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Abstract—Sparse arrays are considered as an effective solution
to reduce the system complexity for direction-of-arrival (DOA)
estimation as they can resolve more sources than the number
of sensors. Inspired by such techniques, the coprime frequency-
based array structure was recently proposed to further reduce
the number of required sensors. Multiple sensing signals with
mutually coprime carrier frequencies are transmitted, and the
reflected signals are used to estimate the target DOAs. The
cross-correlation obtained from each pair of frequencies provides
additional degrees of freedom (DOFs). On the other hand, a
compression matrix can be designed to reduce the dimension
of the received signal vector, thereby effectively reducing the
number of front-end circuit chains. In this paper, we use the
compressive measurements of the received signal vector obtained
from a coprime frequency-based array structure to estimate the
signal DOAs. The proposed scheme can obtain an increased
number of DOFs and high estimation accuracy because of
the coarray operation and the large array aperture of the
coprime frequency-based array structure. Meanwhile, the system
complexity is also significantly reduced. The effectiveness of the
proposed scheme is validated using simulation results.

Index Terms—Compressive sensing, coprime array, coprime
frequency, DOA estimation, group sparsity

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important field

in array signal processing [1], [2]. When a uniform linear array

(ULA) is used for DOA estimation, the number of degrees of

freedom (DOFs) depends on the number of physical sensors.

On the other hand, the estimation accuracy is strongly affected

by the array aperture. Hence, in order to achieve a high

estimation accuracy, a large number of sensors is required,

resulting in high system complexity and cost. To address this

issue, sparse array structures have been proposed under the

coarray framework, where the auto-correlation information of

the received signal vector is utilized so that an N -sensor sparse

array can estimate O(N2) sources. In addition to classical

sparse array configurations, such as the minimum redundancy

array [3], several new sparse array structures are recently de-

veloped for systematical design using the nested and coprime

array schemes [4]–[8]. The performance of DOA estimation

exploiting sparse arrays has been analyzed in [9]–[11]. To
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further reduce the number of physical sensors, the coprime

frequency-based array structure was proposed in [12] and was

further extended and analyzed in [13]–[15]. The main concept

of the coprime frequency-based array structure is to transmit

two or more continuous-wave sensing signals, whose carrier

frequencies have a mutually coprime relationship, and then use

the received reflection signals at all frequencies to estimate

the signal DOAs. In so doing, the number of physical sensors

required to estimate the same number of sources is reduced

by a factor of K, i.e., the number of coprime frequencies. The

corresponding Cramér-Rao bound was derived in [16]. Note

that multiple frequencies can also be used to fill in the holes

in the coarray of coprime arrays [17].

Indicated by the compressive sensing theory, signals with

certain sparse properties can be successfully recovered through

sub-Nyquist sampling so as to reduce the system complexity

[18]. To this end, a compression matrix Φ ∈ C
M×L is used

to reduce the dimension of the received signal vector [19]–

[23], where M is the number of front-end circuit chains

and L is the number of sensors satisfying M < L. DOA

estimation using compressive measurements based on the

coprime array was proposed in [24], which can estimate more

sources than the number of array sensors. Furthermore, a

generalized DOA estimation scheme using the compressive

measurements based on sparse arrays is considered in [25].

It is shown that, for a given number of circuit chains, using

compressive measurements based on sparse arrays can achieve

a higher number of DOFs than using classical sparse arrays.

In this paper, we propose the use of compressive measure-

ments based on a sparse ULA exploiting coprime frequencies

to estimate the signal DOAs. The number of circuit chains is

effectively reduced by using the proposed scheme. Meanwhile,

a higher number of DOFs is achieved compared with the

classical coprime array structures given the same number of

circuit chains. In addition, improved DOA estimation accuracy

is achieved because a larger array aperture is achieved through

the combined use of a sparse ULA, coprime frequencies, and

a compression matrix. To summarize, the proposed scheme

achieves a lower system complexity compared with that as-

sociated with the classical coprime structure given the same

number of sensors, whereas it achieves a higher number

of DOFs and improved DOA estimation accuracy compared

with the classical coprime structure given the same number

of circuit chains. Numerical simulations results validate the



effectiveness of the proposed scheme.
For the convenience of presentation, we use random com-

pression matrices which are commonly used in the literature.

