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Abstract—Radar-based automated fall detection systems are
considered as an important and emerging technology for elderly
assisted living. These radar systems provide non-intrusive sensing
capabilities to detect fall events. Various studies have used micro-
Doppler signatures to determine falls. However, Doppler radar
fall detection systems suffer false alarms stemming from other
sudden non-rhythmic motion articulations. In this work, we
consider a textural-based feature extraction method which can
determine the density variations between various motion artic-
ulations. For this purpose, textural features are extracted from
the gray level co-occurrence matrix for each motion using time-
integrated range-Doppler maps and micro-Doppler signatures.
Textural features are then used to train the support vector
machine classifier. The sequential forward selection method is
implemented to identify essential features and minimize the
feature space while maximizing the fall detection rate. The results
show that well selected range-Doppler based textural features
can provide improved classification results compared to textural
features based only on micro-Doppler signatures.

I. INTRODUCTION

People aged 65 and over represent 14.5% of the total U.S.
population in 2014. This number is expected to become 21.7%
by 2040 [1]. Most of the elderly population prefer to exercise
independent self-care in their own homes. One out of every
three people over age of 65 fall every year, resulting in injuries,
reduced quality of life, and sometimes even death. In these
incidents, timely medical attention plays a crucial role to
reduce complications after a fall event. Hence, fall detection
systems are key to fast medical attention and improving the
quality of life [2]. Fall detection systems can immediately
detect the fall and alert the first responders.

There are various types of fall detection systems available.
These systems can be categorized into two major groups:
wearable and non-wearable. Wearable devices are inexpensive
and easy to use. However, they have some major drawbacks.
One of the biggest disadvantage is that the elderly needs to
be conscious to activate the system after a fall. On the other
hand, non-wearable systems are placed in the home living
environment of the elderly people. These systems attempt to
identify fall events from other daily activities. The elderly does
not need to be conscious to activate the system. Non-wearable

devices, however, require more intricate techniques to detect
fall. In this work, we focus on radar-based fall detection
system. Various studies have been shown that radar systems
can be employed for fall detection and a plethora of features
have been proposed for this purpose [3]–[14]. In radar based
assisted living applications, time-frequency (TF) representa-
tion have been used for feature extraction [5]. These features
are then presented to the classifier. Feature sets that have
been proposed can be categorized in four different groups:
(a) Spectrogram features to capture the physical properties
of the motion [7], [8]; (b) Speech processing originated mel-
frequency cepstrum coefficients extracted from spectrograms
[15]; (c) Wavelet transform based features [10], [11] and (d)
Power burst curve [9].

The main challenge in Doppler radar fall-based detection is
to reduce the number of false alarms. One source of false
alarms is the similarity between the Doppler signatures of
falls and other sudden non-rhythmic motion articulations. For
example, Doppler signatures for the sitting and falling events
may become similar in the TF domain, depending on the
speed of the activity. Wideband radars offer additional range
information that can be used to reduce possible confusions.
For example, sitting motions have a limited range extent
determined by the depth of the chair used, whereas falls can
extend over a downrange that is approximately equal to the
subject’s height. To effectively reduce the miss-classification
and false alarm rates, and utilize the range information, time-
integrated range-Doppler maps were employed in [16]. The
range-Doppler representation of the received signal combines
the effects of both target velocity and range. These maps are
constructed by the agglomeration of the consecutive range-
Doppler frames and considered a key feature for fall detection.

In this paper, we investigate the importance of textural-
based features for identifying fall and other types of non-fall
motion articulations. More specifically, our proposed method
includes a three-step process. First, time-integrated range-
Doppler maps are constructed. Second, the gray level co-
occurrence matrix (GLCM) is computed in order to capture
the spatial dependence of gray-level values which contribute to
the perception of motion articulations. Then, 13 textural-based
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Fig. 1: Tri-domain representations of falling (a) Range-slow time (b) Micro-Doppler signature (c) Time-integrated range-
Doppler map; and tri-domain representations of sitting (d) Range-slow time (e) Micro-Doppler signature (f) Time-integrated
range-Doppler map.

features, such as contrast, correlation, and energy, are extracted
from GLCM which contain information about image textural
characteristic, such as the boundaries, linear dependencies, and
the complexity of the image [17], [18]. However, inclusion
of the features with irrelevant information can hinder the
classification performance. Also, redundant features increase
the feature space dimensionality which leads to a degraded
classification performance. Therefore, in the final step of
our proposed method, we implemented sequential forward
selection (SFS) that heuristically searching the original feature
space for a feature subset that yields the best classification
performance for a provided classifier. An alternative approach
is to use dimension reduction algorithms, such as principal
component analysis (PCA), to reduce the size of the feature set
[19]. However, these algorithms do not contain any constraint
about class separability and hence classification performance
[20].

