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Abstract—Adaptive beamformers are sensitive to model mis-
match, especially when the number of training samples is small or
the training samples are contaminated by the signal component.
In this paper, we consider an extreme scenario where only a single
signal-contaminated snapshot is available for adaptive beamfor-
mer design. In such a case, we cannot perform direct inversion or
eigen-decomposition of the rank-one sample covariance matrix
required in conventional adaptive beamformer design. To address
this issue, we formulate a sparsity-constrained covariance matrix
fitting problem to estimate the spatial spectrum distribution
over the observed spatial domain, which is then used for
adaptive beamformer design via the sparse reconstruction of
the interference-plus-noise covariance matrix. Simulation results
demonstrate the performance advantage of the proposed adaptive
beamforming algorithm over other beamforming algorithms
suitable for the single-snapshot scenario.

Index Terms—Adaptive beamforming, covariance matrix fit-
ting, covariance matrix reconstruction, single snapshot, sparsity.

I. INTRODUCTION

Adaptive beamforming, as an effective array processing
technique for spatial filtering, has been widely applied in
various areas, such as radar, sonar, wireless communications,
radio astronomy, speech processing, and medical imaging [1–
6]. Compared with data-independent beamformers, adaptive
beamformers provide better interference suppression capa-
bility by calculating the beamforming weight vector from
the array received data. As a function of the interference-
plus-noise covariance matrix and the desired signal steering
vector, adaptive beamformers are sensitive to model mismatch,
such as direction error, imperfect array calibration, source
wavefront distortions, and insufficient number of training
samples. These model mismatches degrade the performance of
adaptive beamformers, especially when the training samples
are contaminated by the desired signal component. To this
end, various robust approaches have been proposed in the past
decades to decrease the sensitivity of adaptive beamformers
(see, for example, [2, 7, 8] and the references therein).

In general, a higher number of training samples (i.e.,
snapshots) yield a better adaptive beamformer performance.
In an ideal scenario where a high number of snapshots are
available to achieve accurate covariance matrix estimation, the
resulting adaptive beamformer approaches the optimal one. In
practice, however, the number of snapshots is limited and, as
a result, there are differences between the sample covariance
matrix and its statistical covariance matrix, thus leading to a
performance loss in the resulting adaptive beamformer. When
the number of signal-free snapshots is higher than twice the
number of array sensors, the average performance loss of

the sample matrix inversion (SMI) beamformer relative to the
optimal value is less than 3 dB [9]. Situations with no desired
signal component, nevertheless, rarely occur in practical array
observations. In this case, an effective approach to avoid
performance degradation of the adaptive beamformer is to
reconstruct the interference-plus-noise covariance matrix [10–
14]. Although covariance matrix reconstruction-based adaptive
beamformers achieve a fast convergence, they still require the
number of snapshots to be higher than the number of array
sensors.

In the scenario of multiple snapshots, adaptive beamformers
are usually implemented in a block manner. Such block-
adaptive beamformers collect a block of array observation
data, estimate and invert the sample covariance matrix, and
update the beamforming weights each time a new block
of data is received. In such a block-adaptive operation, the
beamformer weight cannot respond to the change of quickly
moving targets, especially when the block size is large. On
the other hand, the number of required snapshots is usually
higher than the number of array sensors, thereby demanding
a huge burden on the memory space for a large-size array.

In this paper, we consider an extreme scenario, where only
a single snapshot is available for adaptive beamformer design.
In few existing adaptive beamformer designs with a single
snapshot [15, 16], the signal self-nulling problem has not
been solved. By exploiting the sparsity of sources in the
spatial domain, we formulate a sparsity-constrained covariance
matrix fitting problem for the spatial spectrum distribution,
from which the source directions and the associated power
can be estimated. Accordingly, we can reconstruct a signal-
free interference-plus-noise covariance matrix as a weighted
sum of the tensor outer products of the interference steer-
ing vectors. As such, the signal self-nulling problem can
be effectively avoided in the resulting adaptive beamformer.
Neither matrix inversion nor eigen-decomposition is required
in the proposed single-snapshot adaptive beamformer design.
Simulation results demonstrate that the proposed adaptive
beamforming algorithm outperforms the other beamforming
algorithms suitable for the single-snapshot application over a
wide range of input signal-to-noise ratio (SNR).