It is noted, however, that the use of random compressive

matrices generally lead to an information loss, depending on

the ratio of M/L [26]. On the other hand, when certain prior

knowledge about the signals, such as their DOA distribution,

is available, the compression matrix can be optimized to

minimize such information loss through, e.g., information-

theoretic approaches [22], [23], [25].
Notations: We use lower-case letters (e.g., a), lower-case

bold letters (e.g., a), and upper-case bold letters (e.g., A)

to represent scalars, vectors, and matrices, respectively. The

superscripts (·)∗, (·)T and (·)H denote the complex con-

jugate, the transpose and the complex conjugate transpose,

respectively. vec(·) represents the vectorization operation, and

E[·] denotes the expectation operation. The diagonal matrix

whose diagonal entries are given in a is expressed by diag(a).
j =

√−1 is the unit imaginary number, and IL stands for the

L×L identity matrix. In addition, ⊗ and ◦ are used to represent

the Kronecker product and Khatri-Rao product.

II. SYSTEM MODEL

For simplicity, only two frequencies are considered in this

paper. As demonstrated in [12], [14], two signals with carrier

frequencies f1 = M1f0 and f2 = M2f0 are transmitted to

estimate the directions of the spatial targets, where M1 and

M2 are a pair of coprime integers and f0 is the unit frequency.

Then, the signals reflected by the targets are received by an L-

sensor ULA. Consider Q far-field targets in the spatial domain,

and use the ULA with inter-element spacing d0 = λ0/2 =
c/(2f0), where λ0 is the wavelength corresponding to f0 and

c is the speed of light. Note that the inter-element spacing λ0/2
equals to M1λ1/2 and M2λ2/2, respectively, when evaluated

at carrier frequencies f1 and f2. The received baseband signal

vector at the k-th frequency is expressed as [14]

x(k)(t) =

Q∑
q=1

ρ(k)q (t)a(k)(θq) + n(k)(t)

= A(k)s(k)(t) + n(k)(t), k = 1, 2,

(1)

where s(k)(t) = [ρ
(k)
1 (t), · · · , ρ(k)Q (t)]T . Note that ρ

(k)
q (t) is

the complex envelope of the q-th target corresponding to

fk with q = 1, 2, · · · , Q, which depends on fk because

the propagation phase delay varies with the frequency. For

two frequencies f1 and f2, the relationship between ρ
(1)
q (t)

and ρ
(2)
q (t) can be described by introducing an additional

phase which is random and unknown. In the above ex-

pression, n(k)(t) is the complex white Gaussian noise at

frequency fk with mean 0 and covariance matrix σ2
nkIL, and

A(k) = [a(k)(θ1), · · · ,a(k)(θQ)] is the array manifold matrix

at frequency fk, where a(k)(θq) denotes the steering vector

with respect to the q-th target and frequency fk, expressed as

a(k)(θq) =
[
1, e−jMkπ sin(θq), · · · , e−j(L−1)Mkπ sin(θq)

]T
.

(2)

The dimension of the received signal vector can be reduced

by introducing a compression matrix Φ ∈ C
M×L with

M < L. The compressive measurement vector corresponding

to frequency fk, denoted as y(k)(t), is expressed as

y(k)(t) = Φ
(
A(k)s(k)(t) + n(k)(t)

)
. (3)

We choose Φ to be row-orthonormal, i.e., ΦΦH = IM ,

so as to guarantee that the noise covariance matrix after

compression remains unchanged. It is assumed that the noise

elements observed at different frequencies are independent.

