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ABSTRACT Doppler signatures of local multipath signals provide useful information for target altitude
estimation in over-the-horizon radar surveillance. In this paper, we develop a method to improve the
resolution of these multipath Doppler signatures and enable enhanced altitude estimation of aircraft target
which maintains a constant altitude. Moreover, we consider the impact of ionospheric layer motion on
target parameter estimation and show that target parameters can be estimated under both stationary as well
as time-varying ionospheric layer conditions. In order to improve the resolution and estimation accuracy
of the target parameters and ionosphere velocity with a significantly reduced complexity, we exploit a
frequency focused transform to the de-chirped target signals for dimension reduction before applying a least
absolute shrinkage and selection operator (LASSO)-based high-resolution spectrum estimation technique.
The proposed strategy outperforms fractional Fourier transform and classical subspace-based frequency
estimation methods with a much lower computational complexity. The effectiveness of the proposed
approach is especially evident for challenging cases where the multipath signal components have spectrally
close Doppler signatures. Simulation results confirm the effectiveness of the proposed method.

INDEX TERMS Doppler signature, dynamic ionosphere, fractional Fourier transform, over-the-horizon
radar, target geo-location, time-frequency analysis.

I. INTRODUCTION

Sky-wave over-the-horizon radar (OTHR) systems provide
wide-area long-range surveillance far beyond the limit of the
earth horizon [1]–[5]. Unlike other modern radar systems that
use wideband signals and provide accurate localization of
line-of-sight targets, OTHR systems are designed to moni-
tor non-line-of-sight targets through the utilization of iono-
spheric reflections using narrowband signals whose band-
width is determined based on the ionospheric conditions.
These facts make accurate target geo-location, particularly
the estimation of the target altitude, very challenging.

Target detection, localization and tracking are important
objectives in OTHR operations [6]–[8]. The target altitude
information is particularly valuable for target classification
and perception. Direct estimation of target altitude is difficult
due to several reasons, including the low-range resolution
associated with the narrowband radar signal and the inaccu-

racy in the estimated ionosphere parameters. Therefore, great
efforts have been dedicated to achieve this goal [9]–[16]. In
[10], the authors obtained a matched-field estimate of aircraft
altitude by exploiting multiple OTHR dwells and the altitude-
dependent structure of the local multipath rays resulting from
reflections local to the aircraft. This work was extended
in [11] where the altitude and altitude rate were jointly
estimated by investigating the effects of a constant altitude
rate on the local multipath Doppler frequencies. Furthermore,
a state-space model-based generalized altitude estimation
technique was presented in [12], where the effect of random
ionospheric and target motions was considered that degrades
the dwell-to-dwell predictability of target returns. In [13],
the instantaneous target altitude was estimated by employ-
ing time-frequency signal analysis of the time-varying local
multipath Doppler signatures, and the initial state of the
target parameters was obtained using the maximum a poste-

VOLUME 00, 2021 1



Zhang et al.: Target Altitude Estimation in Over-the-Horizon Radar

….

….

Path I

Path II

Tx

Rx h H

R

h

h

H

ionosphere

FIGURE 1. Flat-Earth model of local multipath propagation in an OTHR
system.

riori criterion. Target altitude estimation by exploiting two-
dimensional multiple-input multiple-output (MIMO) radar
using the multipath signal model and maximum likelihood
estimation was discussed in [14]. An interesting study related
to the experimental validation of target altitude estimation by
exploiting local multipath propagation model was reported in
[15].

According to the local multipath signal model [7], [13] il-
lustrated in Fig. 1, signals through the direct path (directly re-
flected by an ionosphere layer) and the local multipath (that is
further reflected by the specular ground/ocean surface) would
generate slightly different Doppler signatures when a target
maneuvers with a vertical velocity. Careful examination of
this difference in Doppler signatures through high-resolution
time-frequency analysis resolves the Doppler signatures of
different local multipaths. The frequency difference between
such Doppler signatures directly reveals the target vertical
velocity, whereas the resolved Doppler signatures also enable
enhanced target localization and tracking [13], [16]. Time-
frequency analysis of such Doppler components is not trivial
because the Doppler difference between the direct ionosphere
path and the local multipath is very small [17]–[19]. The
problem becomes even more challenging when the vertical
motion of the target is accompanied by an azimuth rotation,
which causes significant variations in the target Doppler
frequencies [13], [16].

