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Abstract—In this paper, we consider a collaborative direction-
of-arrival (DOA) estimation problem in which multiple quasi-
collocated subarrays are employed. Our objective is to effectively
utilize the full potential offered by the distributed array with min-
imum communication traffic between the subarrays and the pro-
cessing center. In the proposed scheme, each subarray computes
the self-subarray covariance matrix with the full precision. Each
subarray then sends the estimated covariance matrix together
with the one-bit version of the raw data to the processing center.
The processing center computes the cross-subarray covariance
matrices between different subarrays based on the one-bit data,
which, together with the self-subarray covariance matrices which
are computed and reported by the subarrays, are used to estimate
the source DOAs. The combined exploitation of the full-precision
self-subarray covariance matrices and the low-precision cross-
subarray covariance matrices ensures full degrees of freedom
offered by the array with only slight performance loss compared
with the case where all covariance matrices are provided with
full precision.
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network, structured matrix completion, degree of freedom.

I. INTRODUCTION

Collaborative sensing and network communication systems
using distributed sensor array platforms are becoming in-
creasingly attractive in various civil and military applications
[1–6]. In this work, we consider a collaborative platform
where multiple subarrays are employed to estimate source
directions-of-arrival (DOAs). These subarrays are considered
quasi-collocated, i.e., they are closely distributed such that
the difference in the observed impinging angles due to the
subarray locations is negligible. Unmanned aerial vehicles
(UAVs), each equipped with an array, are a good example for
such a platform. It is note that, in each subarray, the number of
sensors may or may not be identical, and the array sensors may
be spaced uniformly, sparsely with the same configuration, or
sparsely with different configurations.

In such a distributed array platform, DOA estimation can
be achieved either coherently or non-coherently. In coherent
DOA estimation problems, all the array data observed at each
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subarray are transmitted to a processing center. Assuming
complete subarray synchronization and accurate position infor-
mation of each subarray, such subarrays form a big array with
sparsely located subarray sensors. When the sensor positions
are accurately calibrated in each subarray with respect to their
own reference sensors whereas the relatively positions of the
subarrays are not precisely known, the formed array is often
referred to as partly calibrated array and the DOA estimation
problem is addressed in, e.g., [7].

Implementing coherent processing for the data observed
at different subarrays, however, requires several demanding
conditions. One of the strict requirements is to synchronously
sample and transfer raw data to the processing center. This
requirement, among others, generates a high volume of data
traffic between the subarrays and the processing center. To
avoid such communication overhead, a much simpler alterna-
tive strategy is to process the subarray data non-coherently
[8, 9]. In this case, each subarray locally computes its covari-
ance matrix, which is then forwarded to the processing center.
Compared with the raw data, transferring only the covariance
matrices yields significant reduction in the communication
overhead. A clear disadvantage of non-coherent processing,
however, is the substantial loss of the available degrees of
freedom and the DOA estimation performance.

In this paper, we consider a generalized strategy in which, in
addition to the full-precision self-subarray covariance matrices
which are computed at each subarray and forwarded to the pro-
cessing center, the one-bit version of the raw data is also sent
to the processing center. Compared to the full-precision raw
data, one-bit data greatly lower the communication overhead.
The covariance matrix obtained from one-bit quantized signals
is related to the full-precision covariance matrix with a arcsin
relationship [10]. Based on this finding, one-bit data-based
processing is found attractive in many array and multiple-
input multiple-output (MIMO) processing problems, including
channel estimation and DOA estimation [11–19].