Then, the covariance matrices of the self-lags (between the

received signal corresponding to the same frequency) and

cross-lags (between the received signals corresponding to

different frequencies) are respectively expressed as

R(k,k)
yy = E

[
y(k)(t)(y(k)(t))H

]
= ΦA(k)R(k,k)

ss (A(k))HΦH + σ2
nkΦΦH ,

(4)

R(i,k)
yy = E

[
y(i)(t)(y(k)(t))H

]
= ΦA(i)R(i,k)

ss (A(k))HΦH ,
(5)

where R
(k,k)
ss = diag([σ2

k1, · · · , σ2
kQ]) and R

(i,k)
ss =

diag([σ
(i,k)
1 , · · · , σ(i,k)

Q ]) are the covariance matrices of the

targets corresponding to the self- and cross-lags, respectively.

Note that σ
(i,k)
q for i �= k is usually a complex number. In

practice, the covariance matrix is estimated from the receive

data, expressed as

R̂(k,k)
yy =

1

T

T∑
t=1

y(k)[t](y(k)[t])H , (6)

R̂(i,k)
yy =

1

T

T∑
t=1

y(i)[t](y(k)[t])H , (7)

where T is the number of snapshots.

III. PROPOSED DOA ESTIMATION APPROACH

As demonstrated in [14], the number of DOFs depends on

the number of unique cross-lags. The use of self-lags does not

contribute additional DOFs, but can help suppress spurious

peaks, thus improving the DOA estimation accuracy. Note that,

according to (4) and (5), using the self-lags will also induce

additional noise, thus may compromise the DOA estimation

accuracy in a low signal-to-noise ratio (SNR) scenario. On

the other hand, the additional information offered by the self-

lags may improve the DOA estimation accuracy in the high

SNR region. Thus, in this section, we describe both DOA

estimation approaches, respectively exploiting only cross-lags

and both self- and cross-lags. Note that R
(k,i)
yy has a Hermitian

relationship with R
(i,k)
yy . Thus, exploiting both matrices instead

of one of them does not improve the performance.

A. Using Cross-lags Only

For notation simplicity, denote (Φ∗ ⊗Φ) as Ψ ∈ C
M2×L2

.

Vectorizing (5) and utilizing the property vec(XYZ) = (ZT⊗



X)vec(Y) [27], we have

r(i,k)yy = vec
(
R(i,k)

yy

)

= Ψ
(
(A(k))∗ ⊗A(i)

)
vec(R(i,k)

ss )

= Ψ
(
(A(k))∗ ◦A(i)

)
p(i,k)
s ,

(8)

where p
(i,k)
s = [σ

(i,k)
1 , · · · , σ(i,k)

Q ]T . Discretize the spatial

domain into a grid of DOAs. Denote the discretized array

manifold at frequency fk as A
(k)
grid and the sparse vector to be

estimated as b◦. Let A
(i,k)
SM be the sensing matrix such that

A
(i,k)
SM = Ψ((A

(k)
grid)

∗ ◦A(i)
grid). Then, (8) is rewritten as

r(i,k)yy = A
(i,k)
SM b◦. (9)

As such, the DOA estimation problem becomes a standard

compressive sensing problem, and vector b◦ can be recovered

by optimizing the following problem

min
b◦

‖b◦‖0 s. t.
∥∥∥r(i,k)yy −A

(i,k)
SM b◦

∥∥∥
2
≤ ε, (10)

where ‖·‖p represents the lp norm, and ε is the tolerance which

is typically determined based on the error between the sampled

covariance matrix and the theoretical covariance matrix.

Equation (10) can be solved by a number of compressive

sensing methods. In this paper, the LASSO algorithm is

used, which reformulates the above constrained optimization

problem as

b̂◦ = argmin
b◦

[
1

2

∥∥∥r(i,k)yy −A
(i,k)
SM b◦

∥∥∥
2
+ η‖b◦‖1

]
, (11)

where η is the regularization parameter. Then, the estimated

DOAs are obtained as the positions corresponding to the non-

zero entries in b̂◦.

