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Abstract—In this letter, we propose a coprime array interpola-
tion approach to provide an off-grid direction-of-arrival (DOA)
estimation. Through array interpolation, a uniform linear array
(ULA) with the same aperture is generated from the deterministic
non-uniform coprime array. Taking the observed correlations
calculated from the signals received at the coprime array, a
gridless convex optimization problem is formulated to recover
all the rows and columns of the unknown correlation matrix
entries corresponding to the interpolated sensors. The optimized
Hermitian positive semidefinite Toeplitz matrix functions as the
covariance matrix of the interpolated ULA, which enables to
resolve off-grid sources. Simulation results demonstrate that the
proposed array interpolation-based DOA estimation algorithm
achieves improved performance as compared to existing coarray-
based DOA estimation algorithms in terms of the number of
achievable degrees-of-freedom and estimation accuracy.

Keywords— Array interpolation, coprime array, direction-of-
arrival estimation, matrix recovery, off-grid.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is one of the fun-
damental techniques in the field of array signal processing,
and has been successfully applied in radar, sonar, acous-
tics, speech, and wireless communications [1–6]. Due to the
Nyquist sampling constraint, the uniform linear array (ULA)
is the most commonly used array configuration. Nevertheless,
the high redundancy in the ULA motivates sparse array designs
for redundancy reduction. Recently, a systematically designed
sparse array called the coprime array has attracted tremendous
attentions [7–13]. Compared to the ULA, the coprime array
offers a larger aperture and an increased number of degrees-
of-freedom (DOFs), indicating a promising performance for
DOA estimation.

The mainstream scheme of existing DOA estimation algo-
rithms using the coprime array is to derive an augmented vir-
tual array and operate the corresponding virtual array signals
for DOA retrieval [14–19]. However, since the coprime array is
a partially augmentable array, there exist holes in its difference
coarray, rendering the derived virtual array discontiguous. To
apply ULA-based DOA estimation methods in the coarray
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domain, a common solution is to extract the maximum con-
tiguous segment for the subsequent coarray signal processing,
such as the spatial smoothing MUSIC (SS-MUSIC) [14, 15]
and the covariance matrix sparse reconstruction [16]. Clearly,
there is an inherent performance loss after discarding the
discontiguous virtual array sensors.

Although the sparse signal reconstruction (SSR) algorithm
[18] uses the entire discontiguous virtual array, the prede-
fined spatial sampling grids in the sparsity-based optimiza-
tion problem raise concerns for angular resolution, since the
actual sources are rarely located on the exact grids despite
their density. In view of this, several gridless approaches are
proposed to address the basis mismatch problem in the context
of coarray signal processing, where the DOAs are continuously
represented in the formulated optimization problems [20–
23]. More recently, coarray interpolation has been carried
out by interpolating additional sensors to the discontiguous
virtual array for the generation of a contiguous one [24–
26]. By optimizing the corresponding covariance matrix with
either matrix completion or gridless reconstruction, off-grid
DOA estimation can be realized with full utilization of the
discontiguous virtual array.

In this letter, a novel coprime array interpolation-based
DOA estimation algorithm is presented. Different from the
coarray interpolation-based approaches [24–26] where the un-
known correlations of the interpolated virtual ULA are located
at the diagonals of the covariance matrix and correspond
to the discontiguous virtual sensors, the covariance matrix
of the ULA interpolated from the coprime array is directly
augmented from its sample covariance matrix. As such, a
number of rows and columns corresponding to the interpolated
sensors are unknown, thereby preventing the utilization of
matrix completion [27]. To address this issue, a gridless
optimization problem is formulated to recover the covariance
matrix of the interpolated ULA, where the low-rank Hermitian
positive semidefinite (PSD) Toeplitz structure is incorporated
as a priori. The optimized matrix functions as the covariance
matrix of the interpolated ULA, and the ULA-based DOA
estimation methods can thus be implemented to estimate
off-grid sources. As a beneficial result, the recovery of the
unknown correlations provides additional DOFs and, as a
result, the proposed algorithm achieves improved estimation
accuracy as compared to the coarray-based methods.

II. COPRIME ARRAY SIGNAL MODEL

The coprime array is a union of a pair of sparse ULAs,
whose sensors are respectively located at {0,Md, 2Md, · · · ,
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(N − 1)Md} and {0, Nd, 2Nd, · · · , (M − 1)Nd}. Here, M
and N are coprime integers, and d equals to a half-wavelength,
i.e., d = λ/2. Due to the coprimality, the coprime array

S = {Mnd | 0 ≤ n ≤ N−1}∪{Nmd | 0 ≤ m ≤ M−1} (1)

is a non-uniform linear array containing |S| = M + N − 1
sensors with an aperture of max ((N − 1)Md, (M − 1)Nd),
where | · | denotes the cardinality of a set.

