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ABSTRACT
Distributed array consisting of multiple subarrays is attrac-
tive for high-resolution direction-of-arrival (DOA) estimation
when a large-scale array is infeasible. To achieve effective
distributed DOA estimation, it is required to transmit infor-
mation observed at the subarrays to the fusion center, where
DOA estimation is performed. For noncoherent data fusion,
the covariance matrices are used for subarray fusion. To ad-
dress the complexity involved with the large array size, we
propose a compression framework consisting of multiple par-
allel encoders and a classifier. The parallel encoders at the
distributed subarrays are trained to compress the respective
covariance matrices. The compressed results are sent to the
fusion center where the signal DOAs are estimated using a
classifier based on the compressed covariance matrices.

Index Terms— Direction-of-arrival estimation, dis-
tributed array, distributed sensing, data compression, neural
network

1. INTRODUCTION

Distributed array consisting of multiple subarrays is attrac-
tive for high-resolution direction-of-arrival (DOA) estimation
when a large-scale array is infeasible. Distributed structures
are desirable in, e.g., unmanned aerial and underwater ve-
hicle networks, where each vehicle can be equipped with a
smaller number of sensors. Exploiting distributed subarrays
increases system capacity, energy efficiency, robustness, and
reduce multiuser interference [1–5].

To perform distributed DOA estimation, it is required
that a large amount of data are transmitted from each sub-
array to the fusion center. For noncoherent data fusion, the
covariance matrices are transmitted to the fusion center on
a periodic basis. To reduce data traffic volume, we propose
in this paper a data-driven compression framework based on
machine learning exploiting multiple parallel encoders at the
distributed subarrays and a classifier at the fusion center. We
adopt an offline training strategy to train the compression
framework, where the encoders and the classifier are trained
jointly. This training procedure is formulated as a multilabel
binary classification problem, in which the network deter-
mines whether or not each angle of the search grid contains a
signal arrival. The actual signal DOAs are used as the label

for training the framework by minimizing a binary cross en-
tropy loss function. Because the classifiers and the encoder
are trained jointly in this framework, the back-propagation of
the loss function forces the encoders to learn, ensuring that
even if the classifier is discarded, we have trained encoders.
Following completion of the training, the learned network
parameters are shared for online deployment. In this stage,
the encoders are placed in the subarray side, and the classifier
is in the fusion center. The encoders compress the covariance
matrices of the received subarray signals before transmitting
them to the fusion center. The classifier exploits the fused
data from the fusion center to estimate the signal DOAs.

Machine learning has been extensively used in the field of
image processing, speech recognition, human motion recog-
nition, and array signal processing [6–12]. Classical machine
learning techniques such as support vector regression were
introduced for DOA estimation [13–15]. In [16–20], DOA
estimation and source localization problems are solved based
on deep learning. The proposed method differs from the ex-
isting works in several ways. In this work, we consider a
distributed array consisting of multiple subarrays to perform
DOA estimation. As such, network learning is focused on
data compression at the distributed subarrays and fused signal
detection at the fusion center. Unlike many existing schemes
in which the encoders are trained for signal reconstruction,
our objective is not to reconstruct the input data but rather to
perform DOA estimation.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes
the N × N identity matrix. (·)T and (·)H respectively rep-
resent the transpose and Hermitian operations of a matrix or
vector. triu(·) returns the upper triangular part of an matrix. In
addition, vec(·) vectorizes a matrix, Tr(·) represents the trace
operator, and diag(·) forms a diagonal matrix from a vector.
E[·] stands for the statistical expectation operator. R and I
respectively extract the real and imaginary parts of a complex
entry. CM×N denotes the M ×N complex space.

2. SIGNAL MODEL

Consider a distributed array consisting of K subarrays,
each equipped with N antennas. D uncorrelated signals
are impinging on the distributed array from directions θ =



[θ1, θ2, · · · θD]T . The array received signal vector in the kth
subarray, k = 1, 2, · · · ,K, can be modeled as

xk(t) =

D∑
d=1

ρkak(θd)sd(t) + nk(t)

= ρkAk(θ)s(t) + nk(t),

(1)

where xk(t) is the array received signal at the tth time sample
and the kth subarray. Ak(θ) = [ak(θ1),ak(θ2), · · · ,ak(θD)]
∈ CN×D denotes array manifold matrix whose column
ak(θd) ∈ CN represents the steering vector of the dth user
with DOA θd, s(t) = [s1(t), s2(t), · · · , sD(t)]T ∈ CD rep-
resents the signal waveform vector, ρk denotes the phase shift
at the reference sensor of the kth subarray due to the physical
location displacement, and nk(t) ∼ CN (0, σ2

n,kIN ) repre-
sents the zero-mean additive white Gaussian noise (AWGN)
vector.

