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Abstract—Dual function radar communications (DFRC) alle-
viates the competition over the radio frequency spectrum by
embedding communication symbols onto radar emissions. DFRC
systems employing frequency hopping multiple-input multiple-
output (MIMO) radar achieve higher bit rates through fast-
time information embedding. One such scheme is the frequency
hopping code selection (FHCS) which modulates frequency hops
within each sub-pulse to transmit information. However, this
modulation adversely impacts the sensing performance. In this
work, we propose a strategy to control these losses by selectively
excluding frequencies in each sub-pulse. This permits com-
munication performance to be traded for improved ambiguity
function, thus enhancing the sensing performance. Simulation
results demonstrate the effectiveness of the proposed strategy.

Index Terms—FH-MIMO radar, dual function radar commu-
nication, ambiguity function, frequency hopping code selection,
sensing-communication trade-off

I. INTRODUCTION

DUAL function radar communication (DFRC) systems
have emerged as an effective solution to the increasing

competition over radio frequency (RF) spectrum, as they
enable radar systems to simultaneously perform detection
and communication tasks [1]–[6]. DFRC systems with radar
operation as the primary objective seek to perform commu-
nications in a manner that incurs a tolerable cost to the
radar while ensuring a minimum signal-to-interference-plus-
noise ratio (SINR) at the communication receiver. Various
DFRC schemes that embed communication symbols into a
radar waveform have been proposed. Earlier DFRC systems
introduced communication information into the sidelobes of
the radar waveform while aiming to preserve the main lobe
[7], [8]. In [9], phase modulation (PM) was used to achieve
communications without altering the spectral profile of the
radar signal. Multiple-input multiple-output (MIMO) radars
[10], which provide increased number of degrees of freedom
(DOFs), were then utilized to achieve higher data rates in
DFRC systems [11]–[15].

The schemes above embed information in slow-time, which
limits the data rate to a single communication symbol per radar
pulse. As a result, the achievable bit rate is constrained by
the pulse repetition frequency (PRF) of the radar. Embedding
information in the fast time removes this limitation and un-
locks higher data rates. To this end, frequency hopped MIMO
(FH-MIMO) DFRC systems have been proposed in [16], [17]
and further investigated in [18]–[20]. A generalized framework

encompassing different information embedding strategies was
also developed in [21]. Yet, the higher data rates enabled by
fast-time information embedding come at the cost of increased
sensing performance losses, as they require deviations of the
radar transmit waveform from its optimal form [22]. From
the radar perspective, the ambiguity function (AF), which is
the output of the matched filter (MF) at the receiver, is a key
measure for assessing the quality of the radar waveform [23]
as it characterizes the range resolution. It is desirable that the
AF exhibit a narrow main lobe and minimal sidelobe levels
(SLLs) [24].

While the PSK-based FH-MIMO DFRC scheme [25], [26]
achieves a reasonable AF, it is prone to out-of-band signal
leakage due to phase discontinuities between adjacent hops.
The frequency hopping code selection (FHCS) scheme [17],
on the other hand, has excellent in-band confinement and
eliminates the need for channel estimation, as information is
encoded via the selection of the frequency hops. However, the
FHCS scheme exhibits a poor average AF [17], [21], [27],
a problem that needs to be addressed to ensure acceptable
sensing performance. While several attempts have been made
to address this problem [28], [29], the improvement is limited,
particularly for systems with a higher number of antennas.

In this work, we develop an approach for trading off the
performance of sensing and communications against each
other. To this end, we propose a strategy that excludes a certain
number of hops in each sub-pulse to reduce the number of
overlapping hops between successive sub-pulses. This results
in a distinct symbol dictionary being used in each sub-pulse,
thus significantly reducing AF levels near the main lobe. As
a result, the probability of target detection is improved.

The paper is organized as follows: in Section II we describe
the signal model and discuss the AF. The limitations of the
existing methods are summarized in Section III. In Section IV,
we detail the new approach of excluding the hops to improve
the AF. A separate symbol dictionary has to be designed for
each sub-pulse in order to achieve this. Section V shows the
simulation results. Section VI concludes this paper.