II. THE SIGNAL MODEL

Assume a narrowband array consisting of M omni-
directional sensors. The array observation vector at time t,
x(t) = [x1(t), · · · , xM (t)]

T ∈ CM , can be expressed as

x(t) = xs(t) + xi(t) + xn(t), (1)



where xs(t), xi(t), and xn(t) are statistically independent
components of the desired signal, interference, and noise,
respectively. Here, (·)T denotes the transpose. Among them,
the desired signal vector xs(t) has the form of

xs(t) = ass(t), (2)

where s(t) ∈ C is the complex-valued signal waveform, and
as , a(θs) ∈ CM is the corresponding signal steering vector
associated with direction-of-arrival (DOA) θs. The steering
vector is a function of the source direction for a given array
structure. For example, for a uniform linear array (ULA), the
steering vector can be expressed as

a(θ) =
[
1, e−

2π
λ d sin θ, · · · , e− 2πλ (M−1)d sin θ

]T
, (3)

where θ is the DOA of the source,  =
√
−1 is the imaginary

unit, λ is the wavelength of the narrowband signal, and d =
λ/2 is the interelement spacing of the array. Similarly, the
interference vector xi(t) can be expressed as

xi(t) =

K∑
k=1

aiksik(t), (4)

where K is the number of interferers, and aik , a(θik)
is the steering vector corresponding to the k-th interference
waveform sik(t) impinging from DOA θik .

III. ADAPTIVE BEAMFORMERS

The objective of the adaptive beamformer is to de-
sign a complex-valued beamforming weight vector w =
[w1, · · · , wM ]

T ∈ CM , such that the beamformer output

y(t) = wHx(t), (5)

accurately estimates the desired signal waveform s(t), where
(·)H denotes the Hermitian transpose. The most popular adap-
tive beamforming criterion is to maximize the beamformer
output signal-to-interference-plus-noise ratio (SINR), defined
as

SINR =
σ2
s

∣∣wHas
∣∣2

wHRi+nw
, (6)

where σ2
s , E

[
|s(t)|2

]
is the desired signal power, and

Ri+n , E
[

(xi(t) + xn(t)) (xi(t) + xn(t))
H ] ∈ CM×M is

the interference-plus-noise covariance matrix. Here, E[·] de-
notes the statistical expectation. The maximum SINR problem
is equivalent to the minimum variance distortionless response
(MVDR) problem [17]

min
w

wHRi+nw subject to wHas = 1, (7)

whose solution

wMVDR =
R−1
i+nas

aH
s R

−1
i+nas

, (8)

is called as the MVDR beamfomer, also referred to as the
Capon beamformer.

In practice, because the interference-plus-noise covariance
matrix Ri+n is unknown, it is usually replaced by the sample
covariance matrix

R̂ =
1

T

T∑
t=1

x(t)xH(t), (9)

where T denotes the number of snapshots. This leads to the
SMI beamformer [9]

wSMI =
R̂

−1
ās

āH
s R̂

−1
ās
, (10)

where ās = a(θ̄s) is the presumed steering vector of the
desired signal, which may or may not be accurate.

There are two problems using the sample covariance matrix
R̂ to design the beamformer. First, whenever there is desi-
red signal component in the array observations {x(t), t =
1, · · · , T}, the SMI beamformer is essentially a minimum
power distortionless response (MPDR) beamformer rather than
the expected MVDR beamformer [2, 10]. It will result in
the signal self-nulling problem whenever there is a model
mismatch. Second, the number of snapshots required for
adaptive beamformer design should be larger than or equal
to the number of array sensors, i.e., T ≥M , to guarantee the
invertibility of the sample covariance matrix.

The first problem can be solved by reconstructing an
interference-plus-noise covariance matrix to exclude the effect
of the desired signal component [10–14]. Regarding to the
second problem, although the diagonal loading technique
[18, 19] guarantees the matrix to be invertible, few studies
have been conducted to design the adaptive beamformer with
less snapshots than the number of array sensors, i.e., T < M ,
especially with only a single snapshot.

IV. PROPOSED ADAPTIVE BEAMFORMING ALGORITHM

According to the desired signal and interference expressions
(2) and (4), the statistical covariance matrix can be expressed
as

R = E
[
x(t)xH(t)

]
= Rs + Ri+n. (11)

For uncorrelated interferers and noise, the interference-plus-
noise covariance matrix becomes

Ri+n =

K∑
k=1

σ2
ik
aika

H
ik

+ σ2
nI, (12)

where σ2
ik

= E
[
|sik(t)|2

]
is the power of the k-th interferer,

σ2
n is the noise power, and I is an identity matrix. It is clear

that the interference-plus-noise covariance matrix required for
adaptive beamformer design is a function of steering vectors
and power of interferers, as well as the noise power.