The covariance matrix of the array received signal at the
kth subarray can be written as

Rk = E[xk(t)xH
k (t)] = AkSA

H
k + σ2

n,kIN

=

D∑
d=1

σ2
dak(θd)aH

k (θd) + σ2
n,kIN ,

(2)

where S = E(s(t)sH(t)] = diag([σ2
1 , σ

2
2 , · · · , σ2

D]) is the
source covariance matrix with σ2

d denoting the power of the
dth source. The estimated covariance matrix from T sampled
data for kth subarray is given as

R̂k =
1

T

T∑
t=1

xk(t)xH
k (t). (3)

3. NEURAL NETWORK-BASED COMPRESSION

Because the covariance matrix is a Hermitian matrix, only the
upper triangular elements are considered. The upper trian-
gular elements are vectorized before feeding into the neural
network, which can be expressed for the kth subarray as

r̄k = vec(triu(Rk)). (4)

The real and imaginary parts of vector r̄k is then separated
and stacked as

rk =
[
(R(r̄k))T (I(r̄k))T

]T
. (5)

The proposed network is trained offline in a simulated en-
vironment. The trained network parameters are then shared
for online deployment. These two parts are respectively de-
scribed in the following two subsections.

3.1. Offline Training Stage

We consider an offline training strategy as depicted in Fig.
1. In this offline training stage, K parallel encoders corre-
sponding to K subarrays are connected to a single classifier.

Fig. 1. Diagram for the offline training stage.

Fig. 2. Encoder structure consisting of three fully connected
layers. The number in each dense layer indicates the number
of neurons being used.

The encoders reduce data size in each layer and are responsi-
ble for compressing the covariance matrices at the subarrays.
The resultant compressed representations obtained from the
K encoders are then fed into a classifier. The entire network
is then trained jointly by using the actual DOAs as the label
of the network.

As depicted in Fig. 2, the encoder section employs L = 3
fully connected hidden layers. On the other hand, the clas-
sifier, as illustrated in Fig. 3, makes use of only one hidden
layer. The number of layers is determined by balancing the
nonlinear mapping between the network input and output to-
gether with the network’s overfitting tendency. Each unit in
a hidden layer performs logistic regression, whose output is
subjected to a nonlinear activation function to introduce non-
linearity into the network.

Consider M training examples given as vectors rk,m,
m ∈ {1, · · · ,M}. The input dataset of the kth encoder Xk

is formed by concatenating allM vectors for the kth subarray,
i.e.,

Xk = [rk,1, rk,2, · · · , rk,M ]. (6)

Considering the kth encoder, the output from the lth hidden
layer is expressed as

Z
[l]
k = W

[l]
k A[l−1]

k + b
[l]
k , (7)

where W [l]
k and b[l]k respectively denote the weights and bias



Fig. 3. Classifier structure.

corresponding to the lth hidden layer,

A[l]
k = f

(
Z

[l]
k

)
, (8)

and f(·) is the activation function. We use the rectified lin-
ear unit (ReLU) as the activation function in all hidden lay-
ers. Note that the input to the first hidden layer is defined as
A[0]

k = Xk.
A dense layer with the sigmoid activation function con-

structs the classifier. The compressed outputs from all K en-
coders are used as the input of the classifier. The K parallel
encoders and the classifier are jointly trained in this offline
training stage. The actual signal DOAs of the training dataset
are used as the label of the network, and the DOA estima-
tion is treated as a binary classification problem. The sigmoid
activation function of output nodes of the classifier produces
numbers that represent the probability of the presence of a
signal in each point on the search grid.

The binary cross-entropy loss function is used for the clas-
sification task. The cost function of a batch using M samples
of data is expressed as

− 1

M

M∑
m=1

[
Y [m] log Ŷ

[m]
+
(

1− Y [m]
)

log
(

1− Ŷ
[m]
)]
,

(9)
where Y m and Ŷ

m
are, respectively, the actual and the pre-

dicted labels of themth sample of a given batch of the training
dataset.

This gradient of the cost function propagates backward
through the network to jointly optimize the weights and biases
of all encoders and the classifier to reduce the cost function in
every epoch.