This paper will formulate the signal model of the proposed
collaborative DOA estimation scheme and describe the signal
processing procedures including the local processing at each
subarray and the centralized processing at the processing
center. The performance of the proposed scheme is numer-
ically examined and compared to different situations where



the cross-subarray covariance matrices are estimated with full-
precision data or are totally unavailable. It is learned that the
proposed scheme maintains the full degrees of freedom offered
by the coherent DOA estimation scheme with mild perfor-
mance degradation compared to the case where the covariance
matrices are computed with a full precision. It significant
outperforms the case when cross-subarray covariance matrices
are unavailable.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N × N identity matrix. (.)T and (.)H respectively represent
the transpose and conjugate transpose of a matrix or a vector.
Furthermore, [A]u,v denotes the (u, v)th element of matrix
A, and E[·] is the statistical expectation operator. Q(·) de-
notes the one-bit quantization operation, and Re(·) and Im(·)
respectively denote the real and imaginary parts of a complex
entry.

II. SYSTEM MODEL

Consider a collaborative array platform consisting of K
quasi-collocated subarrays. For simplicity but without loss of
generality, it is assumed that all subarrays are M -element
uniform linear arrays with interelement spacing of d = λ/2
with λ denoting the signal wavelength. Denoting pk,1d as the
position of the first sensor at the kth subarray, the locations of
the M sensors in the kth subarray are denoted by the following
position set:

Sk = {pk,1d, pk,2d, . . . , pk,Md}
= {pk,1d, (pk,1 + 1)d, . . . , (pk,1 +M − 1)d}

(1)

for k = 1, . . . ,K. In this paper, it is assumed that the subarrays
are fully synchronized, and the subarray locations are precisely
known. In addition, the values of pk,1 are assumed to be
integers, i.e., all subarray sensors are an aligned with a half-
wavelength grid. As such the array aperture is expressed as
P = pK,1 +M − 1.

Consider L uncorrelated far-field narrow-band signals im-
pinging on all K subarrays from distinct angles {θ1, · · · , θL}.
The baseband signal vector received at the kth sparse subarray
is expressed as:

xk(t) =

L∑
l=1

ak(θl)sl(t) + nk(t) = Aks(t) + nk(t), (2)

where sl(t) denotes the uncorrelated signal waveform imping-
ing from direction θl, s(t) = [s1(t), · · · , sL(t)]T, and

ak(θ) = [e−jpk,1π sin(θ), e−jpk,2π sin(θ), . . . e−jpk,Mπ sin(θ)]T

(3)
is the steering vector of the kth subarray corresponding
to a signal impinging from angle θ. In addition, Ak =
[ak(θ1),ak(θ2), . . . ,ak(θL)] is referred to as the manifold
matrix of the kth subarray, and nk(t) ∼ CN (0, σ2

n,kIM )
represents the additive circularly complex white Gaussian
noise vector observed at the kth subarray.

III. ESTIMATION OF COVARIANCE MATRICES AND SIGNAL
DOAS

In this section, we first address the processing procedures
at the local subarray and at the processing center to compute
the covariance matrix. The DOA estimation approach is then
considered.

A. Local Processing at Subarrays

The self-subarray covariance matrix of the received data for
the kth subarray is given as:

Rk = E[xk(t)xH
k (t)] = AkRssA

H
k + σ2

n,kIM

=

L∑
l=1

σ2
l ak(θl)a

H
k (θl) + σ2

n,kIM ,
(4)

where Rss = E[s(t)sH(t)] = diag([σ2
1 , σ

2
2 , · · · , σ2

L]) is the
source covariance matrix with σ2

l denoting the power of the
lth source, l = 1, . . . , L.

In practice, the self-subarray covariance matrix of the kth
subarray is estimated using the T available data samples,
expressed as,

R̂k =
1

T

T∑
t=1

xk(t)xH
k (t). (5)

It is note that, for a uniform linear subarray, R̂k is Hermitian
and Toeplitz. As such, the entire matrix can be determined
from the first column [20]. In other words, only the first
column needs to be sent to the process center.

In addition to the self-subarray covariance matrix, the
kth subarray performs complex one-bit quantization of the
received data. The real and imaginary parts of the complex
signal vector xk(t) are respectively quantized to form a one-
bit version of this signal vector as

yk(t) =
1√
2
{Q[Re(xk(t))] + jQ[Im(xk(t))]} . (6)

The resulting yk(t) is transferred to the processing center,
possibly with a decimated rate of κ ≥ 1 so that only T0 = T/κ
samples are transferred.

