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Abstract—Distributed sparse arrays, consisting of multiple
subarrays, facilitate a higher number of degrees of freedom
and enhanced direction-of-arrival (DOA) estimation performance
beyond what is offered by single uniform linear arrays. When
the array elements in each subarray are sparsely located, the
covariance matrix is sparse with missing entries. Covariance
matrix interpolation is commonly exploited to fill in the missing
elements of the covariance matrix. Such techniques, however,
would degrade or fail when array imperfection occurs, such as
imperfect calibration or knowledge in sensor gain, phase, position,
and inter-element mutual coupling. Such imperfections affect the
matrix interpolation and impede accurate DOA estimation. To
address these issues, we propose a neural network structure,
which is trained to learn the relationship between the input sparse
covariance matrix and the true signal directions. The neural
network is trained based on minimizing a loss function between
the predicted neural network output and the actual output so that
the network is forced to extract the essential feature, rendering
accurate DOA estimation results.

keywords: Distributive array, covariance matrix, MUSIC,
neural network, machine learning.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation, which determines
the spatial spectrum of the impinging electromagnetic or
acoustic waves, is one of the fundamental research areas
in array signal processing. It finds importance in various
applications, including wireless communication, radar, sonar,
and astronomical observations [1–3]. A number of methods
have been developed for this purpose, such as beamforming
techniques [4–6], subspace-based methods [7, 8], sparsity-
inducing methods [9–16]. These model-driven methods for-
mulate a parametric mapping from signal direction to array
output and assume that the mapping is reversible.

Uniform linear arrays (ULAs) are commonly employed for
the DOA estimation [2, 3]. However, they are not efficient
in terms of their array aperture, and the degrees of freedom
that can be achieved from a ULA is low. A fundamental
limitation of ULAs is that we cannot resolve more sources
than the number of sensors. To overcome this limitation,
a number of studies have been made for detecting more
sources than the number of array elements using sparse arrays,
particularly through the utilization of their deference co-arrays
[17–19]. Minimum redundancy array (MRA) [17] and the
minimum hole array (MHA) [18, 20] are well-known classical
approaches that utilize the sparse array structure. Recently,
systematic sparse array designs, inspired by the nested array
[21] and the coprime array [22], are developed to ensure
convenient sparse array design and performance analysis [23–
27].

When it is infeasible to use an array with many array sen-
sors, distributed array structures become an attractive solution

and make it possible to form a large array with multiple low-
complexity platforms. Each subarray can either be uniform
linear or sparse. Such distributed array formation is desirable
and convenient in various applications, including distributive
unmanned aerial vehicles (UAVs) and unmanned underwater
vehicles (UUVs), where each vehicle is equipped with a small
number of antennas or hydrophones.

In this paper, we consider non-coherent data processing
at the fusion center, which is practical considering the mo-
bility of the subarrays. In such a platform, each subarray
separately computes its individual covariance matrix and sends
this information to the fusion center to perform non-coherent
processing. All the locally computed covariance matrices are
combined together at the fusion center to achieve a higher
number of degree of freedom [28]. Improved maneuverability
and increased angle measurement accuracy can be achieved
by exploiting distributive array structure while maintaining the
original array aperture [29].

Non-coherent processing only requires sensor location cal-
ibration within each individual subarray, whereas the distance
between different subarrays is not required. When sensors
are located sparsely in each subarrays, the locally computed
covariance matrices are sparse. This generally renders the
fused covariance matrix sparse sparse as well with missing
values. In this case, when we directly employ conventional
subspace-based DOA estimation methods, such as MUSIC, the
DOA estimation performance will degrade.

When the fused covariance matrix is sparse, structured ma-
trix completion methods can be utilized to reconstruct missing
entries in the covariance matrix [31, 32]. These sophisticated
matrix completion methods commonly utilize the Toeplitz and
Hermitian structure of the covariance matrix. As a result, such
techniques would degrade or fail when array imperfection
occurs, such as imperfect calibration or knowledge in sensor
gain, phase, position, and inter-sensor mutual coupling. Such
imperfections affect the matrix interpolation and impede accu-
rate DOA estimation.

