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Abstract—In this paper, we present a novel direction-of-arrival
(DOA) estimation strategy that exploits distributed sparse sensor
arrays and structured matrix completion-based information fu-
sion techniques to provide superior DOA estimation performance
with enhanced degrees-of-freedom. We consider a sparse array
consisting of a plurality of distributed subarrays such that
each subarray is calibrated, whereas the inter-subarray spacing
is unknown. The subarrays are designed to collectively offer
difference lags with minimum redundancy, and the received
data matrix obtained from distributed subarrays are fused by
exploiting structured matrix completion, resulting in enhanced
degrees-of-freedom and improved DOA estimation performance.
The proposed strategy is able to resolve more sources than the
total number of available sensors. Simulation results illustrate
the performance of the proposed strategy.

Keywords: Direction-of-arrival estimation, distributed sen-
sor array, partially calibrated array, non-coherent processing,
structured matrix completion, degrees-of-freedom.

I. INTRODUCTION

In array signal proce1sing, direction-of-arrival (DOA) esti-
mation is one of the most important technologies that find wide
applications in the fields of radar, sonar, wireless communica-
tions, and radio astronomy [1, 2]. Due to the Nyquist sampling
theorem, uniform linear arrays (ULAs) have traditionally con-
sidered as the commonly used sensor array structure for DOA
estimation and its performance has been well analyzed [1–
4]. However, ULAs are not efficient in terms of their aperture
and the offered degrees-of-freedom (DOFs). In particular, they
cannot resolve more sources than the number of array elements
using second-order statistics. Several research efforts have
been made in the past to detect more sources than the number
of sensors using sparse arrays by exploiting their difference
co-arrays [5–8]. This resulted in the development of classical
sparse array structures like minimum redundancy array (MRA)
[5] and the minimum hole array (MHA) [7, 8].

Recently, significant research efforts have been dedicated
to develop systematical sparse array designs which follow a
specific design formulation or structure, thus enabling conve-
nient design and analysis. In this context, two notable sparse
arrays are the nested array [9] and the coprime array [10].
These array structures and their variants have been extensively
analyzed, and closed-form expressions for their design process
and the achievable number of DOFs are devised [9–14]. Struc-
tured sparse array design and analysis exploiting higher-order
statistics [15–17] and frequency diversity [18–24] have also

attracted significant attention. Recently developed compressive
sensing-based DOA estimation methods enable sparse arrays
to effectively use all the co-array lags for DOA estimation
[11, 12, 25, 26]. In addition, exploiting Toeplitz structure-
based covariance matrix interpolation strategies [8, 27–30] can
further provide higher estimation accuracy.

When forming a large-size array is not feasible, an attractive
alternative is to exploit distributed arrays, which consist of
multiple separately spaced array platforms. Such configura-
tions are useful in, e.g., distributed unmanned aerial vehicles
(UAVs) and unmanned underwater vehicles (UUVs), where
each vehicle is equipped with a small number of antennas
or hydrophones. In such platforms, comparing to distributed
arrays processed individually, fusion of their information re-
ceived at all subarrays provides additional benefits.

Data processing performed at a distributed array system
can be broadly classified into two types, namely, coherent
processing and non-coherent processing. In non-coherent pro-
cessing, the covariance matrix of each subarray is computed
locally, and these individual covariance matrices are then
transmitted to a fusion center so that they are joint exploited
to resolve the source directions [31]. Non-coherent processing
is considered in this paper due to its practical feasibility.
The mobility of distributed subarrays often renders coherent
processing challenging due to the uncertainty in the inter-
subarray spacing and sampling time of the individual systems.
Coherent processing also requires that raw data are transferred
to the fusion center.

In this paper, we consider a distributed sparse array system
consisting of partly calibrated distributed subarrays. The sub-
arrays are co-located in the sense that all subarrays share the
same DOA observation for each of the sources. Each subarray
is calibrated such that we know the location and the gain/phase
of each sensor in a subarray with reference to the first sensor
of the corresponding subarray. However, the relative distance
between the distributed subarrays is considered unknown. As
such, the subarray signals are fused in a non-coherent manner.
It will be shown in this paper that distributed arrays not only
increase the number of DOFs for a given number of sensors
at each subarray, but also provide increased maneuverability.
We also address the provision of incorporating the concept
of information fusion from multiple array platforms and uti-
lize structured array interpolation techniques to significantly
enhance the performance of such distributed systems.



The rest of the paper is organized as follows. The signal
model of distributed sparse arrays is described in Section
II. In Section III, we present the proposed information fu-
sion technique exploiting structured matrix interpolation to
achieve DOF enhancement. A numerical example is provided
in Section IV to demonstrate the effectiveness of the proposed
method. Finally, conclusions are drawn in Section V.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N×N identity matrix. (.)T and (.)H respectively represent the
transpose and conjugate transpose of a matrix or a vector. In
addition, | · |F denote the Frobenius norm, ◦ is the Hadamard
product operator, T (x) denotes the Hermitian-Toeplitz matrix
with x as its first column, and Tr(·) represents the trace
operator. Furthermore, [A]u,v denotes the (u, v)th element of
matrix A, and E[·] is the statistical expectation operator.