The scope of some past studies related to time-varying
Doppler signature analysis was limited to the situations
where the target experiences a maneuvering pattern that
includes vertical motion [7], [13], [16]. In such work, the
vertical target velocity was considered as the primary source
that generates a detectable Doppler frequency difference
between the multipath signals, which enables target altitude
estimation. On the other hand, a target usually flies without
changing its altitude during most of the flight time. In this
case, the Doppler frequencies are difficult to resolve using
existing methods, thus making difficult the estimation of the

target altitude based on Doppler difference between the local
multipath signals. As such, it is of a great interest to analyze
the Doppler signatures, resolve them, and apply the proposed
Doppler analysis for target altitude estimation. Moreover, the
existing works [7], [13], [16] focus on the target parame-
ter estimation during the stable ionosphere conditions. In
practice, however, ionospheric conditions change over time
[20] and it is important to estimate target parameters in such
unstable ionosphere conditions.

The joint estimation of target range and ionosphere altitude
was considered in [21] by exploiting the maximum likelihood
estimation technique. However, the strategy exploited in [21]
does not account for the time variation of the ionosphere
and does not consider the target altitude. It is also noted
that, the approach described in [21] relies on an accurate
statistical model and, as a result, any deviation of the actual
parameters from the assumed statistical model results in
degraded parameter estimation performance.

In this paper, we revisit the problem in which the target
maintains a constant horizontal speed without changing its
altitude. Analysis results reveal that the Doppler signatures
corresponding to different local multipath components still
provide resolvable Doppler frequency differences. To gain
more insights, we consider a flat-earth model and derive
analytical formulations with approximations held under the
assumption that the target range is much larger than the
ionosphere height and the target altitude. We then verify
the results using numerical simulations that are held without
using the approximations. The approximated analysis show
that the Doppler signatures of the target are well modeled
as parallel chirp signals with Doppler frequency varying
linearly with time. The frequency difference between the
Doppler signatures is proportional to the carrier frequency,
the ionosphere height, target altitude, and target horizontal
velocity, but is inversely proportional to the square of the
target range.

On the other hand, the height of the ionospheric layers,
particularly the F-layer, is often time-varying. Such time-
variation in the ionosphere altitude changes the Doppler
signatures of the targets and induces additional frequency
difference between the multipath Doppler signatures. We
show that, depending on the related directions of the target
motion and the ionosphere, their respective contributions to
the Doppler frequency difference may be constructive or
destructive, which respectively make the resolved Doppler
signature easier or more difficult.

We verify our analysis with numerical simulations in dif-
ferent situations with and without variation in the ionosphere
height. The time-varying Doppler signatures are analyzed for
a coherent processing interval (CPI) and the results are pre-
sented using spectrograms. The fractional Fourier transform
(FrFT) [22], [23] is used to detect the chirp rate as well
as the frequency shift. These chirp parameters are used to
estimate the target velocity and ionosphere velocity, and ac-
curate parameter estimation is achieved. Note that the use of
FrFT permits us to exploit a long CPI. While time-frequency
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analysis with a long CPI is often used to enhance the target
signal and to mitigate range migration of maneuvering targets
[24], [25], our goal is to achieve an improved resolution of
local multipath signal components with very small Doppler
frequency differences.

We improve the frequency resolution of Doppler signa-
tures by exploiting subspace-based methods, such as multiple
signal classification (MUSIC) [26] and estimation of signal
parameters via rotational invariant techniques (ESPRIT) [27],
using the de-chirped data of the received signal. However,
due to the long CPI, the resulting size of the data covari-
ance matrix is large, making the eigenvalue decomposition
required by these algorithms computationally expensive. For
this reason, we propose a computationally efficient version of
the least absolute shrinkage and selection operator (LASSO)
[29] which employs a spectral focusing transform. This strat-
egy enables LASSO to only focus on the area of our spectral
interest and reduces the size of the received data without
severely compromising the estimation performance. Further-
more, we show that the frequency resolution capability and
the computational efficiency of the proposed approach is
higher than that of MUSIC and ESPRIT, making it a more
favorable strategy to resolve the Doppler signatures.

The contribution of this paper is summarized as follows:
• In the previous works that exploited three closely sepa-

rated local multipath Doppler components, the vertical
velocity of target is essential to offer sufficient intra-
Doppler spectral separation between local multipath
Doppler signatures, from which useful target velocity
and altitude information can be derived. In this context,
we reveal, for the first time, that a target maintaining a
constant altitude also produces distinct local multipath
Doppler signatures. While such Doppler difference is
much smaller, it can still be resolved to enable extraction
of important target information.

• We derive expressions for the average Doppler fre-
quency of the local multipath Doppler signatures and
their differences which are represented with respect to
target velocity, target altitude, and ionosphere height.
Depending on the directions of the target and ionosphere
velocities, their contributions to the Doppler signatures
add either constructively or destructively. Their con-
structive contributions result in a higher Doppler fre-
quency difference, whereas their destructive contribu-
tions yield a closer separation, making their Doppler
frequency separation difficult.

