Compressive Sensing Based High-Resolution Polarimetric
Through-the-Wall Radar Imaging Exploiting Target Characteristics

Qisong Wu, Member, IEEE, Yimin D. Zhang, Senior Member, IEEE, Fauzia Ahmad, Senior Member, IEEE,
and Moeness G. Amin, Fellow, IEEE

Abstract—In this letter, we consider high-resolution through-
the-wall radar imaging (TWRI) using compressive sensing (CS)
techniques that exploit the target and sensing characteristics.
Many TWRI problems can be cast as inverse scattering involving
few targets and, thus, benefit from CS and sparse reconstruction
techniques. In particular, recognizing that most indoor targets
are spatially extended, we exploit the clustering property of the
sparse scene to achieve enhanced imaging capability. In addition,
multiple polarization sensing modalities are used to obtain
increased observation dimensionality within the group sparsity
framework. The recently developed cluster multi-task Bayesian
CS approach is modified to effectively solve the formulated group
and clustered sparse problem. Experimental results are presented
to demonstrate the superiority of the proposed approach.

Index Terms—Through-the-wall radar imaging, compressive
sensing, group sparsity, cluster structure

I. INTRODUCTION

Through-the-wall radar imaging (TWRI) has attracted great
attention in the last decade and has found a variety of
important civil and military applications [1]. A number of
techniques have been developed to achieve high-quality imag-
ing of targets behind walls, examples being wall parameter
estimation, wall clutter mitigation, wideband imaging, and
multipath exploitation. Often and in many TWRI applications,
however, the behind-the-wall scene being investigated contains
few targets of interest, i.e., a large portion of the space is
unoccupied, thereby rendering the scene as sparse. In this case,
TWRI can be effectively performed by taking advantage of
the recent advances in compressive sensing (CS) and sparse
reconstruction techniques [2].

In TWRI applications, both system and target characteristics
can be utilized for improved sparse imaging. For example,
recognizing that most indoor targets are spatially extended,
the clustering property can be exploited to achieve enhanced
imaging capability. In addition, multiple polarization sensing
can be used to obtain increased observation dimensionality
within the group sparsity framework. In group sparsity, the
nonzero scattering coefficients have a common support for
different polarizations, but their exact values may differ. The
aformentioned properties have been separately considered in
the context of TWRI to improve the sparse reconstruction
performance, leading to higher imaging resolution, clutter
reduction, and target separability [3]-[5].

Group sparse problems can be solved by a number of
existing algorithms, such as block orthogonal matching pursuit
(BOMP) [6] and group Lasso (glLasso) [7]. The multi-task CS
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(mt-CS) algorithm [8] generally provides improved solutions
as compared to other methods in solving a large class of
real-valued group sparse problems, and the complex-valued
signals are considered in [9]-[12]. On the other hand, spatially
extended targets can be considered as clustered or structured
sparse signals, which can be reconstructed using, e.g., overlap-
ping group sparse (GS) reconstruction [13], Bayesian group-
sparse modeling based on variational inference (GS-VB) [14],
and CluSS-MCMC [15]. The recently developed clustered
multi-task Bayesian CS (CMT-BCS) [16] treats both group
sparsity and clustering sparsity in a unified framework.

In this letter, we exploit both group sparsity, stemming
from the multi-polarization sensing modality, and clustering
sparsity, due to the targets’ spatial extent, to achieve high-
resolution sparse TWRI. The scene reconstruction is formu-
lated as a clustered group sparse problem. To solve such
a problem, we modify the recently proposed CMT-BCS al-
gorithm [16] from real-valued formulations to accommodate
complex-valued sparse signals and from handling a one-
dimensional (1-D) signal to a two-dimensional (2-D) image
scene. As such, improved target imaging capability is achieved
even when employing a thinned array aperture and a reduced
number of frequency observations. Note that conventional
inverse scattering approaches suffer under such reduced obser-
vations in spatial and frequency domains. Supporting results
using real data measurements are provided to demonstrate the
superiority of the proposed approach.

Notation: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, Iy denotes the
N x N identity matrix. Superscript (-) denotes the conjugate
transpose, and o denotes element-wise multiplication. p(-) rep-
resents the probability density function (pdf), whereas p(:|—)
denotes the conditional pdf given other variables. CA (z|a, b)
denotes a complex Gaussian random variable x with mean
a and variance b, and Gamma(z|a,b) means that x follows
a Gamma distribution with parameters a and b. Bern(z|w)
denotes that = follows a Bernoulli distribution with weight
7, whereas Beta(z|a, b) means x to follow a beta distribution
with weights a and b. §(x) represents the delta function of x.