To estimate the sources’ parameters including their directi-
ons and power, we formulate a sparsity-constrained covariance
matrix fitting problem as

min
p,σ2

n

∥∥∥R̂−APAH − σ2
nI
∥∥∥
F

subject to ‖p‖0 = K + 1, p ≥ 0, σ2
n > 0, (13)



where p ∈ RN+ is the spatial spectrum distribution on the
sample grids of the entire observed spatial domain (e.g.,
{θ1, θ2, · · · , θN} with N � M ), P = diag(p) is a diagonal
matrix of p, A = [a(θ1),a(θ2), · · · ,a(θN )] ∈ CM×N is the
array manifold matrix, and ‖·‖F and ‖·‖0 respectively denote
the Frobenius norm and the `0 norm. It is intractable to solve
the above optimization problem due to the nonconvex `0 norm
constraint, even when the number of interferers K is a priori
known.

By using the `1 norm in lieu of the `0 norm, the nonconvex
optimization problem (13) can be relaxed as

min
p,σ2

n

∥∥∥R̂−APAH − σ2
nI
∥∥∥
F

subject to ‖p‖1 ≤ σ
2
s +

K∑
k=1

σ2
ik

+ σ2
n + δ,

p ≥ 0, σ2
n > 0, (14)

where the `1 norm of p equals to the power sum of all
sources (i.e., σ2

s +
∑K
k=1 σ

2
ik

+σ2
n). Note that a small number

δ > 0 is added to the power constraint in order to allow a
space for the optimization algorithm to search for p. Although
the optimization problem (14) is convex, it is impracticable
because it is not easy to accurately estimate the source power
in practical applications. Either overestimation or underesti-
mation will sacrifice the solution.

Alternatively, the convex optimization problem (14) can be
reformulated as a regularized convex optimization problem

min
p,σ2

n

∥∥∥R̂−APAH − σ2
nI
∥∥∥
F

+ γ ‖p‖1

subject to p ≥ 0, σ2
n > 0, (15)

where γ is a regularization parameter that trades off between
the sparsity of the estimated spatial spectrum and the co-
variance matrix fitting error. The reformulated optimization
problem (15) intends to find the sparsest spatial spectrum p
and the noise power σ2

n, such that the reconstructed covariance
matrix APAH+σ2

nI closely approximates the sample covari-
ance matrix R̂. This optimization problem is convex, and can
be solved using standard and highly efficient interior point
method software tools, e.g., CVX [20]. The positions of non-
zero entries in the estimated vector p̂ represent the estimated
DOAs of the desired signal and interferers. Note that there is
no matrix inversion or eigen-decomposition required in solving
the optimization problem.

Assuming that the known angular sector of Θ =
[θmin, θmax] in which the desired signal is located is distin-
guishable from general locations of the interfering signals, then
the peaks in the out-of-sector Θ̄ correspond to the interferers.
The interference-plus-noise covariance matrix can be recon-
structed as a weighted sum of the tensor outer products of the
interference steering vectors as

R̂i+n =

Q∑
q=1

p̂qa(θ̂q)a
H(θ̂q) + σ̂2

nI, (16)

where the weighted coefficients {p̂q, q = 1, · · · , Q} are the
values of the peaks of the estimated spatial spectrum in the
out-of-sector Θ̄, {a(θ̂q), q = 1, · · · , Q} are the interference
steering vectors with the estimated directions of interferers
{θ̂q, q = 1, · · · , Q} corresponding to the peaks in Θ̄, and σ̂2

n

is the estimated noise power. Here, Q is the number of peaks
of the estimated spatial spectrum p̂ in the out-of-sector Θ̄.

Because of the introduced convex relaxation (i.e., `1 norm)
and the user-defined regularization parameter (i.e., γ), the
spatial spectrum estimated from the regularized convex opti-
mization problem (15) may contain spurious peaks, i.e., there
may be more than one peak in the desired signal sector Θ. In
such a case, the peak with the highest level is regarded as the
estimate of the desired signal, whose corresponding direction
is denoted as θ̂s. On the other hand, if there is no peak in the
sector Θ (e.g., when the signal power is weak enough), the
adaptive beamformer design uses the assumed signal direction,
i.e., θ̂s = θ̄s.

Substituting the reconstructed interference-plus-noise cova-
riance matrix R̂i+n and the estimated signal steering vector
a(θ̂s) into the MVDR beamformer (8), the proposed adaptive
beamformer is given as

wPro =
R̂

−1

i+na(θ̂s)

aH(θ̂s)R̂
−1

i+na(θ̂s)
, (17)

where the reconstructed interference-plus-noise covariance
matrix R̂i+n is full-rank and invertible.

In summary, the proposed adaptive beamformer performs
the following steps:

Step 1: Compute the sample covariance matrix R̂ (9);
Step 2: Solve the sparsity-constrained covariance matrix

fitting problem (15);
Step 3: Reconstruct the interference-plus-noise covariance

matrix R̂i+n (16);
Step 4: Compute the beamformer weight vector wPro (17).