B. Using Both Self-lags and Cross-lags

By using both the self- and the cross-lags, the estimation

is essentially a multiple measurement vector problem. Vecto-

rizing (4) yields

r(k,k)yy = vec
(
R(k,k)

yy

)

= Ψ
[(

(A(k))∗ ⊗A(k)
)
vec(R(k,k)

ss ) + σ2
nkvec(IL)

]

= Ψ
[(

(A(k))∗ ◦A(k)
)
p(k,k)
s + σ2

nkvec(IL)
]
,

(12)

where p
(k,k)
s =[σ2

k1, · · · , σ2
kQ]

T . Stack the vectorized covari-

ance matrices and group them to different frequency pairs as⎡
⎢⎣
r
(1,1)
yy

r
(1,2)
yy

r
(2,2)
yy

⎤
⎥⎦ =

⎡
⎢⎣
Ψ

(
(A(1))∗ ◦A(1)

)
p
(1,1)
s

Ψ
(
(A(2))∗ ◦A(1)

)
p
(1,2)
s

Ψ
(
(A(2))∗ ◦A(2)

)
p
(2,2)
s

⎤
⎥⎦+

⎡
⎣σ

2
n1vec(IL)

0
σ2
n2vec(IL)

⎤
⎦ ,

(13)

which can be compactly expressed as

r = AGSps +Bpn, (14)

where r = [(r
(1,1)
yy )T , (r

(1,2)
yy )T , (r

(2,2)
yy )T ]T is the compressive

measurement vector, and AGS = diag(A
(1,1)
GS ,A

(1,2)
GS ,A

(2,2)
GS )

is the corresponding array manifold matrix with

A
(i,k)
GS = Ψ

(
(A(k))∗ ◦A(i)

)
. In addition, ps =

[(p
(1,1)
s )T , (p

(1,2)
s )T , (p

(2,2)
s )T ]T , B = I3 ⊗ vec(IL),

and pn = [σ2
n1, 0, σ

2
n2]

T .

Denote the sensing matrix corresponding to the self-lags at

frequency fk as A
(k,k)
SM = Ψ((A

(k)
grid)

∗ ◦A(k)
grid). Let A

(GS)
SM =

diag(A
(1,1)
SM ,A

(1,2)
SM ,A

(2,2)
SM ). Then, (14) can be rewritten as

r = Vb◦
GS, (15)

where V = [A
(GS)
SM ,B], and b◦

GS = [b◦T
11 ,b

◦T
12 ,b

◦T
22 ,p

T
n ]

T

with b◦
ik being the spatial spectrum corresponding to r

(i,k)
yy .

It is clear that b◦
11, b◦

12, and b◦
22 have the same sparsity

support, because their common non-zero entries correspond

to the target DOAs. Take the l2 norm with respect to each

row in [b◦
11,b

◦
12,b

◦
22], and denote the result as b0. Then, we

have a sparse column vector ξ defined as

ξ = [bT
0 ,p

T
n ]

T . (16)

Thus, b◦
GS can be recovered by solving the following problem

min
b◦

GS

‖ξ‖0 s. t. ‖r−Vb◦
GS‖2 ≤ εGS, (17)

where εGS is the tolerance. (17) can be solved using the group

LASSO algorithm which relax this problem as the following:

b̂◦
GS = argmin

b◦
GS

1

2
‖r−Vb◦

GS‖2 + ηGS‖ξ‖1, (18)

where ηGS is the regularization parameter. The estimated

DOAs are the positions corresponding to the non-zero entries

in ξ̂ = g(b̂◦
GS).

IV. SIMULATIONS RESULTS

Throughout this section, we consider a ULA with 16 sensors

as the receive array. The number of front-end circuit chains

is set as 8, thus yielding the compression ratio to be 2. Each

entry in the compression matrix Φ is randomly selected from

the complex Gaussian distribution CN (0, 1) and does not

change through all the simulations. To show the superiority

of the proposed structure, the classical coprime frequency

based structure [14] exploiting an 8-element ULA is also

considered for comparison. As such, both array structures have

the same number of circuit chains. Two coprime frequencies

with M1 = 2 and M2 = 3 are used for both structures. The

target DOAs are assumed to be uniformly distributed between

−60◦ and 60◦. LASSO and group LASSO are performed to

estimated the DOAs using only cross-lags and using both

self- and cross-lags, respectively, where the lasso function

in MATLAB R2015b is exploited. Note that both self- and

cross-lags are utilized for classical coprime frequency based

structure [14]. The searching grid is uniformly distributed

between −90◦ and 90◦ with a step size of 0.1◦.