Assume J uncorrelated narrowband signals impinging on
the coprime array from the directions θ = [θ1, θ2, · · · , θJ ]T,
where [ · ]T denotes the transpose. Then, the received signal
vector at time index k can be modeled as

xS(k) =
J∑

j=1

aS(θj)sj(k) + nS(k) = ASs(k) + nS(k), (2)

where AS = [aS(θ1),aS(θ2), · · · ,aS(θJ)] ∈ C|S|×J is the
coprime array manifold matrix with the j-th column

aS(θj) =
[
1, e−ȷ 2π

λ p2 sin(θj), · · · , e−ȷ 2π
λ p|S| sin(θj)

]T
(3)

representing the steering vector corresponding to the j-th
source θj , s(k) = [s1(k), s2(k), · · · , sJ(k)]T denotes the
signal waveform vector, and nS(k) ∼ CN (0, σ2

nI) denotes
the complex-valued zero-mean Gaussian white noise. Here,
pi ∈ S, i = 1, 2, · · · , |S|, denotes the position of the i-th
sensor in the coprime array with p1 = 0, ȷ =

√
−1 denotes

the imaginary unit, σ2
n denotes the noise power, and I is the

identity matrix with an appropriate dimension.

III. PROPOSED DOA ESTIMATION ALGORITHM

In this section, a novel off-grid DOA estimation algorithm
is proposed based on coprime array interpolation. The concept
of array interpolation is introduced to generate a ULA with the
same aperture as the non-uniform coprime array, where the un-
known correlations corresponding to the interpolated sensors
are subsequently recovered via a gridless convex optimization
problem. The resulting covariance matrix corresponding to the
interpolated ULA enables to estimate more off-grid sources
than the number of physical sensors.

A. Array Interpolation and Statistics Initialization

The coprime array offers a systematic array configuration
for sparse sensing. Nevertheless, its non-uniformity limits the
adoption of the conventional ULA-based DOA estimation
methods. Towards this end, as illustrated in Fig. 1, the idea
of array interpolation is implemented by interpolating addi-
tional sensors into integer multiples of half-wavelength in the
coprime array S that the physical sensors do not exist. The
resulting interpolated ULA

U = {ℓd | 0 ≤ ℓd ≤ max(S), ℓ ∈ Z} (4)

has the same aperture as the coprime array, where the indices
ℓ ∈ Z are consecutive integers, and S ⊂ U.

It should be noted that the interpolated sensors U\S, which
are represented by the hollow circles in Fig. 1(b), exist in a
mathematical sense rather than in a physical existence, indi-
cating that the corresponding received signals are practically

(a)

(b)

Fig. 1. Illustration of array configurations. (a) The non-uniform coprime
array; (b) The interpolated ULA.

unknown. Hence, the received signals of the interpolated ULA
can be initialized by augmenting xS(k) as

⟨yU(k)⟩ℓ =

{
⟨xS(k)⟩ℓ, ℓd ∈ S,

0, ℓd ∈ U\S,
(5)

where ⟨ · ⟩ℓ denotes the element corresponding to the sensor
located at ℓd. Accordingly, we define a |U|-dimensional binary
vector b to distinguish the sensors in the interpolated ULA U,
whose elements are 1 for the physical sensors and 0 for the
interpolated sensors, i.e.,

⟨b⟩ℓ =

{
1, ℓd ∈ S,

0, ℓd ∈ U\S.
(6)

Obviously, the binary vector b is determined as long as the
coprime array S is deployed.

The initialized received signals of the interpolated ULA
yU(k) can be related to its theoretical version xU(k), whose
received signals are from |U| sensors in U, by

yU(k) = xU(k) ◦ b, (7)

where ◦ denotes the Hadamard product operator. Here, the
theoretical received signals of the interpolated ULA can be
modeled as

xU(k) =
J∑

j=1

aU(θj)sj(k) +nU(k) = AUs(k) +nU(k), (8)

where

aU(θj) =
[
1, e−ȷ 2π

λ u2 sin(θj), · · · , e−ȷ 2π
λ u|U| sin(θj)

]T
(9)

is the steering vector of the interpolated ULA corresponding to
the j-th source θj , and AU = [aU(θ1),aU(θ2), · · · ,aU(θJ)] ∈
C|U|×J . Here, uv ∈ U, v = 1, 2, · · · , |U|, denotes the position
of the v-th sensor in the interpolated ULA with u1 = 0, and
nU(k) ∈ C|U| ∼ CN (0, σ2

nI) is the additive white Gaussian
noise vector corresponding to the |U| sensors.