To address such issues, we propose a data-driven approach
using neural network for DOA estimation. Machine learning
is a well established technique in the field of image, speech,
and array signal processing [33–36], and DOA estimation
using machine learning techniques is becoming increasingly
attractive [37–42]. Machine learning-based DOA estimation
is effective to deal with array imperfections in the non-ideal
scenario [43, 44]. However, all these studies only consider a
small number of sources, and none of them have considered
distributed arrays. In contrast to their approaches, we offer a
neural network framework for DOA estimation for distributive
array, and a high number of sources are handled through
effective array information fusion and network training. In the



proposed scheme, sparse covariance matrices locally computed
at each subarray is used as the input of the neural network at
the fusion center, and the actual signal direction is used as the
label. We model the DOA estimation problem as a multi-label
classification one, and the neural network is trained to learn
highly nonlinear relationship between the input and the label
without knowing their explicit mathematical relationship. Also,
the neural networks do not make any assumptions related to
the array geometry and their calibration status.

Notations: We use lower-case (upper-case) bold characters
to describe vectors (matrices). In particular, (·)T and (·)H
respectively denote the transpose and conjugate transpose of
a matrix or vector. diag(·) denotes a diagonal matrix with
the elements of a vector constituting the diagonal entries.
triu(·) denotes the upper triangular elements of a matrix. vec(·)
denotes vectorizing of a matrix. E(·) denotes the expectation
operation. ◦ is the Hadamard product operator.  =

√
−1

denotes the unit imaginary number. IM stands for the M×M
identity matrix. In addition, R(·) and I(·) denote the real part
and imaginary part, respectively.

II. SIGNAL MODEL

Consider an array system with K distributed subarrays,
each consisting of M sensors. The distance between the first
sensor and the m-th sensor in the k-th subarray is denoted by
dkm for k = 1, 2, · · · ,K and m = 1, 2, · · · ,M . It is assumed
that the sensors in each array are located on a half-wavelength
grid, i.e., dkm are integer multiples of d = λ/2, where λ
denotes the signal wavelength.

A. Subarray Signal Model
P narrowband uncorrelated sources impinge from DOAs

θ = [θ1, θ2, · · · , θP ]T. The signals waveform of these signals
are denoted as sp(t) for t = 1, · · ·T and p = 1, · · ·P . Then,
the data vector received at the output of each subarray is
expressed as

xk(t) =

P∑
p=1

ρkak(θp)sp(t) + nk(t)

= ρkAks(t) + nk(t),

(1)

where ρk denotes the phase shift at the reference sensor of the
k-th subarray due to the physical location displacement,

ak(θp) = [1, e−
2πdk2
λ sin(θp), · · · e−

2πdkM
λ sin(θp)]T (2)

denotes the steering vector of the k-th subarray for the signal
arriving at angle θp, λ is the wavelength, and

Āk = [ak(θ1),ak(θ2), · · · ,ak(θP )] (3)

is the array manifold matrix of the k-th subarray corresponding
to the P impinging signals. In addition, the noise vector nk(t)
is assumed to be independent and identically distributed white
complex Gaussian entries and are uncorrelated with signals
s(t).

When an array sensor has calibration error described by
gain and phase errors αk,meβk,m for k = 1, · · · ,K and m =
1, · · · ,M . Denote gk = [αk,1e

βk,1 , · · · , αk,Meβk,M ]T, the
actual array manifold Ak becomes

Ak = diag(gk)Āk. (4)

The covariance matrix of the output data vector for the k-th
subarray is given as

Rk = E[xk(t)xH
k (t)] = AkSAH

k + σ2
n,kIM

=

P∑
p=1

σ2
pak(θp)a

H
k (θp) + σ2

n,kIM ,
(5)

for k = 1, · · · ,K, where σ2
n,k denotes the noise power at the

k-th subarray and S = E[s(t)sH(t)] = diag([σ2
1 , σ

2
2 , · · · , σ2

P ])
is the source covariance matrix with σ2

p denoting the power of
the p-th source for p = 1, · · · , P . The covariance matrix of
the kth subarray is estimated from the sampled data, given as:

R̂k =
1

T

T∑
t=1

xk(t)xH
k (t), (6)

where T is the number of snapshots.

