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Abstract—In this paper, we propose a novel direction-of-
arrival (DOA) estimation technique based on multiple co-prime
frequencies and fourth-order statistics of the received signals.
The utilization of multiple frequencies provides virtual sensors
at the receiver array, thereby resulting in extended aperture,
higher number of degrees-of-freedom, and greater flexibility
compared to the commonly used single frequency-based methods.
The set of lags achieved from the resulting virtual antenna
elements is further extended by exploiting higher-order statistics-
based difference co-array approach. The proposed scheme yields
the fourth-order difference co-array which offers a significantly
greater number of lags compared to the sparse array techniques
used by existing DOA estimation methods. Simulation results
verify the effectiveness of the proposed technique.

keywords: Direction-of-arrival estimation, sparse array,
fourth-order difference co-array, multiple frequencies.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important pro-
blem in array signal processing which finds applications in
radar, sonar, wireless communications, and radio astronomy
[1, 2]. While second-order statistics (SOS)-based methods are
extensively used to determine the DOA of impinging electro-
magnetic waves, techniques based on higher-order statistics
(HOS) are known to provide a higher number of degrees-
of-freedom (DOFs) so that more sources than the number of
array elements can be resolved [3–5]. Moreover, HOS-based
approaches are more effective in suppressing Gaussian random
components, such as thermal noise, because the HOS of Gaus-
sian random variables is zero, enabling accurate parameter
estimation of non-Gaussian signals [6].

Efficient under-determined DOA estimation can be achie-
ved by using sparse sensor arrays in the context of co-arrays
[7]. Particularly, for a given number of physical sensors, the
minimum redundancy array (MRA) [8] provides the highest
number of consecutive lags in the resulting difference co-
array, whereas the minimum hole array (MHA) [9] provides
the least possible number of holes in the yielding difference
co-array. However, both MRA and MHA structures do not
have simple closed-form analytical expressions, thus making
it difficult to formulate their effective configurations for a
given number of antenna elements. Recent advancements in
sparse array design have resulted in array configurations, such
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as co-prime array (CPA) [10], which can be systematically
designed and analyzed. A CPA consists of a pair of sparse
linear sub-arrays such that the inter-element spacings of both
sub-arrays are related to two co-prime integers and the number
of elements in each sub-array is proportional to the inter-
element spacing of the other sub-array. The achievable number
of the DOFs and that of the consecutive and unique lags of a
CPA are well studied in [11]. Utilization of sparse sensor arrays
based on fourth-order cumulants (FOC) of signals has recently
attracted great attention because they provide an increased
number of DOFs to resolve a far higher number of sources
than conventional SOS based methods [12–14].

The concept of CPA has been recently extended to use
a sparse uniform linear array (ULA) exploiting two or more
frequencies which can be associated with a co-prime relation-
ship [15, 16]. In this scheme, the ULA corresponding to each
frequency acts as a sub-array in the CPA. As such, a CPA-like
structure is achieved using a single physical ULA. The signals
of multiple frequencies can be obtained either passively or
actively. In the former, such signals are obtained at the receive
array by filtering the received signals using different filters
centered at the proper frequencies. For the latter, multiple-
frequency signals are transmitted from a transmit antenna
or an antenna array, and return signals corresponding to the
respective frequencies are filtered at the receive array accor-
dingly. The analysis of strategies and achievable number of
DOFs employing multiple frequencies has been performed in
[15, 16] when the virtual array is obtained based on the SOS.

In this paper, we address the problem of FOC-based
DOA estimation using multiple frequencies. In this context,
the maximum achievable number of DOFs and unique lags
is analytically evaluated. It is observed that an FOC-based
formulation for a multiple frequency approach provides a much
higher number of lags and DOFs compared to existing SOS-
based approaches. Simulation results verify the effectiveness
of the proposed approach.

Notations: A lower (upper) case bold letter denotes a
vector (matrix). Specifically, IN and 0N denote the N × N
identity and zero matrices, respectively. (·)∗ and (·)T denote
the complex conjugation and transpose operations. E(·) stands
for statistical expectation.