II. SCATTERING MODEL

We consider a three-dimensional (3-D) scattering experi-
ment with a synthetic mono-static 2-D antenna array. The
transmitting antenna radiates both z- and y-polarized fields
within the frequency band f € [fmin, fmax), collects the
scattered field at the same location, and then moves to the
next location of the synthetic aperture Do = [—ZMax, TMax] X
[YMin, YMax|- The synthetic array aperture has an extent of
2@ Max and (Ynmax—Ymin) along the z- and y-axes, respectively.



The scene under surveillance is located within the investigation
domain of Dg = [—a, a] X [0, h] X [Zmin, Zmin +b] embedded in
a known background medium. Here, 2a is the width, h is the
height, and b is the range depth of the investigation domain.
We consider multiple polarization modes, e.g., vertical-vertical
(VV) and horizontal-horizontal (HH). Denote the number of
polarization modes being used by L. As such, the observation
configuration operates in a “multiple mono-static sensors with
multi-polarization” reflection mode.

For high-contrast scatterers, the Kirchhoff approximation
can be exploited to obtain a linearized scattering equation [17]

Sl(x07y07k0) :/ Gl(mo7yo7x,y,z,kzo)
Ds
~El(xo,yo,x,y,z,ko)wl(x,y,z)dxdydz, (1)

where s;(zo, Y0, ko) is the scattered field collected at the
observation position [zp,yo] € Do for polarization [ €
[1,...,L], ko is the wavenumber, G(zo,y0,,Y, 2, ko) rep-
resents the 3-D Green’s function which relates the wave
propagation process from the transmitter to the target and
then back to the receiver [18], E;(zo0,vo,x,y, 2, ko) is the
field impinging on the target located at (z,y,z) € Dg, and
w(z,y, z) represents the unknown target scattering coefficient
to be estimated. Accordingly, the objective of the TWRI prob-
lem is to solve (1) for w(x,y, z),V(z,y,2) € Dg. As is well
known, this type of inverse scattering problem is ill-posed [19].
A commonly used approach is the back-projection technique,
which exhibits poor resolution and high side lobes when a
limited and thinned array aperture is employed. However, often
and in many TWRI applications, the scene is sparse, thereby
permitting the scene reconstruction to be cast as an inverse
scattering problem involving few targets and can be solved by
using CS and sparse reconstruction approaches.

Toward this end, the problem in (1) first needs to be
discretized. We consider availability of observations from N
synthetic array positions [Zon,yon] € Do, n = 1,...,N, for
each polarization, and stack them into an N x 1 vector y;.
The observation scene is discretized by suitably choosing a
grid of M pixels, with the scattering coefficient corresponding
to polarization [ at pixel (z,y,z) € Dg represented by
wi(x,y,z). Stack w;(z,y, z) corresponding to all the pixels
into a vector w;. Note that w; exhibits group sparsity across all
polarization modes, i.e., Wi, ..., w, share a common sparsity
support, but the exact values may vary with polarization.
Furthermore, assuming that the observations are made at K
frequencies, i.e., fin € [komin, Komax)s m = 1,..., K, they

yield K corresponding wavenumbers kg,,,m = 1,..., K.
Therefore, the discretized counterpart of (1) is given by

yi :AlWl, le [17"'7L]a 2
where A; € CEN*M g the sensing matrix, which accounts

for the contribution of the Green’s function and the impinging
field for polarization .

III. CLUSTERED MULTI-TASK BAYESIAN COMPRESSIVE
SENSING BASED SCENE RECONSTRUCTION

Within the CS framework, we, in essence, aim at acquiring
a good quality scene reconstruction using only a subset of

the full measurements. A number of measurement schemes
have been proposed for reduction of the acquired data volume
[2], [20]. The common feature of these schemes is that they
can simply be expressed as a measurement or downsampling
matrix D € C/*EN acting on the full measurement y;,
where J < KN is the number of reduced measurements.
For stepped-frequency operation, a binary measurement matrix
D < [0, 1]7*K¥ is a reasonable choice [3], [20]. Using (2) and
the measurement matrix D, we can express an undersampled
measurement vector s; € C”’ as

s; = Dy; = ®;w; + €, €))

where ®; = DA, is the dictionary matrix for polarization [
and, without loss of generality, an additive noise vector €; is
considered. Having arrived at the reduced data model in (3), a
clustered multi-task reconstruction problem is formulated and
solved in the Bayesian CS framework.

We place a spike-and-slab prior on the scattering coefficients
w; to enforce group sparsity across all polarization modes,

M
p(wilm, B)=]T [(1 = m:)d(wi) +mCN (w|0, 8, 1)], (4)
i=1
where (; is the precision (reciprocal of the variance) of
the Gaussian distribution and m; is the prior probability of
a nonzero element in the ¢th pixel, i.e., a large weight m;
corresponds to a high probability that the entry takes a nonzero
value, whereas a small 7; tends to generate a zero entry. As 7;
is shared across all polarization modes, the corresponding prior
is capable of encouraging group sparsity in the underlying hi-
erarchical Bayesian CS (BCS) framework. Note that the above
expression is extended to complex Gaussian distributions from
the real-valued model as in [16] to handle the underlying
complex-valued TWRI problem.