Notation:. The following notations are used here. Opera-
tions ⊗, (·)∗, (·)T , and (·)H indicate the Kronecker prod-
uct, complex conjugate, transpose, and conjugate transpose,
respectively. The symbol ⊆ denotes the subset, ∩ denotes the
set intersection and ⌊·⌋ represents the floor function.
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II. SYSTEM MODEL

A. Frequency Hopping Code Selection

Consider an FH-MIMO DFRC system that uses M transmit
and N receive co-located antennas and a single-antenna com-
munication receiver. The radar pulse, of width Tw, is divided
into Q sub-pulses or chips, each having a duration of ∆t. The
baseband representation of the FHCS transmitted signal in a
direction θ is given by [21]

s(t;n) = aT (θ)ϕ(t) = aT (θ)

Q−1∑
q=0

S(n)
q h(t)Πq(t), (1)

where a(θ) is the transmit steering vector and S
(n)
q is the

M ×K selection matrix that specifies the choice, in the qth
sub-pulse (also called chip) of the nth pulse, of M out of K
available frequency hops. The K×1 vector of FH waveforms
is given by,
h(t) = exp(j2πd∆f t) = [1, ej2π∆f t, . . . , ej2π(K−1)∆f t]T ,

(2)
with d = [0, 1, . . . ,K − 1]T is a vector of frequency indices
and Πq(t) is the rectangular function given by

Πq(t) = Π(t− q∆t) ≜

{
1, q∆t ≤ t ≤ (q + 1)∆t,

0, otherwise.
(3)

Here ∆f = BW/K is the hopping frequency increment and
BW is the system bandwidth. The choice of M out of K hops
results in

(
K
M

)
combinations that are arranged into a codebook

or symbol dictionary. Since the communication receiver has
access to the complete dictionary, it is able to use a matched
filter to decode the transmitted symbols.

B. The FH-MIMO Radar

Consider a target located in the far-field at a direction θr and
having a reflection coefficient α(n). The FH-MIMO waveform
from the mth transmit antenna in the nth pulse is given by

ϕm(t;n) =

Q−1∑
q=0

ej2πcq(m)∆f tΠq(t), (4)

where cq(m) is the index of the hop chosen for transmission on
the mth element in the qth chip. For radar-only operation, the
hops are fixed for all the pulses and are designed to generate
a waveform with desirable AF properties.

The N × 1 received signal vector at the radar receiver is
r(t;n) = α(n)b(θr)a

T (θr)ϕ(t− τ ;n)ej2πνt +w(t;n), (5)
where τ denotes the round-trip delay to the target, ν is the
Doppler frequency, b(θr) is the steering vector at the radar
receiver, and w(t;n) is additive noise. The Doppler frequency
values are much smaller than the frequency hops and hence
can be ignored in what follows. Using these assumptions and
ignoring the noise, the extended signal vector at the MF output
can be written as

y(n) = α(n)v(θr), (6)
where

v(θr)=vec

{
b(θr)

∫ Tw

0

aT (θr)ϕ(t−τ ;n)ϕH(t;n)dt

}
(7)

is the MN × 1 extended array steering vector and vec{·}
denotes the vectorization operation that stacks the columns
of a matrix into a column vector. The integral term in (6)
is equivalent to the radar AF at zero Doppler. The cross
ambiguity function (CAF) between two waveforms ϕm1

(t) and
ϕm2

(t) is [30],

χm1,m2(τ, ν) ≜
∫ T

0

ϕm1(t)ϕ
∗
m2

(t+ τ)ej2πνtdt. (8)

When m2 = m1 = m, χm,m(τ, ν) represents the auto
ambiguity function (AAF) of waveform ϕm(t). The overall
AF of the FH-MIMO radar is given by,

χMIMO(τ, ν) =

M∑
m1,m2=1

χm1,m2(τ, ν), τ = i∆t, i = 1, . . . , Q.

(9)
In what follows, we omit ν in the AF expressions due to

the zero-Doppler assumption.

III. LIMITATIONS OF EXISTING APPROACHES

Let cq denote the symbol transmitted in the qth chip. The
CAF at integer delays, τ = k∆t, can be expressed as [29],

χm1,m2
(k∆t) =

Q−k∑
q=1

δ
(
cq(m1), cq+k(m2)

)
, (10)

where δ(·) denotes the Kronecker Delta function. Substituting
(10) into (9) and rearranging the summation, the overall AF
at integer delays can be written as

χMIMO(k∆t) =

Q−k∑
q=1

M∑
m1,m2=1

δ
(
cq(m1), cq+k(m2)

)
. (11)

Now, let us define ς(ci, cl) =
∑M

m1,m2=1 δ (ci(m1), cl(m2))
as the number of hops shared by the symbols ci and cl. Then,
we can express the overall AF as

χMIMO(k∆t) =

Q−k∑
q=1

ς(cq, cq+k). (12)

This expression gives the AF in terms of the symbols allowing
us to quantify the impact of the information embedding on
the radar performance. When cq+k = cq , i.e., the symbol
is repeated, all M hops are shared and ς(cq, cq+k) = M .
The contribution of these two symbols to the overall AF at
delay k is then M , leading to a higher sidelobe. This problem
was addressed in [27], where a method was proposed to deal
with symbol repetition by replacing the second copy of the
repeated symbol in a pulse with another symbol selected
from the discarded set resulting from the dictionary truncation.
The replacement symbol is chosen to ensure minimal overlap
with its neighbors. However, this approach only addresses
the problem of complete symbol overlap, and no attention
is paid to other orders of overlap, that is, to cases where
ς(cq, cq+k) = M − n, for n = 1, 2, . . . ,M/2. Yet, these
other orders of overlap comprise a large contribution to and
result in significant degradation in the AF. The higher the
overlap or contribution, the worse the sensing performance. In
fact, the impact of the M − n overlaps on AF becomes more
pronounced in systems with a larger number of antennas.



