and downlink channels are sent to the BS via a
two-way backhaul link, allowing the BS to estimate the overall
BS-IRS-UE channel.

III. 2-D DOA AND PATH GAIN ESTIMATION

As previously stated in Section I, using a small number of
active elements in the IRS improves the channel estimation
performance while reducing the computational complexity.
Configuring the active sensor locations in a rectangular array
is much more complicated compared to sparse linear arrays.
In this paper, we design a sparse array configuration that
ensures minimal mutual coupling among the active elements,
and matrix interpolation techniques are utilized to generate
virtual lags and improve the channel estimation performance.

A. Received Signals at IRS for BS-IRS Channel Estimation

During the sensing mode, the IRS receives signals from
the BS through its active elements. It is assumed that far-
field signals impinge on the IRS from L paths, and the DOAs
corresponding to the L-shaped sparse array are {ϕl, θl} for
l = 1, · · · , L.

The output signal vectors at the two IRS subarrays corre-
sponding to the x-axis and the z-axis are respectively given
as [16, 18]:

x(t) =

L∑
l=1

aX(ϕl)αla
H
BS(θm)sl(t) + nX(t), (7)

z(t) =

L∑
l=1

aZ(θl1)αla
H
BS(θm)sl(t) + nZ(t), (8)

where s(t) = [s1(t), s2(t), · · · , sL(t)]T denotes the source
signal vector, α = diag(α1, α2, · · · , αL) represent the channel
coefficients for the multipath signals, and nX(t) and nZ(t) are
additive white Gaussian noise (AWGN) vectors respectively
observed at the two subarrays.

We consider separately spaced active elements with an
ONRA structure, respectively denoted as X1 and Z1. The
positions of the active elements along both the x and the z
axes are 0 = p0, p1, · · · , pNx−1 and 0 = q0, q1, · · · , qNz−1.
Denote Wx = max(X1) + 1 and Wz = max(Z1) + 1. Let
aX(ϕl1) ∈ CWx×1 and aZ(θl1) ∈ CWz×1 denote the steering
vectors corresponding to the received DOAs along the x axis
and the z axis, respectively. In time period T1, the BS transmits
from the MT antennas and aBS(θm) is the corresponding
steering vector. During the UE-IRS channel estimation, the
received signal is formulated in the same manner. Assuming
that noise is independent from the signals, the covariance
matrices of x(t) and z(t) can be respectively expressed as:

RXIRS = E[x(t)xH(t)] = AXRsA
H
X + σ2

nIWx , (9)

RZIRS
= E[z(t)zH(t)] = AZRsA

H
Z + σ2

nIWz
, (10)

where Rs = diag(σ2
1 , σ

2
2 , · · · , σ2

L), σ
2
l represents the power

of the l-th path signal, and σ2
n denotes the noise power.

B. Covariance Matrix Interpolation and DOA Estimation

Because the active elements are sparsely spaced in both
the x-axis and the z-axis, the covariance matrices RXIRS and
RZIRS

become sparse with missing holes. In the following,
we consider the matrix interpolation of RXIRS

to obtain a
full covariance matrix, and the same approach is applied to
RZIRS . The steering vectors for the sparse array in both axes
are represented as:

aX(ϕ) = [1, e−j
2πp1

λ d sin(ϕ), . . . , e−j
2π(pNx−1)

λ d sin(ϕ)]T, (11)

aZ(θ) = [1, e−j
2πq1

λ d sin(θ), . . . , e−j
2π(qNz−1)

λ d sin(θ)]T. (12)

The matrix interpolation problem along the x-axis is expressed
as the following nuclear norm minimization problem [19–21]:

min
w

∥T (w)V − R̂XIRS
∥2F + ζTr

(√
T H(w)T (w)

)
,

s. t. T (w) ≽ 0,
(13)

where ∥T (w)∥∗ = Tr(
√
T H(w)T (w)) is the nuclear norm

of T (w), ζ is a tunable regularization parameter. V = vpv
T
p

is the binary mask of the sparse covariance matrix where the
g-th element of vp, g ∈ {p0, p1, · · · , pNx−1}, is given as

⟨vp⟩g =

{
1, gd ∈ X1,

0, otherwise.
(14)

Denote the interpolated covariance matrices as R̂X ∈
CWx×Wx and R̂Z ∈ CWz×Wz for the x- and the z-axes,
respectively. The computational complexities required to re-
cover R̂X and R̂Z are O(W 2

x ) and O(W 2
z ), respectively [22].

As both interpolated covariance matrices contain all elements
defined in full uniform arrays, subspace-based methods, such
as MUSIC, can be applied to R̂X to estimate the azimuth and
elevation DOAs at the IRS for the BS-IRS multipath signals.