B. Fusion of the Covariance Matrices
The covariance matrices computed locally at each subarray

are transmitted to the fusion center, where further processing is
carried out to obtain the total covariance matrix of the system
and perform DOA estimation. The aperture of each covariance
matrix are different when each array has a different array
configuration. In this case, the size of the fused covariance
matrices at the fusion center is equal to that of of the largest
subarray and is denoted as L0 × L0.

The fusion center performs the processing with the received
K sets of covariance matrices as described below.

We first define a binary vector ck to indicate whether a
sensor at position ld is present in the kth subarray Sk, i.e.,

〈ck〉l =

{
1, ld ∈ Sk,
0, otherwise.

(7)

where l is the index of the sensor location with l ∈ [0, · · · , L0]
and 〈·〉l denotes the element corresponding to the sensor
position at ld. We also define Ck = ck(ck)T as the binary
mask matrix with unit-valued entries representing observed
elements in R̂k.

The total synthesized covariance matrix corresponding to
the K subarrays are given as,

R =

(
K∑
k=1

R̂k ◦Ck

)
◦D, (8)

where matrix D averages the redundant lag entries in R̂k. The
(u, v)th element of matrix D is given as

[D]u,v =
1∑K

i=1[C]u,v + ε
, (9)

with ε denoting a small positive value in order to provide
stability of the division.

Because matrix R is Hermitian, we only use the upper tri-
angular elements which include all the necessary information.
The upper triangular elements are vectorized as

r̄ = vec(triu(R)), (10)

where Rl1l2 is the (l1, l2)-th element of the covariance matrix
R. The real and imaginary parts are separated to form the
following real-valued vector,

r = [(R(r̄))T (I(r̄))T]T. (11)



Fig. 1: Proposed neural network structure.

III. NEURAL NETWORK-BASED DOA ESTIMATION

In this section, we describe the the proposed neural
network-based DOA estimation procedure. Vector r is applied
to the input node of the neural network, and true signal
DOAs are used as the the label. The neural network learn
the nonlinear relationship between the input and label by
minimizing a predefined cost function.

The proposed fully connected neural network is shown
in Fig. 1, where 2 hidden layers are used. The number of
hidden layer traded off between the nonlinear expressivity of
the model and its overfitting risk. The network can improve the
nonlinear mapping between input and the label with its depth,
but it in turns raises the complexity and thus overfitting. Each
unit in a hidden layer performs logistic regression operation.
A nonlinear activation function is applied on the logistic
regression output.

When there are N > 1 observations, the complete input
dataset X is formed by concatenating vectors r1, · · · , rN ,
expressed as

X = [r1, r2, · · · , rN ]. (12)

Denote Z [d], f [d], and A[d] as the logistic regression output,
activation function, and the activation resulted from nonlinear
activation function from the d-th hidden layer, respectively,
for d = 1, 2, 3. Denote also W [d] and b[d] as the weights and
biases corresponding to the d-th hidden layer. Then, the outputs
from the d-th hidden layer is expressed as,

Z [d] = W [d]A[d−1] + b[d],

A[d] = f [d](Z [d]).
(13)

For the first hidden layer, the activation from the previous layer
is the input, i.e., A[d−1] = X . For activation function f [d],
we use the rectified linear Unit (ReLU) activation function
in the hidden layers. The ReLU activation function is chosen
because it makes the computation faster compared to other
activation functions such as sigmoid and tanh, as its slope
does not diminsh to 0. Since we consider the DOA estimation
problem as a binary classification problem, we use sigmoid
activation function for the output layer, which converts the
values form the output node between 0 to 1.

A binary cross entropy loss function is used for the
underlying binary classification problem. The gradient descent
algorithm is used to minimize the cost function. Hence, our
optimization problem becomes optimizing the weights W and
biases b to minimize the overall cost function, expressed as

min
W ,b
− 1

J

J∑
i=1

[
Y

[i]
j log Ŷ

[i]

j +
(

1− Y [i]
j

)
log
(

1− Ŷ
[i]

j

)]
,

(14)
where J is the number of training samples in the j-th
minibatch of the training data, and Ŷ

[i]

j and Y
[i]
j are the

predicted output and the actual label of the i-th sample at the
j-th minibatch of the neural network, respectively. The cost
function is computed for each of the training examples and

Fig. 2: Array configuration.

the weights of the model are updated only when the training
process of all of the examples of this particular minibatch is
completed.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results which
compare the results from our neural network approach with
the MUSIC algorithm developed using matrix interpolation.