3.2. Online Deployment Stage

The previously trained encoders and the classifier are de-
ployed in the subarrays and the fusion center, respectively.
Each encoder compresses the covariance matrix of the signal
vector received at the subarray, and the compressed results
at all subarrays are transmitted to the fusion center. As illus-
trated in Fig. 3, the K compressed measurements received
from the K encoders are fused to form a single measurement
that is fed into the classifier. The classifier estimates the
signal DOAs from the fused compressed measurements.

4. SIMULATION RESULTS

4.1. Simulation Setting

We consider a distributed array system with K = 2 subar-
rays, each equipped with N = 50 antennas. The antennas
are arranged in a uniform linear fashion. The signals impinge
into the distributed array from 5 sources, and 500 snapshots
are considered.

We generate our training dataset by considering the sig-
nals impinging from directions within the range of [−60◦, 60◦],
and the input signal-to-noise ratio (SNR) is 10 dB. The en-
tire spatial space is discretized with a 1◦ interval, rendering
121 direction grids. We consider the K = 5 sources with a
random angular separation ∆φ ∈ [2◦, 4◦, · · · , 10◦] between
two adjacent sources, taking both equal and unequal angular
separation into account.

For a specific DOA set, 10 groups of noisy snapshots are
generated, rendering a total number of 310, 400 data vectors
in the training dataset. 90% of them are used for training and
the remainder 10% are used for validation. When we take the
upper triangular elements of the 50×50 covariance matrix and
vectorize the results, the total number of complex-valued ele-
ments is 1, 275. By separating the real and imaginary parts of
these complex values and stacking them together, the vector
size for each subarray becomes 2, 550× 1. These vectors are
used as the inputs to jointly train the encoders and the clas-
sifier. The Adam optimizer is used to optimize the weights
and biases of the network to minimize the cost function, and
the learning rate is set to 0.0001. The minibatch size is set to
M = 64 and 500 epochs are used to train the network.

4.2. Simulation Results

To evaluate the effectiveness of the performance of the pro-
posed framework, we create a blind evaluation dataset. The
parameters used in the examples of the evaluation set are both
within and outside the range of parameters specified for the
training data in the sense that the dataset correspond to differ-
ent input SNR values and angular separations. For example,
consider a test scenario with DOAs 10◦, 30◦, 40◦, 45◦, 48◦.
The maximum angular separation between two adjacent
sources of this test case is 20◦, which is outside the range
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Fig. 4. DOA estimation of a test signal.

Fig. 5. Performance on the evaluation set.

of the training dataset.
Fig. 4 shows the predicted DOAs corresponding to the

above signal parameters, where the input SNR is 0 dB, and
500 snapshots are used. It is confirmed that the proposed
framework performs correct DOA estimation for all sources
even the angular separation between some of the sources is
higher than the maximum angular separation of 10◦ used in
the training settings.

Fig. 5 compares the predicted DOAs obtained from the
proposed network and the actual label on a complete eval-
uation dataset. The input SNR and the number of snapshots
remain unchanged. It is observed that the DOAs of all sources
are correctly estimated.

Fig. 6(a) depicts the classification error performance of
the proposed framework for different input SNR levels, where
the number of snapshots is fixed to 500. The classification er-
ror is defined as the number of erroneously detected sources
averaged over 11 different scenarios. 100 independent trials
with different noise realizations are used to compute the clas-
sification error for each input SNR level. From this figure, it
is observed that the proposed framework provides a low clas-
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(a) Classification error versus input SNR
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(b) Classification error versus number of snapshots

Fig. 6. Classification error performance.

sification error when the input SNR is −4 dB or higher.
Fig. 6(b) shows the classification error performance for a

varying number of snapshots, where the input SNR is 0 dB.
As can be seen, the proposed framework accurately predicted
the DOAs of all sources when the number of snapshots is 150
or higher.

5. CONCLUSION

In this paper, we proposed a neural network-based compres-
sion framework for transmitting compressed data from a dis-
tributed array to the fusion center to perform DOA estima-
tion. Covariance matrices computed at each subarray are sep-
arately encoded using parallel encoders. The encoders and the
classifier are jointly trained before the network parameters are
shared for online deployment. The encoded data from all sub-
arrays are then transmitted to the fusion center for data fusion
and DOA estimation. A classifier network at the fusion cen-
ter is used to resolve the DOAs based on the received encoded
data. The proposed framework provides accurate DOA esti-
mation performance while compressing the measurements.
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