II. SYSTEM MODEL

Consider a distributed sparse sensor array system consisting
of K distributed sparse linear subarrays such that each subar-
ray is equipped with M sensors. The sensor locations of the
kth subarray with respect to their first (reference) sensor are
denoted by the following position set:

Sk = {0, p2,kd, . . . , pM,kd}, k = 1, . . . ,K, (1)

where pm,kd, m = 1, . . . ,M , denotes the distance between the
first and the mth sensors in the kth subarray, d = λ/2, and λ
denotes the wavelength of the impinging signals. The physical
distance between the reference sensor of the k1th subarray and
the reference sensor of the k2th subarray, denoted as Dk1k2 ,
where k1, k2 = 1, . . . ,K and k1 6= k2, is assumed unknown.

Consider L uncorrelated far-field narrow-band signals im-
pinging on all K subarrays from distinct angles {θ1, · · · , θL}.
It is assumed that all subarrays observe the same angle for
each source. The baseband signal vector xk(t) received at the
kth sparse subarray is expressed as:

xk(t) =

L∑
l=1

ρkak(θl)sl(t) + nk(t)

= ρkAks(t) + nk(t), k = 1, . . . ,K,

(2)

where ρk denotes the phase shift at kth subarray due to
the physical distance between each other, sl(t) denotes the
signal waveform impinging from direction θl, and s(t) =
[s1(t), · · · , sL(t)]T. In addition, the vector

ak(θ) = [1, e−j
2πp2,kd

λ sin(θ), . . . e−j
2πpM,kd

λ sin(θ)]T (3)

denotes the steering vector of the kth subarray for the signal
impinging from angle θ, and nk(t) denotes the additive
circularly complex white Gaussian noise vector observed at
the kth subarray. The array manifold Ak corresponding to the
kth subarray is given as:

Ak = [ak(θ1),ak(θ2), . . . ,ak(θL)], k = 1, . . . ,K. (4)

The covariance matrix of the received data for the kth
subarray is given as:

Rk = E[xk(t)xH
k (t)] = AkSA

H
k + σ2

n,kIM

=

L∑
l=1

σ2
l ak(θl)a

H
k (θl) + σ2

n,kIM , k = 1, . . . ,K,
(5)

where σ2
n,k denotes the noise power at the kth subarray and

S = E[s(t)sH(t)] = diag([σ2
1 , σ

2
2 , · · · , σ2

L]) is the source
covariance matrix with σ2

l denoting the power of the lth
source, l = 1, . . . , L. In pactice, the covariance matrix can
be estimated using the sampled data at each subarray, i.e.,

R̂k =
1

Nk

Nk∑
t=1

xk(t)x
H
k (t), k = 1, . . . ,K, (6)

where Nk is the number of snapshots available at the kth
subarray. For simplicity, we assume that the same number of
snapshots, Nk, is received at each subarray.

III. DOA ESTIMATION EXPLOITING INFORMATION
FUSION AND COVARIANCE MATRIX INTERPOLATION

In this paper, we aim to resolve the maximum number
of spatial sources using a partly calibrated distributed array
via non-coherent processing. A total covariance matrix is
reformulated at the fusion center and includes the covariance
matrix entries from all subarrays. The resulting total covari-
ance matrix is generally a sparse matrix when the subarrays
are designed to explore the full potential of distributed sparse
arrays. In this case, we exploit the concept of structured
matrix completion to interpolate the full entries of the sparse
covariance matrix [22, 27, 30]. The interpolated total covari-
ance matrix enables gridless DOA estimation, provides more
robust DOA estimation performance, and achieves a higher
number of DOFs to enable estimation of more sources than
the total number of sensors in all the subarray platforms
combined. The proposed scheme is described in the following
two subsections.

A. Information Fusion

Since we consider non-coherent processing for the under-
lying partly calibrated distributed array system, we compute
the local covariance matrix at each subarray as shown in (6).
The fusion center receives K different covariance matrices and
performs fusion with these covariance matrices. Note that the
dimension of the total covariance matrix R̂ is determined by
the maximum aperture of the subarrays Pd = max

k
(pM,k)d

and is given as (P + 1)× (P + 1).

When matrix R̂ is sparse, that is, it contains missing entries,
it is effective to perform matrix completion to interpolate
these missing entries. Such matrix completion can exploit the
Hermitian and Toeplitz structure of the total covariance matrix
when it is fully interpolated [22, 27, 30]. This is described in
the following subsection.



B. Covariance Matrix Interpolation

Since this paper encompasses the non-coherent processing
for the data observed at multiple subarrays, each subarray
transmit their locally computed covariance matrix to the fusion
center. The fusion center performs the processing with the
received K sets of covariance matrices as described below.

We first define a binary vector bk to indicate whether a
sensor at position ld is present in the kth subarray Sk, i.e.,

〈bk〉l =

{
1, ld ∈ Sk,
0, otherwise.