II. PROBLEM FORMULATION

A. Signal Model

Consider an L-sensor ULA, and Q narrowband inde-
pendent and non-Gaussian stationary signals reflected from



far-field targets are impinging on the array from angles
θ1, θ2, . . . , θQ, respectively. The signal received at each an-
tenna is filtered to render K = 2 sub-streams at corresponding
frequencies f1 and f2. The L× 1 received signal vector xk(t)
at the receive array corresponding to the signal frequency fk
is expressed as:

xk(t) = A (fk) sk(t) + nk(t), (1)

where A (fk) is the L×Q array manifold matrix corresponding
to the frequency fk, sk(t) represents the Q× 1 signal vector,
nk(t) is the L × 1 white noise vector that follows the joint
complex Gaussian distribution with zero mean and covariance
matrix σ2

nIL. We assume sk(t) to be random and zero-mean
and, therefore, xk(t) are also zero-mean random vectors.

Denote D as the inter-element spacing, and f0 = c/2D as
the reference frequency for which the inter-element spacing is
half wavelength, i.e., D = λ0/2, where c is the velocity of
wave propagation. The two frequencies f1 and f2 are chosen
as integer multiple of f0, i.e., f1 = M1f0 and f2 = M2f0
such that M1 and M2 are co-prime integers. We refer to Mk

as the dilation factor of the inter-element spacing.
Then, each column of matrix A (fk) is the steering vector

corresponding to fk and can be written as:

a (θq, fk) = [1, e−j2πD sin(θq)/λk , . . . , e−j2πD(L−1) sin(θq)/λk ]T

= [1, e−jπMk sin(θq), . . . , e−jπMk(L−1) sin(θq)]T ,
(2)

where λk = λ0/Mk is the wavelength corresponding to fk.
That is, the normalized position of the lth sensor, evaluated at
frequency fk, is (l − 1)Mk.

It is clear that the combination of the ULA and two
frequencies renders two dilated sub-arrays which resemble
those in a CPA. However, there are several differences to
the ordinary CPA. One such difference is that, while CPA
assumes different numbers of sensors in each sub-array, the
same number of sensors are used in both dilated sub-arrays.

B. Fourth-Order Statistics

Denote xz as a zero-mean random variable that is associa-
ted with a normalized sensor position of z. Then, for zero-mean
random variables xz1 , xz2 , xz3 and xz4 , the FOC cumulant can
be calculated by:
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(3)
where cum(·) is the cumulant operator. The resultant lag
obtained from the above expression is l = z2 + z4 − z1 − z3.
The different lags obtained from various combination of array
sensors with their respective normalized sensor positions form
a virtual array, whose sensors are the different lag positions.
It is important to note that the simultaneous use of conjugated
and unconjugated array data in the FOC computation yields
both sum co-array and difference co-array sensors in the
resultant virtual array.

Stacking the cumulants corresponding to all unique lags
obtained from Eq. (3) yields a vector y, which can be expres-
sed in the following form:

y = Ãb (4)

where Ã is the extended array manifold of the resultant virtual
array whose columns act as a dictionary associated with all
possible impinging DOAs, and b is a sparse vector whose
non-zero entries correspond to the cumulants of the signal
corresponding to a DOA.

III. DIRECTION-OF-ARRIVAL ESTIMATION

Depending upon whether to use array outputs belonging to
the same frequency or different frequencies, the FOC results
can be classified into self-lags and cross-lags. The self-lag
measurement vectors are computed from Eqs. (1) and (3) as:

y(k,k,k,k) = Ã(k,k,k,k)b(k,k,k,k), (5)

where the superscript (k, k, k, k) indicates that the same fre-
quency component is used for k = 1, 2. Similarly, cross-lag
measurement vectors are computed as:

y(k,m,n,o) = Ã(k,m,n,o)b(k,m,n,o), (6)

where k,m, n, o ∈ {1, 2} are the frequency indexes to be used.
In this work, we assume that the 1st and 3rd components use
signals in one frequency, and the 2nd and the 4th components
use signals in the other frequency. As such,

y(k,m,k,m) = Ã(k,m,k,m)b(k,m,k,m), (7)

where m = 3− k.
After the FOC-based observation vectors are determined,

we can perform DOA estimation using classical methods,
such as MUSIC, or compressive sensing methods. As the
cumulant vector is rank one, the MUSIC algorithm requires
spatial smoothing to be applied to restore the full rank. As
such, only the consecutive lags can be utilized. On the other
hand, compressive sensing methods can fully utilize all the
available lags, regardless of whether they are consecutive or not
[17]. In addition, because the self- and cross-lags correspond
to different values of b, group sparse compressive sensing
methods enable more effective fusion of these components
[15, 16].