The reminder of this paper is organized as follows. In
Section II, the ultra-wideband (UWB) radar system and the
data experimental setup are introduced. In Section III, the
textural-based feature extraction algorithm is discussed in
detail. Section IV evaluates the performances of the statis-
tical features on micro-Doppler signatures and time-integrated
range-Doppler maps. Finally, conclusions are drawn in Section
V.

II. DATA EXPERIMENTAL SETUP

The UWB radar experiments were conducted in the Radar
Imaging Lab at the Center for Advanced Communications,
Villanova University. The UWB system used in the exper-
iments, named SDRKIT 2500B, is developed by Ancortek,
Inc. Operating parameters of the radar system are transmit
frequency 24 GHz, pulse repetition frequency (PRF) 1,000
Hz, and bandwidth 2 GHz which provides 0.075 m range
resolution.

Extensive measurements were made in order to utilize
a database. The database contains a total of 106 motion
articulations belonging to four different subjects engaged in
four different motion articulations: falling, sitting, picking up
an object, and walking. Each measurement was recorded for a
duration of 10 seconds. Among these 106 measurements, 33
belong to falling, and the remaining signatures associated with
non-fall motions. The test subjects posed heights ranging from
1.73 m to 1.90 m, weights ranging from 70 kg to 100 kg, and
included 4 males. Micro-Doppler signatures, range-slow time
and range-Doppler maps of the falling and sitting motions are
depicted in Fig. 1.

III. TEXTURAL FEATURE BASED FALL DETECTION

The one-dimensional histogram-based methods do not con-
tain any information about the relative spatial position of the



Fig. 2: 2D GLCM computation scheme.

image pixels. However, textural analysis provides useful infor-
mation to characterize the structural heterogeneity of images.
The texture is related to the spatial distribution of the intensity
values that contains information about contrast, uniformity,
and regularity. Therefore, texture provides important charac-
teristics to perform surface inspection, scene classification,
surface orientation, and shape determination [17], [21]. Utiliz-
ing time-integrated range-Doppler maps as gray level images
reveals key differences between fall and other type of non-
rhythmic motions, such as density and repetition of the pixel
values. As it can be easily seen in Fig. 1(c), falling motion
exhibits gaps in range-Doppler map, whereas sitting has a
more filled structure which effects the repetition of the pixel
values. For our purposes, repeating patterns of local variations
in the time-integrated range-Doppler maps are defined as
textural information. In the literature, different methods have
been proposed to capture the textural properties of an image,
such as GLCM, gray-level run length matrix, Gabor filters,
and wavelet transform [18]. In this work, we implemented a
GLCM based feature extraction method to successfully detect
the fall and non-fall human motion articulations.

A. Gray Level Co-occurrence Matrix

The GLCM, Pd,θ, can be defined as a two-dimensional
(2D) histogram of gray levels and computed by first defining
various values of distance d and angle θ between neighboring
image pixel pairs. Each pixel in the image has eight angular
neighboring pixels, as depicted in Fig. 2. Hence, eight possible
θ values can be defined ranging from 0◦ to 315◦ in 45◦

increments. In this work, we only consider values of 0◦, 45◦,
90◦, and 135◦. The distance, d, takes a positive integer values.
However, using relatively large values of d does not guarantee
to capture detailed textural information [18]. It is noted that
the highest classification performances are obtained for d = 1
and 2. Therefore, d is determined as 1. The GLCM in four
different angles can be mathematically expressed as [18]:

Pd,0(i, j) =

N∑
n=1

M∑
m=1


1, if(n = m) = i

& I(n,m+ d) = j

0, otherwise
(1)

Pd,45(i, j) =

N∑
n=1

M∑
m=1


1, if(n = m) = i

& I(n− d,m+ d) = j

0, otherwise
(2)

Pd,90(i, j) =

N∑
n=1

M∑
m=1


1, if(n = m) = i

& I(n− d,m) = j

0, otherwise
(3)

Pd,135(i, j) =

N∑
n=1

M∑
m=1


1, if(n = m) = i

& I(n− d,m− d) = j

0, otherwise
(4)

where I is the time-integrated range-Doppler map, N and M
size of the image, and i, j = 0, 1, 2, ..., L, with L denoting
the number of gray scale levels. In this way, a structure that
describes the co-occurring intensity values at a given offset is
constructed.