To make the inference analytical, we introduce two la-
tent random variables, 6; and z, which respectively follow
complex-valued Gaussian and Bernoulli distributions. Their
element-wise product, 6, o z, follows the pdf in (4), i.e.,

M
p(61,2) = [ [CN (010, ;)] 7 Bern(zi|mi).  (5)
i=1
In this case, the group sparsity is characterized by the same
z; for the th position across the L polarization modes. On
the other hand, scattering coefficients in the ith group 6;. =
[0i1,- -+ ,0;1], in general, take different values.

To acquire the trackable posterior of (3;, we place a Gamma
prior, which is the conjugate to the Gaussian distribution, on
Bi, i.e., B; ~ Gamma(a,b),i € [1,--- , M], where a and b are
hyper-parameters. A Gaussian prior is placed on the additive
noise as € ~ CN(€|0,a; 'Iy). In a similar manner, a
Gamma prior is placed on « to acquire an analytical posterior
distribution, i.e., oy ~ Gamma(c,d),l € [1,---, L], where ¢
and d are hyper-parameters.

To incorporate the dependency structure among pixels, the
cluster pattern was considered in [15], [16] for the 1-D case
involving two neighboring pixels. Three-level cluster patterns,
i.e., Strong Rejection, Weak Rejection, and Strong Acceptance,
were designed according to the number of neighboring pixels,



denoted as ;. To facilitate the inference, a Beta prior, which
is conjugate to the Bernoulli distribution, with different sets of
parameters {e;, f;}, where i € [0, 1,2] for the three patterns,
was placed on weights 7; according to the cluster patterns.

In the underlying TWRI problem, we generalize the ap-
proach to accommodate the 2-D imaging scene which involves
a higher number of neighboring pixels. In this case, the values
of {e;, fi} are determined through nonlinear functions of ;.
More specifically, e; increases monotonically with «;, whereas
fi is a monotonically decreasing function of x;. Therefore, for
small values of k;, e; < f;, yielding a strong rejection of the
pixel under test, whereas for a large value of k;, ¢; > f;,
which implies a strong acceptance of the pixel.

Fig. 1 shows some examples of these patterns. In partic-
ular, Fig. 1(a) shows a strong rejection pattern where all of
neighboring pixels are zero (k; = 0), whereas Fig. 1(b) shows
a weak rejection pattern where one of neighboring pixels is
nonzero (x; = 1). Fig. 1(c) shows a strong acceptance pattern
with all nonzero neighboring pixels (x; = 8). This yields a
generalized CMT-BCS with complex-valued sparse entries.

We use a Gibbs sampler to implement the Bayesian in-
ference. For convenience, we define the collection of hyper-
parameters as = 4 {a,b,c,d, e, f} withe 2 {eo,€1,...,ep_1}
and f 2 {fo, f1,---» fB—1}, while the collection of random
variables is defined as © = {0,z, 7,0, 3}. We also form
a matrix from the observed data corresponding to the L
polarizations as Y = {y1,--- ,yr} and ¥ = {®q,--- , P }.
Then, the explicit form of the full likelihood based on the
generative model is expressed as

L
p(Y,¥,0OE) = HCN(Yl|'1’z(91 oz), oy 'Iy)Bern(zm;)
=1

L M
. H H[C/\/(GMO, B H)])? Gamma(qy e, d)
1=1i=1
M
. H Beta(m;|e, f, z,,,)Gamma(f;|a,b).  (6)
i=1
Utilizing the conjugate properties of the complex Gaussian and
Gamma distributions, the Beta and Bernoulli distributions, we
analytically acquire the respective posterior distributions for
each random variable {z, 0, 7, o, B}.
The posterior probability of z; = 1 given other variables is
acquired analytically by utilizing the logistic function as,

plzi=1=-)=(1+e™)7, (7
where
1 & .
u=s > (10g(ﬁi0il) + oiza?y{il@#{y\u) +log 7 _Zm,

=1

H _
oi = (i by +B) 7" Yyt = Yi— D gz Prazkbri, and ¢y
is the ith column of the measurement matrix ®;.

For z; = 1, the posterior distribution of 6;; is given by,

p(0i|—) = CN (Buloucudli y\i, oar)- ®)

For z; = 0, the value of variable 6;; is drawn from its prior.
Once the 0; and z are estimated, the corresponding scattering

(a) (b)

Fig. 1. Examples of clustering patterns for a 2-D image. (a) a strong rejection
example with k; = 0 ; (b) a weak rejection example with x; = 1; and (c) a
strong acceptance example with k; = 8.

coefficients w are obtained. We refer to [16] for details on the
update formulas of the other random variables {m, 3, a}.