Based on the initialized received signal vector of the in-
terpolated ULA yU(k), its sample covariance matrix can be
calculated as

R̂yUyU =
1

K

K∑
k=1

yU(k)y
H
U (k), (10)
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where K is the number of snapshots, and ( · )H denotes the
Hermitian transpose. The correlations in the rows and columns
corresponding to the interpolated sensors are zeros, while
the non-zero elements in R̂yUyU are the correlations of the
actual signals xS(k) received in the coprime array. In order to
perform ULA-based DOA estimation, it is necessary to recover
the unknown correlations in R̂yUyU due to the initialized zero
elements in yU(k), such that the recovered covariance matrix
approaches its theoretical version

RxUxU = E
[
xU(k)x

H
U (k)

]
= AUΣAH

U + σ2
nI. (11)

Here, E[ · ] denotes the statistical expectation operator, and
Σ = diag

(
σ2
1 , σ

2
2 , · · · , σ2

J

)
with σ2

j = E
[
|sj(k)|2

]
contains

the power of J incident sources on its diagonal.

B. Covariance Matrix Recovery for Off-Grid DOA Estimation

A major limitation of the popular matrix completion tech-
nique is that it fails to recover the desired covariance matrix
RxUxU from R̂yUyU , since a number of rows and columns
are entirely missing in the latter [27]. Encouragingly, the
theoretical covariance matrix corresponding to uncorrelated
signal received at the ULA has a Hermitian Toeplitz structure
[28]. This property can be utilized as the a priori to perform
structured matrix recovery. On the other hand, the noise-free
covariance matrix also exhibits a low-rank property attributed
to the relatively few incident sources compared to the number
of sensors in the interpolated ULA. Based on these facts, the
covariance matrix of the interpolated ULA can be recovered
by solving the following optimization problem

min
z

rank (T (z))

subject to
∥∥∥(T (z)− R̂yUyU) ◦B

∥∥∥2
F
≤ δ,

T (z) ≽ 0, (12)

where
B = bbT (13)

is a |U| × |U| dimensional binary matrix distinguishing the
known (non-zero) elements and the unknown (zero) elements
in the initialized sample covariance matrix R̂yUyU , T (z) ≽ 0
denotes a Hermitian PSD Toeplitz matrix with z ∈ C|U| as
its first column, rank( · ) denotes the rank of a matrix, ∥ · ∥F
denotes the Frobenius norm, and δ is a user-defined parameter
to constrain the fitting error.

In the above optimization problem, we try to recover a low-
rank Hermitian PSD Toeplitz covariance matrix of the inter-
polated ULA, while minimizing the difference between the
known correlations in the sample covariance matrix R̂yUyU and
the corresponding elements in the recovered covariance matrix
T (z). By introducing the nuclear norm convex relaxation, the
NP-hard rank minimization problem (12) can be reformulated
as

min
z

∥∥∥(T (z)− R̂yUyU) ◦B
∥∥∥2
F
+ ξ ∥T (z)∥∗

subject to T (z) ≽ 0, (14)

where ∥ · ∥∗ denotes the nuclear norm of a matrix, and ξ is
a regularization parameter to balance the fitting error and the
nuclear norm. Since

∥T (z)∥∗ = Tr

(√
T H(z)T (z)

)
(15)

with Tr(·) denoting the trace operator, the PSD constraint
on T (z) enables to equivalently transform the nuclear norm
minimization problem (14) to a trace minimization problem
as

min
z

∥∥∥(T (z)− R̂yUyU) ◦B
∥∥∥2
F
+ ξTr (T (z))

subject to T (z) ≽ 0. (16)

The optimization problem (16) is convex, and can be effi-
ciently solved via interior point methods.

The optimized covariance matrix T (ẑ) ∈ C|U|×|U| is an
estimate of RxUxU , i.e., the covariance matrix of the signals
received by the interpolated ULA, where the incorporation
of the ULA-based methods increases the number of achiev-
able DOFs from |S| to |U|. On the other hand, the matrix
T (ẑ) recovered in a gridless manner enables to effectively
estimate off-grid sources. The candidate ULA-based methods
for DOA estimation include the subspace-based methods,
such as MUSIC [29], root-MUSIC [30], ESPRIT [31], and
a series of sparsity-based methods [32–34]. Considering the
trade-off between estimation performance and computational
complexity, we prefer to adopt the root-MUSIC to provide
an off-grid DOA estimation, whose estimation accuracy is not
limited by the spectrum searching process.

It should be mentioned that, while the proposed array
interpolation-based DOA estimation algorithm is formulated
on the systematically designed coprime array configurations,
it can be readily extended to incorporate other sparse arrays,
and the differences are reflected on the binary matrix B and
subsequently the sample covariance matrix R̂yUyU .