B. Feature Extraction

In this work, thirteen different statistical features proposed
by Haralick [17], namely, angular second moment, contrast,
correlation, summation of squares variance, inverse difference
moment, summation average, summation variance, summation
entropy, entropy, difference variance, difference entropy, in-
formation measure of correlation 1 and 2, are extracted from
each GLCM. Some of these features contain specific textural
properties of the image such as homogeneity, contrast, and
presence of the organized structure within the image. Other
features help characterize the complexity and the nature of
gray level transitions occurring in the image. In [17], it is
suggested that the angularly dependent features not to be used



TABLE I: Scores (%) for each method by four different metrics

Accuracy Fall detection rate False alarm rate Missed rate

13 micro-Doppler based Haralick features 87.65 84.49 9.19 90.81
13 time-integrated range-Doppler based Haralick features 91.62 89.42 6.17 93.83
3 time-integrated range-Doppler SFS based Haralick features 96.22 94.73 2.28 97.72

directly. Instead, the mean value of the features for the four
different directions can guarantee rotation invariance and yield
better classification performances.

C. Feature Selection

Utilization of all possible textural features generally does
not imply a potential increase in classification performance.
In some cases, a well selected sub-feature set is sufficient
to yield the desired performance. This can be explained by
the curse of dimensionality. The theme of this phenomenon
is that when the dimensionality increases, the volume of the
space also increases so fast that the available data become
sparse. Therefore, we implement SFS approach to construct a
new reduced set of features by mapping the multi-dimensional
feature space into a lower dimensionality. The performance is
directly computed using a specific classifier, support vector
machine (SVM), which makes the selected features classifier
dependent. As the number of the features to be evaluated
increases, SFS tends to be much more computationally intense
than other types of filter methods. In other words, SFS selects
features that yield the highest value of a pre-defined objective
function, in this case, classification accuracy for a given
classifier. This process involves:

1) Start with an empty set of feature;
2) Select the next feature, the one that yields the highest

accuracy when used together with previously selected
features;

3) Update the selected feature set, and move to the next
feature; and

Fig. 3: Influence of feature subset size on SFS wrapper.

4) Repeat Step 2 until the total number of desired features
is reached.

IV. EXPERIMENTAL RESULTS

The performance of the SFS method in Fig. 3 shows
the classification accuracy achieved for two classes, i.e., fall
and non-fall, utilizing an SVM classifier when a different
number of features is selected. The SFS algorithm yields the
best performance when three carefully selected subsets [5]
of features is utilized. For example, when all the features
are used, SFS provides a classification accuracy around 92%,
whereas a 95% accuracy is achieved when three features are
used. This result clearly shows the advantage of the feature
selection.

Fig. 4 shows the ground truth of the selected three features
defined in Section III, i.e., difference entropy, inverse differ-
ence moment, and information measure of correlation 2. More
specifically, Fig. 4 shows the three-dimensional scatter view of
the three features. It is observed that these features generally
provide a clear distinction between the fall and non-fall events,
proving the efficiency of the SFS method.

Finally, the 13 statistical features are extracted from both
time-integrated range-Doppler maps and micro-Doppler sig-
natures. The performance comparison between micro-Doppler
and range-Doppler statistical features is done by computing
four different performance metrics: accuracy, fall detection

Fig. 4: Ground truth scatter plots of the selected features.



rate, false alarm rate, and missed rate, as tabulated in Table I.
From these metrics, a number of important observations can
be made. It is observed that 13 micro-Doppler based statistical
features fail to provide a desirable detection performance
and exhibit a degraded classification performance in every
metric. 13 range-Doppler based statistical features provide an
acceptable level of classification performance, but require high
computational time due to the high feature space dimension-
ality. On the other hand, three well selected range-Doppler-
based statistical features provide the best performance. This is
anticipated due to the properties of the SFS method.

V. CONCLUSION

In this paper, we presented a textural feature based fall
detection scheme for detecting fall and non-fall motions in
assisted living applications. Time-integrated range-Doppler
maps were first constructed to examine the motion signatures.
Several textural features were then extracted from the four-
angle nearest-neighbor GLCM of the target range-Doppler
map. SFS based feature selection was then implemented to de-
termine the relevant features that provide the best classification
performance. The results showed that textural features were
more suited for range-Doppler domain than micro-Doppler
signatures. It was also observed that feature selection increased
the classification accuracy by 3%, which is a significant
improvement towards advancing radar in-home monitoring for
assisted living.
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