Since the inference of model parameters is implemented by
the Gibbs sampler, it inherently requires sequential sampling.
The computation complexity of the proposed algorithm is
O(J3 x L X M X Npaxiter)» Where Npaiter is the maximum
number of iterations. It is higher than fast greedy based BCS
approaches and both the GS-VS and the BSBL algorithms
based on dimension reduction operation, because the proposed
method needs to go through all L x M elements in each
MCMC iteration.

IV. EXPERIMENT RESULTS

A TRWI experiment was carried out in the Radar Imaging
Lab, Villanova University. The 2-D antenna array aperture was
synthesized using the Damaskos Field Probe Scanner model
7X7Y, shown in Fig. 2(a). The Port 1 antenna of Fig. 2(a)
was oriented for the horizontal polarization whereas the Port
2 antenna was oriented for the vertical polarization. The scan
area was configured to allow both Port 1 and 2 antennas to
scan a zone of 1.2m x 1.2m = 1.24m?. Data was collected
at a total of 57 x 57 = 3249 discrete points on a square
grid, where each point was separated by 2.22 cm in both
the vertical and horizontal dimensions. At each of the 3249
points, co-polarization (HH and VV) data was collected at 201
frequencies between 2 and 3 GHz in a 5 MHz step with an
Agilent network analyzer model ENA 5071B.

The scene being imaged was populated with one 5-drawer
metal filing cabinet, one wooden desk, one chair, one desktop
computer consisting of a CPU and monitor, one telephone,
one 5-gallon jug of saline solution, one 1.22m-long pipe
with a 5 cm diameter, three 15.24 cm trihedrals, and two
7.62 cm trihedrals, as shown in Fig. 2(b). The scene under
surveillance is located within the investigation domain of
Dg = [-1.83,1.83]m x [0,1.778]m x [0,6.4]m. Since the
width and height of targets of interest are important features
for classification in TWRI applications, we perform a sparse
reconstruction in the crossrange (z)-height (y) domain for
given a certain downrange (z) location. We uniformly dis-
cretize the entire image into a 2-D square grid with an interval
of 0.05 m in both crossrange and height.

In processing the experimental data, the following hyper-
parameters are used: a = b = ¢ = d = 1075 The
nonlinear functions are, respectively, e; = 1/(1 + e*~%) and
fi = e* i /(1 + e*="i), The maximum number of iterations
in the Gibbs sampling is 200, and the maximum marginal
likelihood results in the last 20 samples are chosen as the
estimate of w. In addition, both HH and VV polarization



(b)

Fig. 2. Experiment antennas and scenarios. (a) Damaskos Field Probe Scanner
Model 7X7Y with antennas. (b) Populated scene.

datasets are used, and only 25% randomly selected array
positions and 20% randomly selected frequencies for each
polarization are employed for scene reconstruction.

Fig. 3(a) shows the back-projected image in the z-y domain
at a downrange of 5.51 m (corresponding to the location of
the metal filing cabinet) using all available data for the VV
polarization. The filing cabinet is 1.5 m high and 0.6 m wide.
It is easy to recognize the bright spot in Fig. 3(a) as the
filing cabinet according to these features. The back-projected
image corresponding to the reduced set of measurements is
depicted in Fig. 3(b), which shows a degraded image of
the filing cabinet with a much larger extent and cluttered
background due to insufficient frequency and array position
samples. Fig. 3(c) shows the sparse reconstruction result
based on the method proposed in [5], which considers group
sparsity across multiple polarization modes within the BCS
framework. It is evident that the algorithm generates a low
quality reconstruction result with many isolated and spurious
pixels due to lack of consideration of the underlying target
structure. On the other hand, the reconstructed scene obtained
using the proposed algorithm, shown in Fig. 3(d), accurately
locates the target. By exploiting the target clustering structure,
it provides a highly concentrated image of the filing cabinet
with relatively clear background. The acquired target features,
including the height and width, closely match the true ones.

V. CONCLUSION

We cast through-the-wall radar imaging as a sparse recon-
struction problem to be effectively solved using emerging com-
pressive sensing techniques. In particular, we jointly utilized
the clustering sparsity of the targets due to their extended
spatial occupancy and the group sparsity across multiple
polarization modes for improved image reconstruction per-
formance. We solved the resulting inverse scattering problem
by using a generalized approach of the clustered multi-task
Bayesian compressive sensing algorithm. Results based on real
data collected in a laboratory environment demonstrated the
effectiveness and superiority of the proposed approach.
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