In this work, we use both self- and cross-lags, and compres-
sive sensing based methods for DOA estimation. In particular,
the complex multi-task Bayesian compressive sensing (CMT-
BCS) algorithm [18, 19] is applied.

Note that, more than two mutually co-prime frequencies
can also be utilized to further enhance the DOF. Unlike
SOS-based virtual array formation where the SOS results
are computed pair-wisely, the FOC-based approach enables
simultaneous processing of up to four frequencies at the same
time, resulting in a greater number of unique as well as
consecutive lags. The advantages of using more than two co-
prime frequencies is demonstrated with numerical results in
Section V.

IV. ACHIEVABLE DOFS

In this section, we derive the maximum number of DOFs
and the number of unique lags of the difference co-arrays
achieved by utilizing FOC and two co-prime frequencies.

For a pair of co-prime dilation factors, M1 and M2, the
locations of the elements in the two virtual sub-arrays are
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Fig. 1. A sparse ULA with two co-prime frequencies and its FOC-based
difference co-array formation (only non-negative lags are shown)

respectively given by:

P1 = {M1l1d | 0 ≤ l1 ≤ L− 1} ,
P2 = {M2l2d | 0 ≤ l2 ≤ L− 1} , (8)

where l1 and l2 are integers.
Without loss of generality, we assume that the co-prime

dilation factors satisfy M1 < M2. In this case, the normalized
aperture of the resulting co-prime array is M2(L− 1).

From Eq. (3), we can observe that the fourth-order diffe-
rence co-array of the co-prime array in Eq. (8) contains both
the sum and difference co-arrays of all the virtually dilated
sub-arrays. As expected, a higher number of DOFs is achieved
when compared to SOS-based methods.

The self sum co-arrays of Eq. (8) can be expressed as

TABLE I. NUMBER OF UNIQUE CO-ARRAY LAGS ACHIEVED BY
DIFFERENT SPARSE ARRAY STRUCTURES

Method No. of
sensors Configuration Max. no. of

unique lags
SO ULA [16] 3 M1 = 4,M2 = 5 17
Proposed FO ULA 3 M1 = 8,M2 = 9 57

SO ULA [16] 7 M1 = 12,M2 = 13 97
Proposed FO ULA 7 M1 = 24,M2 = 25 409

SO ULA [16] 9 M1 = 16,M2 = 17 161
Proposed FO ULA 9 M1 = 32,M2 = 33 705

follows:

Ps1 = {M1l
′
1d | 0 ≤ l′1 ≤ 2L− 1} ,

Ps2 = {M2l
′
2d | 0 ≤ l′2 ≤ 2L− 1} ,

(9)

where l′1 and l′2 are integers. Similarly, we can express the
cross sum co-array between the two virtual sub-arrays P1 and
P2 in Eq. (8) as follows:

Ps12 = {(M1l1 +M2l2)d}. (10)

The combined sum co-array of the virtual arrays in Eq. (8)
can be expressed as:

Ps = Ps1 ∪ Ps2 ∪ Ps12. (11)

According to [14], the FOC-based virtual sensors can be
calculated by evaluating the difference co-array of its sum co-
arrays. We will use the same strategy to yield the FOC-based
difference co-array of the sub-arrays in Eq. (8) which can be
achieved by evaluating the difference co-array of Eq. (11).

We first find the lags contained in the difference co-array
of sum co-arrays in Eq. (9) as:

Lf = Lc ∪ L−c , (12)

where

Lc = {(M1l
′
1 −M2l

′
2)d},

L−c = {(M2l
′
2 −M1l

′
1)d}.

(13)

Here, L−c is the mirrored set of Lc. Note that, in Eq. (12)
and (13), only Ps1 and Ps2 are considered for synthesizing the
FOC-based lags. The result of Eq. (12) is similar to the SOS-
based results discussed in [16] except that the virtual sensors
in Eq. (9) is now 2L − 1 instead of L as in the SOS-based
counterparts. Therefore, the number of unique lags γ in Eq.
(12) can be obtained by replacing L in [16] with 2L − 1 as
follows:

γ =2(2L− 1)
2 − 1

−max {0, 4L− 3−M2}min {M1 + 1, 4L− 3−M1} .
(14)

Thus, the maximum possible unique lags from Eq. (12) is
8L2−8L+1 which is calculated using the difference co-array
of Ps1 ∪Ps2. In order to find the maximum unique achievable
number of FOC-based lags from the proposed approach, we
must also include the unique lags contributed by the difference
co-array of Ps12 in our analysis. We can derive that the
additional unique FOC-based lags contributed by the difference
co-array of Ps12 is 2L2 − 4L+ 2.