Another strategy to improve the AF was to balance the
symbols across the pulse [29]. In this approach, the hops
within a chip are permuted and distributed evenly across the
waveforms to reduce the maximum SLL at delay 1 across the
individual AFs. However, this approach does not result in a
change in the overall AF.

Therefore, an optimized strategy is required to enhance the
sensing performance by tackling the impact of partial overlaps.
The aim is to produce significant improvement in the AF,
which requires sacrifices in communications resources. In the
following section we present a method that trades communi-
cations performance for sensing performance to improve the
AF at integer delays near the main lobe.

IV. PROPOSED MINIMUM OVERLAP APPROACH

To enable the communication performance to be adjusted
in order for the sensing to achieve a desirable operation, we
propose to selectively exclude some hops from the set of
hops available for each chip. This reduces the number of
overlapping hops between successive sub-pulses and offers
significant improvements in the AF performance at the cost
of a reduction of communication bit rate.

Let K be the total number of available hops, K ′ ≤ K
be the number of hops allocated for communication in each
chip, and κ = K − K ′ be the number of excluded hops. In
order to ensure that a symbol does not take up more than
half the available hops, we require that 2M ≤ K ′ ≤ K. Let
K ≜ {1, 2, . . . ,K} denote the set of K hops, and define K′

q

as the hops designated for use in the qth chip, such that
K′

q ⊆ K, K′
q ≜ {K \ Eq}, (13)

where Eq is the set of excluded hops in the qth chip with
cardinality |Eq| = κ. To reduce the probability of symbol
overlap and improve the AF value at a delay of 1, we constrain
the sets Eq to satisfy Eq ̸= Eq+1. Thus, the hops excluded in
a chip are made available for the adjacent chips.

The value of κ determines the number of bits that can
be transmitted in a chip. It can be set either to guarantee a
minimum bit rate for communication or to keep the maximum
SLL of the AF below a certain value. Thus, κ is a trade-
off parameter as it offers the sought flexibility in controlling
the system performance and its choice should be driven by
application-specific priorities. The hops in the set Eq and
overlaps between them play a major role in the AF SLLs.
Depending on the bit rate requirements, we can design the
excluded subsets such that Eq ∩ Eq+τ = ∅, where ∅ denotes
the null set. Thus, using this method, we can also improve the
AF at other delays in a relatively easy manner.

The set K can be partitioned into multiple non-overlapping
subsets based on the parameter κ. Let ns = ⌊K/κ⌋ be the
number of such subsets of excluded hops. The value of ns

also gives the maximum possible number of adjacent chips
with non-overlapping sets of excluded hops. Note that Eq is not
unique, and different sets of excluded hops result in different
AF profiles. The design of Eq is treated differently for the two
cases: ns ≥ Q (or smaller κ) and ns < Q (or larger κ). For

ns ≥ Q, the set Eq can be designed such that no two chips in
a pulse share any common excluded hops. That is,

Ei ∩ El = ∅,∀i, l ∈ [1, Q], i ̸= l. (14)
For ns < Q, we have that

Eq ∩ Eq+τ = ∅, τ ∈ [1, ns]. (15)
Eq may be designed by filling the first ns chips with non-
overlapping hops. Then, for the remaining chips the hops can
be chosen from the first ns chips. This significantly improves
the AF value at delays where the excluded hops do not overlap,
but leads to higher SLLs at delays where there is a greater
overlap between the excluded hops.

For ns < Q, a more prudent approach would be to design
the sets Eq in such a way that the maximum SLL at small
integer delays is minimized. As we move farther away from
the main lobe, the number of chips that contribute to the AF
reduces. We use three integer delays, τ = k∆t where k =
1, 2, 3. Since selecting the optimal set may not be feasible for
large values of K and κ, we set the maximum permissible AF
SLL at these delays and choose the subset that achieves this.

We now turn our attention to the chip-based symbol dictio-
nary. Given Eq , the dictionary can be designed by choosing M
hops from the subset K′

q containing K ′ hops. This can be done
in L̂ =

(
K′

M

)
ways. Let D(q) denote the symbol dictionary used

in the qth chip, defined as D(q) ≜ {s(q)1 , s
(q)
2 , . . . , s

(q)

L̂
} with

cardinality L̂. The dictionary must be truncated to a power of
two to facilitate the communication modality.