IV. SIMULATION RESULTS

In our simulations, the pair of coprime integers are selected
to be M = 3 and N = 5 for the coprime array deployment.
Accordingly, we have |S| = 7 and |U| = 13, respectively. The
regularization parameter ξ is set to 0.25.

The DOFs performance of the proposed array interpolation-
based DOA estimation algorithm is shown in Fig. 2 by
depicting the its spatial spectra based on T (ẑ), where the
incident sources are assumed to be uniformly distributed in
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Fig. 2. DOFs illustration of the proposed DOA estimation algorithm. (a)
J = 9; (b) J = 12.
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Fig. 3. Comparison of DOA estimation performance. (a) RMSE versus SNR when K = 500; (b) RMSE versus number of snapshots when SNR = 10 dB.

[−50◦, 50◦] with SNR = 0 dB and K = 500. For the case that
the number of sources is J = 9, which exceeds the number of
physical sensors as well as the number of maximum achievable
DOFs for the coarray-based SS-MUSIC algorithm [14], it can
be seen from Fig. 2(a) that the proposed algorithm effectively
resolves all the nine sources. When the number of sources
increases to J = 12, the number of maximum achievable
DOFs for the subspace-based methods based on T (ẑ), the
spatial spectrum shown in Fig. 2(b) indicates that the proposed
algorithm is still effective. Recall the fact that only |S| = 7
physical sensors are utilized for receiving the signals, it is
clear that additional DOFs are obtained by the proposed array
interpolation-based DOA estimation algorithm.

The DOA estimation performance of the proposed algorithm
is compared to two existing coarray-based DOA estimation
algorithms, i.e., the SSR algorithm [18] and the gridless
reconstruction-based coarray interpolation algorithm [25, 26].
Consider nine equal-power sources impinging on the deployed
coprime array from the directions uniformly distributed in
[−52.78◦, 50.35◦], where the number of off-grid sources ex-
ceeds the number of physical sensors. For a fair comparison,
both the gridless reconstruction-based coarray interpolation
algorithm and the proposed coprime array interpolation-based
DOA estimation algorithm apply the root-MUSIC method to
the optimized covariance matrix for DOA estimation. The
predefined spatial sampling grid interval ∆θ for the SSR
algorithm is selected to be 0.1◦ and 0.01◦. The performance is
compared in terms of the root mean square error (RMSE), and
L = 500 Monte-Carlo trials are performed for each data point
(either SNR or number of snapshots). The RMSE is defined
as

RMSE =

√√√√ 1

LJ

L∑
l=1

J∑
j=1

(
θ̂j,l − θj

)2

, (17)

where θ̂j,l denotes the estimate of the j-th source θj in the l-th
Monte-Carlo trial. Meanwhile, the Cramér-Rao bound (CRB)
[35], whose Fisher information matrix remains nonsingular in
this scenario, is also plotted for reference.

The RMSE versus the SNR is compared in Fig. 3(a)

where the number of snapshots is K = 500. It is shown
in Fig. 3(a) that the performance of the proposed coprime
array interpolation-based algorithm outperforms the gridless
reconstruction-based coarray interpolation algorithm, and its
performance trend is consistent with the CRB predictions.
For the SSR algorithm, peaks of the irregular spurious spatial
spectra introduced by the sparsity-based approaches account
for the fluctuant trend when the SNR is higher than 0 dB. Such
performance trend does not improve when a denser grid with
∆θ = 0.01◦ is used in the underlying multiple off-grid sources
case. When the number of snapshots varies with SNR = 10
dB, as shown in Fig. 3(b), the proposed algorithm provides the
best estimation accuracy in coping with off-grid sources, and
its RMSE is close to the CRB when the number of snapshots
is larger than 50.

It is worth mentioning that the coarray-based algorithms
exploiting the contiguous part of the virtual array, such as the
SS-MUSIC algorithm [14] and the covariance matrix sparse
reconstruction algorithm [16], fail to perform effective DOA
estimation in this scenario, since the contiguous coarray ranges
only between −7 and 7, thus indicating that the maximum
number of resolvable sources is 7. In contrast, the proposed
algorithm is capable of resolving all nine off-grid sources with
its higher number of the DOFs.

V. CONCLUSIONS

We have proposed a novel off-grid DOA estimation al-
gorithm using coprime array interpolation in this letter. The
additional sensors are interpolated to convert the non-uniform
coprime array to a ULA. Based on the initialized statistics, a
structured matrix recovery problem is formulated to recover
the unknown correlations corresponding to the interpolated
sensors in a gridless manner. It is demonstrated that additional
DOFs can be obtained with the recovered covariance matrix
corresponding to the interpolated ULA, and the proposed
algorithm achieves better estimation accuracy for off-grid
sources than the existing algorithms operating coarray signals.
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