C. Pair-Matching for 2-D DOA Estimation

When there are multiple incident signals at the IRS, dif-
ferent combinations between the azimuth and elevation angles
become possible. Therefore, it is important to determine the
pairing between the estimated azimuth and elevation angles.
The array manifold matrix can be constructed based on the
estimated azimuth angles as

ÂX = [aX(ϕ̂1),aX(ϕ̂2), · · · ,aX(ϕ̂L)]. (15)

The cross-covariance matrix between x(t) and z(t) is com-
puted as

RXZ = E[x(t)zH(t)] = AXRSA
H
Z . (16)

The steering matrix ÂZ can be obtained as [16]

ÂZ =(R−1
S Â†

XRXZ)
H, (17)

where ÂZ = [az(θ̂1),az(θ̂2), · · · ,az(θ̂L)] ∈ CWz×L. There-
fore, for the l-th path with l = 1, 2, · · · , L, we can reconstruct
the covariance matrix as

R̂Zl
= [ÂZ ]:,l[RS ]l,l[ÂZ ]

H
:,l. (18)



Using this result, the elevation angle is estimated using the
MUSIC algorithm as

θ̂l = arg max
θ

1

aHZ (θ)GlGH
l aZ(θ)

, (19)

where Gl is the noise subspace of matrix R̂Zl
. From the paired

azimuth and elevation angle estimates we can generate the
steering matrix of the IRS for the BS-IRS channel as ÂIRS =[
âIRS(ϕ

IRS
1 , θIRS

1 ), · · · , âIRS(ϕ
IRS
L , θIRS

L )
]
∈ CWx×Wz .

D. Path Gain Estimation

To estimate the path gain of the BS-IRS channel, the BS an-
tennas transmit pilot signals sequentially. For example, the first
antenna transmits pilot signal S = [s(1), s(2), · · · , s(Ṫ1)] ∈
CL×Ṫ1 . Note in this subsection that we omit the antenna index
in the notations for simplicity. At the IRS, the received signal
at the z-direction subarray is,

YZ = AZBAH
BSS+NZ , (20)

where B = diag(α1, α2, · · · , αL) is the path gain matrix,
ÂBS = [aBS(θ̂1),aBS(θ̂2), · · · ,aBS(θ̂L)] ∈ CMT×L is the
array manifold of the IRS along the z axis and BS, and
NZ ∼ CN (0, σ2

nIpNz−1
). As the path gains are identical

for the x- and z-direction subarrays, computation in one
direction will suffice. The path gain matrix B, denoted as
B̂ = diag(α̂1, α̂2, · · · , α̂L), can be estimated as

B̂ = Ω†YZS
†, (21)

where Ω = [aZ(θ̂1) ⊙ vq, · · · ,aZ(θ̂L) ⊙ vq]A
H
BS , where vq

is defined along the z-axis in the same way as vp defined in
(14).

IV. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate
the effectiveness of the proposed channel estimation scheme.
We consider a BS with MT = 2 transmit antennas, an
IRS with N = Wx × Wz = 529 reflecting elements, and
K = 2 single-antenna users. Out of the 529 IRS reflecting
elements, N̄ = 11 elements are active. The x- and z-
direction linear subarrays in the L-shape sparse active array
each consists of 6 sensors, and the 0-th reference sensor is
shared by both subarrays. Following the ONRA configuration,
the positions of the active elements along the x- and the
z-axes are X1 = Z1 = {0, 3, 7, 12, 20, 22}λ/2. The corre-
sponding nonnegative lags are computed as DX1

self = DZ1

self =
{0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 19, 20, 22}λ/2.

We assume L = 2 paths with path gains of (0.2, 0.25) for the
BS-IRS channel and Lk = 2 paths from IRS to each of the two
users with respective path gains (0.2, 0.4) and (0.6, 0.85). The
input signal-to-noise ratio (SNR) is assumed to be 5 dB. The
root mean-square error (RMSE) between the true channels and
the estimated channels is plotted in Fig. 3 with respect to the
number of snapshots, where solid curves represent the RMSE
obtained by using the ONRA sparse structure whereas dashed
curves represent the RMSE obtained when the active elements
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are uniformly placed. Results clearly show that the IRS with
L-shaped ONRA active elements achieves significantly higher
channel estimation accuracy than that using uniform linear
subarrays with the same number of N̄ = 11 active elements.

Fig. 4 shows the achievable bit-rate with respect to the
input SNR, where T1 = T2 = 1,000 data snapshots are
assumed. The results confirm that the available bit rates for
both users corresponding to the true and estimated channels
well coincide, thus demonstrating the accuracy of the channel
estimation in terms of the achievable bit-rate from Shannon’s
channel capacity theorem.

V. CONCLUSION

In this paper, we have shown that employing active elements
in the IRS in a sparse manner outperforms the counterpart that
employs active elements exploiting uniform linear subarrays.
Structured matrix completion and pair-matching algorithms are
used to achieve increased array aperture and reduced com-
putational complexity. The effectiveness and precision of the
proposed approach have been demonstrated using simulation
results.
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