(7)

where l is the index of the sensor location with l ∈ [0, · · · , P ]
and 〈·〉l denotes the element corresponding to the sensor
position at ld. We also define Bk = bk(bk)

T , shown in Fig. 2
as the binary mask matrix with unit-valued entries representing
observed elements in R̂k. In the binary mask shown in Fig.
2, the blue, yellow and orange entries correspond to the self
lag positions due to S1, S2 and S3 respectively.

The total synthesized covariance matrix corresponding to
the K subarrays are given as,

R̂ =

(
K∑
k=1

R̂k ◦Bk

)
◦D, (8)

where matrix D averages the redundant lag entries in R̂k. The
(u, v)th element of matrix D is given as

[D]u,v =
1∑K

i=1[B]u,v + ε
, (9)

with ε denoting a small positive value in order to provide
stability of the division.

It is noted that conventional matrix completion may often
fail to interpolate the missing elements of R̂ because some
rows or columns are completely missing. In this case, the
reconstructability can be improved by taking the Hermitian and
Toeplitz structure of the full covariance matrix into account,
thereby yielding structured matrix completion. The matrix
recovery problem can be formulated as the following low-rank
structured matrix completion problem:

min
ω

rank(T (ω))

s.t. ‖T (ω)B− R̂‖2F ≤ δ,
T (ω) < 0,

(10)

where δ is a parameter indicating error tolerance. Because the
rank minimization problem is NP-hard, this problem is relaxed
to the following nuclear norm minimization:

min
ω

‖T (ω)B− R̂‖2F + ζTr

(√
T H(ω)T (ω)

)
,

s.t. T (ω) < 0,

(11)

where ‖T (ω)‖∗ = Tr(
√
T H(ω)T (ω)) represents the nuclear

norm of T (ω), and ζ is a tunable regularization parameter. It
usually takes a larger value when the number of sources to be
resolved is higher.

Fig. 1: Distributed array configuration.

IV. NUMERICAL RESULTS

We consider a sparse array system consisting of 3 spatially
distributed subarrays located in a collinear fashion, and each
subarray consists of 4 omni-directional sensors, rendering the
total number of 12 sensors as shown in Fig. 1. L = 17
uncorrelated sources are assumed to be uniformly distributed
between [−60◦, 60◦].

The array locations for each subarray are given as follows:

S1 = {0, 2, 5, 9}d,
S2 = {15, 25, 26, 38}d,
S3 = {44, 50, 58, 74}d.

The largest subarray has an aperture of Pd = 31d. We
consider 500 data snapshots at each subarray whereas the input
signal-to-noise ratio (SNR) is 0 dB.

Fig. 2 shows the binary mask indicating the positions
of the observed covariance matrix entries. Fig. 3(a) shows
the superposition of all difference lags computed from each
subarray. It is noted that the difference lags do not count for the
cross-lags between different subarrays due to the non-coherent
processing. It is confirmed that the subarray configurations are
designed in such a way that the maximum number of unique
lags are achieved with no redundancies except at lag zero.

The structure matrix completion reconstruct the 31×31 total
covariance matrix so that all 17 sources are resolved with a
high resolution, as we can verify from the MUSIC pseudo-
spectrum depicted in Fig. 3(b). For comparison, Fig. 3(c)
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Fig. 2: Binary mask for covariance matrix interpolation at
fusion center.
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(a) Co-array self-lags offered by the covari-
ance matrices of the three subarrays.
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(b) All 17 sources are resolved after perform-
ing structured matrix completion.
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(c) The 17 sources are not resolved without
performing matrix completion.
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(d) 5 sources are clearly resolved after per-
forming structured matrix completion.
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(e) Without performing matrix completion, 5
sources are resolved but with high sidelobes.

Fig. 3: Co-array configuration and DOA estimation performance.

shows the MUSIC pseudo-spectrum when MUSIC is directly
applied to the total covariance matrix without performing
structured matrix completion. As MUSIC assumes a full co-
variance matrix, its direct application to the covariance matrix
is expected to have deteriorated DOA estimation performance.
It is clear that MUSIC does not provide the enough DOFs to
render meaningful DOA estimation performance.

To compare the MUSIC pseudo-spectra with and without
structured matrix completion, we now consider a five-source
scenario so that the number of sources is less than the total
number of sensors. Comparing Fig. 3(d) and Fig. 3(e), it
is observed that both cases result resolved MUSIC pseudo-
spectra. However, the results obtained without performing
structured matrix completion render low spatial resolution and
high sidelobes.

V. CONCLUSION

This paper focuses on the design and processing of non-
coherent distributed arrays to resolve a high number of sources
which exceeds the total number of distributed sensors. Non-
coherent processing only requires transmission of local co-
variance matrices for effective data fusion with minimum
information exchange. Structured matrix completion is used
to interpret the sparse total covariance matrix in the fusion
center to enhance achieve a higher number of DOFs, and the
effectiveness in achieving improved DOA estimation perfor-
mance is clearly demonstrated using simulation results.
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