A. Spatial Spectrum

Given the same number of circuit chains, the coarray of

the proposed scheme consists of more lags than the classical

coprime frequency based structure. Therefore, the proposed
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Fig. 1. The spatial spectra obtained from (a) the classical coprime frequency based structure, (b) the proposed scheme using only cross-lags, and (c) the
proposed scheme using both self- and cross-lags.

structure is expected to achieve a higher number of DOFs.

In Fig. 1, we compare the normalized spatial spectra obtained

from the classical coprime frequency based array structure and

the proposed compressive measurement array structure, where

28 uncorrelated far-field targets are considered, the input SNR

is 20 dB, and 2, 000 snapshots are used. For the proposed

scheme, the regularization parameters in the cross-lags only

and both self- and cross-lags scenarios, i.e., η and ηGS, are

respectively set as 0.1 and 17.5. As to the classical coprime

frequency based structure, ηGS is set as 2.5. These parameters

are chosen to optimize the respective performance for each

individual algorithm.

As indicated by the CRB [16], for the underlying classi-

cal coprime frequency based array structure, the maximum

number of DOFs is 23. Therefore, it cannot correctly estimate

all the 28 sources, as clearly demonstrated in the spectrum

depicted in Fig. 1(a). For the proposed scheme, when only

cross-lags are exploited, many spurious peaks are generated,

although the actual DOAs are correctly estimated in Fig. 1(b).

On the other hand, when the self-lags are also used, they help

eliminate the spurious peaks as shown in Fig. 1(c). This is

consistent with the analysis made in Section III.

B. DOA Estimation Accuracy

Next, we examine the DOA estimation accuracy of the

proposed scheme. Since the ULA with a larger aperture is

used in the proposed scheme, the DOA estimation accuracy

is expected to be higher than that obtained from the classical

coprime frequency based structure. To enable comparison of

the DOA estimation accuracy between the two array structures,

14 uncorrelated far-field targets are considered so that both

array structures have enough DOFs. 500 Monte-Carlo trials

are conducted to compute the root mean square error (RMSE),

which is defined as

RMSE =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(
θ
(i)
q − θ̂

(i)
q

)2

, (19)

where I is the number of Monte-Carlo trials. θ
(i)
q and θ̂

(i)
q

denote the actual and estimated value of the q-th target in the

i-th trial, respectively.
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Fig. 2. The RMSE versus input SNR.

The RMSE results versus SNR are plotted in Fig. 2 where

500 snapshots are used, and the SNR varies between −20
dB and 10 dB. The regularization parameter ηGS is set as

2.5 and 8 for group LASSO in classical coprime frequency

structure and the proposed scheme, respectively, whereas η
is chosen to be 0.2 for LASSO. The floor observed in the

RMSE performance is mainly caused by the off-grid effect. It

is clear that the proposed structure obtains a higher estimation

accuracy as expected. As we demonstrated before, cross-lags

do not include the autocorrelation of the noise term, and thus

the corresponding DOA estimation is more robust to noise

in the low SNR region. On the other hand, in the high SNR

region, the self-lags provide helpful information to improve

the DOA estimation performance, particularly in suppressing

the spurious peaks.

V. CONCLUSION

In this paper, we proposed a novel DOA estimation scheme

exploiting a coprime frequency based structure, where the

dimension of the received signal vector is compressed before

feeding into the front-end circuit chains. Given a fixed number

of circuit chains, the proposed scheme obtains a higher number

of DOFs and a better estimation accuracy because of the

extended receive array aperture. When the same number of

sensors are used, the number of circuit chains is significantly

reduced in the proposed scheme, thus having a lower system

complexity than the classical coprime frequency based struc-

ture. Numerical simulation results validate the effectiveness of

the proposed structure.
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