The chip-based symbol dictionary is utilized to transmit
the communication symbols with N̂b = ⌊log2 L̂⌋ representing
the number of bits transmitted per chip. A total of QN̂b bits
are transmitted per pulse. Compared to the FHCS scheme the
reduction in bit rate is Nb − N̂b, where Nb = ⌊log2

(
K
M

)
⌋.

A. Decoding at Communication Receiver

We assume chip-level synchronization at the communication
receiver, which can be achieved through various strategies
including pilot symbols. Also, the receiver is assumed to
have full knowledge of κ,Kq, Eq and the chip-based symbol
dictionary Dq . The rest of the decoding process is similar to
that of the FHCS scheme [21].

V. RESULTS AND DISCUSSION

We consider an FH MIMO DFRC system with BW = 100
MHz, PRF = 100 kHz, center frequency fc = 8 GHz, and
duty cycle of 10%. The pulse duration Tw = 1 µs is further
divided into Q = 5 chips, each having a duration of ∆t = 0.2
µs. All reported simulations use 105 Monte Carlo runs.

First, we compare in Fig. 1 the zero-Doppler cut of the
average AF (average of the sum of the AAFs and CAFs)
of the proposed scheme with FHCS. In this simulation we
use M = 5. For the proposed scheme, we put K = 20 and
K ′ = 10, resulting in κ = 10 excluded hops in the proposed
scheme. For the standard FHCS scheme, we show results
for K = 10 and K = 20. The radar-only AF performance
using optimal codes obtained by simulated annealing is also
shown for reference. Compared to the FHCS K = 10 case,



we observe a significant improvement in AF at all delays
(including non-integer delays) with a 6 dB gain at delay 1.
The enhanced performance can be attributed to the reduction
in hop overlaps of the proposed scheme, which uses a sep-
arate symbol dictionary in each chip with fewer overlapping
symbols. Furthermore, the proposed strategy exhibits a much
lower AF at delay 1 compared to the FHCS scheme with
K = 20, where the improvement is approximately 3.3 dB.
The significance of this improvement will be evident from the
detection probability simulations presented later.

The improved performance of the proposed scheme is
achieved for the same bit rate as the FHCS scheme with
K = 10 but comes at the expense of a reduced bit rate from
13 bits/chip for FHCS with K = 20 to 7 bits/chip for the
proposed scheme. Note that all schemes employ the the pulse
balancing approach outlined in [29], as it improves the AF
given the symbols comprising the pulse.

Fig. 1. Zero-Doppler AF curves of chip-based and FHCS schemes for M =
5, Q = 5,K = 20 and K′ = 10.

Fig. 2 shows the variation of average AF value at delay 1
(left y-axis) and the bit rate of the proposed scheme (right
y-axis) with the trade-off parameter κ. For K = 20,M = 5
and Q = 5, κ is varied from 2 to 10 with a step of 2. For
each κ, we also compute the FHCS AF with K setting to
the respective K ′. The lowest achievable AF value at delay
1 for the FHCS with K = 20 and M = 5 is −6.67 dB and
is depicted as a horizontal reference line. As κ increases, the
proposed scheme exhibits an improved AF value at delay 1
by trading off an increased number of bits.

Finally, we compare the detection performance of the pro-
posed approach for κ = 2 and 10 to that of the FHCS scheme
and radar-only waveform. In the simulation, we evaluate the
probability of detection, Pd, for a probability of false alarm of
0.001. We fix the clutter-to-noise ratio to 15 dB and insert a
target at azimuth angle 20◦. For all schemes, we set K = 20,
M = 5 and Q = 5. In Fig. 3 we show curves of the Pd versus
signal to noise ratio (SNR). We see that the proposed scheme
achieves a better detection performance than the FHCS scheme
for both values of κ. As κ increases, the Pd of the proposed
scheme improves approaching the radar-only scenario. This is

Fig. 2. AF value at delay 1 and bit rate versus κ for K = 20,M = 5, Q = 5.

due to the decrease in the number of overlapping hops. This
demonstrates that the proposed scheme allows the performance
of the communications and sensing modalities to be traded off
against each other.

Fig. 3. Probability of detection versus SNR for K = 20,M = 5, Q = 5.

VI. CONCLUSION

The FHCS scheme exhibits poor sensing performance,
offering no means to control this aspect of its operation. In
this paper, we addressed this problem, proposing an approach
that enables communications performance to be traded for
improved sensing. We achieved this by excluding some hops
from each chip, allowing us different symbol dictionaries
to be used in different chips. By trading off bit rate, we
can thus significantly enhance the AF performance at delays
closer to the main lobe, which also improves the probability
of detection. We demonstrated through simulations that the
proposed scheme enhances the sensing performance compared
to the FHCS scheme. Our approach can be further extended
to permit dynamic dictionary design, which is the subject of
future research.
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