B. Centralized Processing at the Processing Center

The cross-subarray covariance matrix between the received
data at the k1th and k2th subarrays is given as:

Rk1k2 = E[xk1(t)xH
k2(t)]

= Ak1SA
H
k2 =

L∑
l=1

σ2
l ak1(θl)a

H
k2(θl),

(7)

for k1, k2 = 1, . . . ,K, k1 6= k2.
When the full-precision and complete T -sample data are

available at the processing center, the above cross-subarray
covariance matrix is estimated as

R̂k1k2 =
1

T

T∑
t=1

xk1(t)xH
k2(t). (8)



On the other hand, when only T0 samples of one-bit data
samples are provided, the one-bit cross-subarray covariance
matrix between the k1th and k2th subarrays is estimated as,

R̂
[1B]
k1k2

=
1

T0

T0∑
t=1

yk1(t)yH
k2(t), (9)

where superscript [1B] is added to emphasize it being a one-bit
estimate.

In general, the correlation RZ(τ) between z(t) and z(t+τ)

is related to the one-bit result R[1B]
Z (τ) as [10, 21]

R[1B]
z (τ) =

2

π
sin−1

(
Rz(τ)

Rz(0)

)
. (10)

Note here that the one-bit auto-correlation function is normal-
ized because the one-bit quantization result does not carry
information of the signal magnitude. Similarly, the cross-
covariance between z1(t) and z2(t+ τ) can be obtained

R[1B]
z1z2(τ) =

2

π
sin−1

(
Rz1z2(τ)√
Rz1(0)Rz2(0)

)
. (11)

As a result, the cross-subarray covariance matrix R̂k1k2 is
obtained from R̂

[1B]
k1k2

as

R̂k1k2 = G
1/2
1 R̄k1k2G

1/2
2 , (12)

where Gk is a diagonal matrix with [Gk]m,m = [R̂k]m,m,
m = 1, · · · ,M , and

R̄k1k2 = sin
(π

2
Re[R̂

[1B]
k1k2

]
)

+ j sin
(π

2
Im[R̂

[1B]
k1k2

]
)
. (13)

Combining the self- and cross-subarray covariance matrices,
we form the full covariance matrix of all KM sensors at the
processing center as:

R̂ =


R̂1 0 R̂1,2 0 · · · 0 R̂1,K

R̂2,1 0 R̂2 0 · · · 0 R̂2,3

...
...

...
...

. . .
...

...

R̂K,1 0 R̂K,2 0 · · · 0 R̂K

 , (14)

where 0 denotes missing sensor positions when the inter-
subarray spacing is larger than half-wavelength. DOA estima-
tion using the full covariance matrix is described in Section
III-C.

An example of the resulting covariance matrix is illustrated
in Fig. 1 for an example of K = 3 and M = 4. The
positions of the respective first sensors of the three subarrays
are given as [0, 5, 11]d. Note again that the self-subarray
covariance matrices, illustrated in blue color circles, have the
full estimation accuracy, whereas the cross-subarray covari-
ance matrices, depicted in green color circles, have reduced
estimation accuracy due to one-bit quantization and possibly
lower number of data samples. The circles showing with
magenta dashed lines depict missing positions.

Fig. 1: Example of full covariance matrix (K = 3 and M = 4).

C. DOA Estimation Methods

When all the self- and cross-subarray covariance matrices
are available at the processing center in full precision, DOA
estimation can be carried out using conventional subspace-
based method, such as the popularly used MUSIC [22].
When the cross-subarray covariance matrices have a reduced
precision, MUSIC remains applicable. On the other hand,
when cross-subarray covariance matrices are unavailable, the
total covariance matrix is incomplete. In this case, MUSIC
works robustly only when considering a single subarray or
the averaged covariance matrix of the subarrays, thus only
handles up to M − 1 sources. Directly applying MUSIC to
the total covariance matrix without cross-correlation matrices
generally does not render meaningful DOA estimation results.