V. SIMULATION RESULTS

In the simulation, a ULA with M = 10 omnidirectional
sensors spaced a half wavelength apart is used. The desired
signal, interference and noise are all modeled as a complex
circularly symmetric Gaussian zero-mean spatially and tem-
porally white process. Two interferers are assumed to impinge
on the array from directions −50◦ and −20◦, respectively.
The input interference-to-noise ratio (INR) in each sensor
is equal to 30 dB. The desired signal is assumed to be a
plane-wave from the presumed direction θ̄s = 5◦. In the
performance comparison of the output SINR versus the input
SNR, the number of snapshots is fixed to be T = 1, namely,
a single snapshot. For each scenario, 500 Monte-Carlo trials
are performed.

The proposed adaptive beamformer is compared to the
delay-and-sum (DAS) beamformer and the diagonal loading
SMI (DL-SMI) adaptive beamformer. Note that the data-
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Fig. 1. First example: Fixed look direction mismatch.

independent DAS beamformer wDAS = ās
M is not an adaptive

beamformer. In the DL-SMI adaptive beamformer

wDL-SMI =

(
R̂ + εI

)−1
ās

āH
s

(
R̂ + εI

)−1
ās
, (18)

the diagonal loading factor is taken as ten times the noise
power (i.e., ε = 10σ2

n), where the noise power σ2
n is assumed

known a priori. In the proposed beamformer, the regularization
parameter γ is set to be 0.25, and the angular sector where the
desired signal is located is set to be Θ = [θ̄s − 5◦, θ̄s − 5◦],
namely, [0◦, 10◦]. Other popular adaptive beamformers are not
suitable for the considered single-snapshot case because either
an inversion or eigen-decomposition of the sample covariance
matrix is required there, whereas the single-snapshot observa-
tion only provides a rank-one sample covariance matrix. As a
benchmark, the optimal output SINR, which is calculated with
the known desired signal steering vector and interference-plus-
noise covariance matrix, is also shown in all figures.

In the first example, we consider the case where there is
a fixed look direction mismatch for the desired signal. The
actual signal is assumed to impinge on the array from the
direction of θs = 8◦, which corresponds to a 3◦ mismatch
in the signal look direction. Fig. 1 compares the output
SINRs of different beamforming algorithms versus the input
SNR. It is clear that, benefiting from the interference-plus-
noise covariance matrix reconstruction, the proposed adaptive
beamformer outperforms other tested beamformers regardless
of the input SNR. For the proposed beamformer, there is about
7 dB performance loss regardless of the desired signal power.
This performance loss is due to the inaccurate estimation
from the single-snapshot sample. As shown in [10, 11], such
performance loss can be reduced to a negligible level as
more snapshots are available for adaptive beamformer design.
In contrast, the data-independent DAS beamformer uses the
presumed beamforming weight vector wDAS = a(5◦)

M rather
than the actual beamforming weight vector a(8◦)

M , which leads
to a fixed performance loss of 21 dB regardless of the input
SNR. The performance degradation of the DL-SMI adaptive
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Fig. 2. Second example: Coherent local scattering.

beamformer at high SNR is the self-nulling phenomenon. The
reason is that with the increase of SNR, the diagonal loaded
covariance matrix R̂+εI deviates from the interference-plus-
noise covariance matrix Ri+n more.

In the second example, we consider a scenario where the
desired signal steering vector is distorted by local scattering
effects. More specifically, the actual steering vector as of the
desired signal is assumed to be formed by five signal paths as

as = ās +

4∑
l=1

eψla(θl), (19)

where a(θl), l = 1, 2, 3, 4, correspond to the coherently
scattered multipaths. The l-th path is modeled as a plane
wave with the direction following a normal distribution θl ∼
N (θ̄s, (4

◦)2) and the phase following a uniform distribution
ψl ∼ U [0, 2π]. It should be pointed out that both θl and ψl
change from run to run. It can be seen from Fig. 2 that the
proposed adaptive beamformer again outperforms the other
tested beamformers, although there is some performance loss
in the high SNR region.

VI. CONCLUSION

In this paper, we have considered adaptive beamformer
design with only a single snapshot available. By exploiting
the sparsity of the sources, we formulate a sparsity-constrained
covariance matrix fitting problem to estimate the parameters
required in the reconstruction of the interference-plus-noise
covariance matrix for adaptive beamformer design. In such
a way, both inversion and eigen-decomposition of the sam-
ple covariance matrix is effectively avoided. The proposed
adaptive beamformer offers better output SINR performance
than existing beamformers applicable for the single-snapshot
scenario. Considering that only a single snapshot is required
for adaptive beamformer design, the proposed adaptive be-
amforming algorithm works in a pipeline way rather than in
a block way. It is especially attractive for those applications
required for a quick response, while the array equips with a
very large number of sensors.
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