A. Simulation Settings
We consider a distributed array system with 3 spatially

distributed platforms placed in a collinear fashion. Each array
consists of 4 sensors. As such, we use a total of 12 sensors
in the system placed in these distributed subarrays. The array
configuration is depicted in Fig. 2 where the numbers indicate
the relative sensor position in each subarray with a unit of half
wavelength. That is, the sensor locations for each subarray are
given as:

S1 = {0, 2, 5, 9}λ/2,
S2 = {0, 10, 11, 23}λ/2,
S3 = {0, 6, 14, 30}λ/2.

(15)

As we consider non-coherent process with partly calibrated
array, we have the knowledge of the relative sensor positions
within each subarray, but we do not know the exact distance
between the subarrays. The largest aperture of these subarray
is L0 = 31. Note that, in this example, each subarray is sparse.
Therefore, the 31 × 31 fused covariance matrix computed at
the fusion center is also sparse with missing entries.

We generate our training dataset by considering the signals
impinging from directions within the range of [−60◦, 60◦]. The
entire spatial space is discretized with a 1◦-interval, rendering
121 direction grids. We consider K = 15 sources with varying
angular separation ∆φ to be 1◦, 2◦, 3◦, and 4◦. For each
angular separation ∆φ, the direction of the first signal θ0 is
randomly chosen with a uniform probability within the range
of θ = [−60◦, 60◦ − ∆φ], and the DOA of the n-th signal
(n ≥ 2) is θ0 + (n − 1)∆φ. The input signal-to-noise ratio
(SNR) is set to 0 dB. The antenna gains are independently
generated from a uniform distribution between 0.9 and 1.1,
whereas the phase errors are indepdently generated from a
uniform distribution between −9◦ and 9 degree.

For a given direction, 20 groups of snapshots are generated
with random noises. We generate a total number of 3, 040
data vectors in our training dataset. 90% of them are used
for training and the other 10% are used for validation. These
vectors are used as the training input of the neural network. For
the label of the neural network, the true signal direction is used.
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(b) MUSIC pseudo-spectrum

Fig. 3: Comparison between the output label of the proposed
method and the MUSIC pseudo-spectrum.

For example, in the case of θ0 = −60◦ and ∆φ = 1◦, when
there are two signals impinging from the direction −59◦ and
−57◦, respectively, the label will be [0, 1, 0, 1, 0, 0, 0, · · · , 0].
In this multi-label binary classification scheme, the output we
obtain from the network is a 121 × 1 binary vector. We use
the Adam optimizer to optimize the weights of the network
which minimize the cost function, and the learning rate is set
to 0.001. The minibatch size is set to J = 64 and 500 epochs
are used to train the network.

B. DOA Estimation Performance
The performance comparison of the proposed machine

learning approach with conventional MUSIC algorithm is il-
lustrated in Fig. 3. For MUSIC, covariance matrix interpolated
using structured matrix completion [31, 32] is employed.
Because of the high number of closely located sources and
the array sensor calibration errors, the covariance matrix inter-
polation does not work well. As a result, as shown in Fig. 3(b),
the MUSIC algorithm does not offer resolved spatial spectrum.
In contrast, the performance of the proposed neural network-
based method produces accurate DOA estimation results. Fig.
3(a) shows the estimated binary classification results with value
“1” indicates the existence of a signal in that direction.

V. CONCLUSION

In this paper, we considered robust DOA estimation in a
distributed array platform. We considered non-coherent data
processing at the fusion center, where covariance matrices

form each of the individual subarrays are combined. To obtain
the direction of arrivals of the impinging signals from the
fused covariance matrix, we propose a neural network-based
DOA estimation method. This method is capable of resolving
the DOAs of a high number of closely located sources and
is immune to array calibration errors. The effectiveness and
robustness of the proposed technique were verified through
simulation results.
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