The Toeplitz and Hermitian structure of the full covariance
matrix can be used to fill in missing entries. That is, if a
single or multiple covariance entries are available for a specific
lag, this value or the averaged value of these entries can be
used to fill in missing entries corresponding to the same lag.
When there are still missing entries, we can fully utilize matrix
completion utilizing the Toeplitz and Hermitian structure to
improve the full covariance matrix [20, 23–26]. Note that
these methods work well even a substantial portion of the total
covariance matrices is not filled in the previous stage due to,
for example, sparse subarray designs or large inter-subarray
spacing. After the full covariance matrix is reconstructed, the
MUSIC algorithm can be applied to perform DOA estimation
in a gridless manner.

IV. NUMERICAL RESULTS

We consider a simple example using the distributed array
configuration depicted in Fig. 1. A varying number of L
uncorrelated sources are assumed to be uniformly distributed
between −50◦ and 50◦. We consider T = 200 data snapshots
at each subarray and the input signal-to-noise ratio (SNR) is
set to 0 dB.

A. Full-Precision Covariance Matrix Case

As the baseline for comparison, we first show the DOA
estimation performance when both self- and cross-subarray



(a) No interpolation, 10 sources. (b) No interpolation, 13 sources. (c) With interpolation, 13 sources.

Fig. 2: MUSIC pseudo-spectra based on full-precision self- and cross-subarray covariance matrices.

(a) No interpolation, 10 sources,
T0 = 200

(b) With interpolation, 13 sources,
T0 = 200

(c) With interpolation, 13 sources,
T0 = 100

Fig. 3: MUSIC pseudo-spectra where cross-subarray covariance matrices are computed from one-bit data.

covariance matrices are estimated using the full-precision data
without quantization. Fig. 2(a) shows the MUSIC pseudo-
spectrum when there are L = 10 sources, and no covariance
matrix completion is performance. In this case, all sources
are well resolved with a root mean-square error (RMSE) of
0.168◦. As there are 12 sensors in total, the distributed array
resolves up to 11 sources. Therefore, when the number of
sources is increased to 13, the MUSIC algorithm fail to resolve
the sources, as depicted in Fig. 2(b). In Fig. 2(c), we present
the results when matrix completion is performed. In this case,
the dimension of the completed covariance matrix is 15× 15,
and all 13 sources are resolved with an RMSE of 0.368◦.

B. Exploiting Cross-Subarray Covariance Matrices Based on
One-Bit Data

When one-bit data are forwarded from the subarrays to
the processing center and used for cross-covariance matrix
estimation, the distributed array still clearly resolve the signals
as in the full-precision case, but the DOA estimation perfor-
mance slightly degrades. We first consider the case where
T0 = T = 200. When matrix completion is not performed,
similar to the case we considered in Fig. 2(a), the array does
not recognize more than 11 sources. In Fig. 3(a), we show the
results with the same 10 sources, and the RMSE is 0.580◦.
On the other hand, when matrix completion is applied, Fig.
3(b) depicts the MUSIC pseudo-spectrum of 13 sources and
the corresponding RMSE is 0.771◦.

Next, we reduce the number of one-bit data samples to T0 =
100. As shown in Fig. 3(c), the distributed array still clearly
detects all the 13 signals, but the estimation RMSE increases
to 1.623◦.

V. CONCLUSION

This paper considers a new DOA estimation approach for
distributed arrays which only requires the subarrays to send
subarray covariance matrix and one-bit data to the processing
center. It effectively utilizes the full potential offered by the
distributed array whereas the network traffic is significantly
reduced. The proposed DOA estimation approach ensures full
degrees of freedom of the distributed array with only slight
performance loss compared with the case where all covariance
matrices are estimated using full-precision data.
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