The maximum possible number of unique lags γmax by con-
sidering all the combinations of FOC-based sum and difference
co-array lags can be summarized in the following proposition.
Proposition 1: For a virtual array constructed from a ULA
with inter-element spacing D using two co-prime frequencies,
where D = M1λ1/2 = M2λ2/2, the maximum possible
number of unique lags, γmax, achievable from the fourth-order
difference co-array is given by:

γmax = 10L2 − 12L+ 3. (15)

When the maximum number of lags are achieved, the
number of DOFs can be determined by (γmax + 1)/2.
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(b) Proposed FOC-based method

Fig. 2. Normalized spatial spectrum for 31 sources uniformly distributed
from −60o to 60o (5 sensors, SNR = 0 dB, 1,000,000 snapshots, M1 = 16
and M2 = 17).

Fig. 1 shows the formation of dilated co-prime arrays and
their resulting FOC-based difference co-array for an array
having 3 antenna elements and the dilation factors of M1 = 8
and M2 = 9.

The maximum possible number of unique lags achievable
from the proposed technique is 10L2 − 12L + 3, which
is far greater than the SOS-based counterpart which offers
a maximum number of possible unique lags of 2L2 − 1.
The comparison of the achievable number of DOFs for the
proposed FOC-based approach and the existing SOS-based
method is illustrated in Table I.

V. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed FOC-based DOA estimation
technique and compare it with the existing SOS-based method
[16]. We consider independent sources impinging on a ULA
with an input signal-to-noise radio (SNR) of 0 dB. The
phase difference between the received signals corresponding
to different co-prime frequencies is independently and uni-
formly distributed over [0, 2π). 1,000,000 snapshots of data
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(a) Two-frequencies with M1 = 8 and M2 = 9
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(b) Three frequencies with M1 = 8, M2 = 9, and M3 = 11

Fig. 3. Normalized spatial spectrum using the proposed FOC-based method
for 25 sources uniformly distributed from −60o to 60o (3 sensors, SNR = 0
dB, 1,000,000 snapshots).

are considered and all the unique lags are utilized for DOA
estimation.

In the first example, we have 31 sources impinging on
a 5-sensor array exploiting two co-prime frequencies with
respective dilation factors of M1 = 16 and M2 = 17. For
the case of SOS-based DOA estimation, we obtain 49 unique
lags which corresponds to 25 DOFs. It is observed in Fig.
2(a) that the SOS-based method exploiting the two frequencies
clearly fails to resolve all the 31 sources because of the
insufficient number of DOFs. For the proposed FOC-based
DOA estimation method, the number of resulting unique lags
increases to 193 and the corresponding number of DOFs is
97. As shown in Fig. 2(b), the proposed FOC-based technique
resolves all the 31 sources. These results clearly verify that,
for an array exploiting two co-prime frequencies, the proposed
DOA estimation technique based on the FOC offers a signi-
ficant increase of DOFs and provides substantial performance
improvement as compared to the SOS-based counterpart.

In the second example, we evaluate the resolution capa-
bility of the proposed approach using different numbers of
co-prime frequencies. We consider 25 sources impinging on



a 3-sensor array and two cases are considered. In the first
case, two co-prime frequencies are used with dilation factors
M1 = 8 and M2 = 9, respectively. In this case, the proposed
FOC-based DOA technique provides 57 unique lags. It can be
observed in Fig. 3(a) that the proposed method is unable to
resolve all the sources successfully. In the second case shown
in Fig. 3(b), an additional co-prime frequency with dilation
factor of M3 = 11 is used, thus increasing the number of
unique lags to 79. It is observed that the DOA estimation per-
formance of the proposed technique is significantly improved
by using more mutually co-prime frequencies.

VI. CONCLUSION

In this paper, we have presented a novel FOC-based DOA
estimation method utilizing multiple frequencies which re-
sults in enhanced source resolution capabilities. The proposed
approach provides a higher number of unique co-array lags
compared to existing SOS-based methods. The number of
achievable unique lags provided by the FOC-based DOA
estimation techniques was derived for the case of two co-prime
frequencies. Simulation results show that the proposed method
outperforms existing techniques by resolving more sources
with less sensors.
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