• The difference between the multi-component Doppler
frequencies is small. To obtain accurate Doppler
frequency estimation in such challenging situations
with a low complexity, we develop a frequency fo-
cused LASSO algorithm which transforms the high-
dimensional de-chirped target data to a low dimen-
sion while preserving the spectral content of interest.
Compared to the classical subspace-based methods, the
proposed approach provides improved frequency reso-
lution and estimation accuracy with a low computational

complexity.
• We develop a mechanism to accurately estimate the tar-

get altitude and velocity, along with the ionosphere ve-
locity, based on the estimated parameters of the Doppler
signatures associated with the target and clutter. The
effectiveness of the proposed approach and its superi-
ority over existing methods are verified using extensive
simulation examples.

The remainder of the paper is organized as follows. Signal
models and necessary preliminaries are introduced in Section
II. In Section III, we present the mathematical relations for
Doppler frequencies and target parameter estimation for the
case of stable ionosphere. Section IV provides the analysis
of the Doppler signatures induced by ionosphere as well as
target motions and develops mathematical relations for target
parameter estimation. In Section V, the Doppler frequency
separation and estimation, which are required to estimate
the target parameters, are considered by employing conven-
tional fractional Fourier transform techniques. In Section VI,
we propose a novel low-complexity frequency estimation
method based on LASSO. Simulation results are presented
in Section VII, whereas Section VIII concludes this paper.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, (.)T and (·)∗
respectively denote the transpose and conjugate operators
of a matrix or vector. Moreover, ‖·‖1 and ‖·‖2 respectively
denote the l1- and l2-norms of a vector, whereas diag(·)
represents a diagonal matrix with the elements of a vector as
the diagonal entries and E[·] shows the expectation operator.

II. SIGNAL MODEL

A. MULTIPATH PROPAGATION GEOMETRY

Consider a flat-earth ionosphere model as shown in Fig. 1,
where H is the height of the ionosphere layer, and h is the
height of the target [13]. A coarse estimate of the initial
height of the ionosphere layer, H , is considered known from
ionosonde monitoring. In Fig. 1, the targets and propagation
paths below the ionosphere are physically present, whereas
those above the ionosphere are virtual images through the
ionosphere layer and ground reflections for convenience of
slant range computations.

As we observe in Fig. 1, the specular earth surface reflec-
tion near the target position yields different propagation paths
of the emitted/received signals which are represented by the
three groups of signal components. For the first component,
both the emitted and received signals propagate along path I,
whereas for the second component, both the emitted and re-
ceived signals propagate along path II. The third component
comprises two round-trip paths, one emitting along path I and
returning along path II, and the other emitting along path II
and returning along path I.

From Fig. 1, the one-way slant ranges l1 of the direct path
and l2 of the local multipath can be expressed in terms of the
ground range distance R, the ionosphere altitude H , and the
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target altitude h, as

l1 =
(
R2 + (2H − h)2

) 1
2 = R

(
1 +

4H2 + h2 − 4Hh

R2

) 1
2

,

(1a)

l2 =
(
R2 + (2H + h)2

) 1
2 = R

(
1 +

4H2 + h2 + 4Hh

R2

) 1
2

.

(1b)

Note that, in the above expressions, l1, l2, and R are time-
varying, and H may or may not change over time. For
notational simplicity, we omitted the explicit notation of (t)
throughout this paper.

B. DOPPLER SIGNATURES
The slant range of the three round-trip paths (path 1: [l1, l1],
path 2: [l2, l2], and path 3: [l1, l2] or [l2, l1]) are given as:

L1 = 2l1, L2 = 2l2, L3 = l1 + l2, (2)

and the corresponding Doppler signatures are given by

fD,i = −fc
c

dLi
dt

, i = 1, 2, 3, (3)

where fc denotes the carrier frequency and c is the velocity
of the electromagnetic wave.

In practice, R � H � h holds. To gain insightful obser-
vations of the relationship between the Doppler frequencies
and the target motion as well as changes in the ionosphere
height, we apply a first-order Taylor series expansion and
approximation on Eq. (1) to get:

l1 ≈ R+
4H2 + h2 − 4Hh

2R
≈ R+

2H2 − 2Hh

R
, (4a)

l2 ≈ R+
4H2 + h2 + 4Hh

2R
≈ R+

2H2 + 2Hh

R
. (4b)

C. DOPPLER CHARACTERISTICS
For a maneuvering target, its horizontal and vertical motions
collectively contribute to the target Doppler frequency char-
acteristics. In previous works [7], [16], we mainly focused
on the effect of the target motion, and both horizontal and
vertical motions were considered. In this paper, we consider
a different scenario where the target flies with a constant
horizontal velocity and at a fixed altitude, whereas the height
of the ionosphere is considered to vary with a constant speed.
In this case, we obtain from Eq. (4b) that

dl1
dt
≈ Ṙ+

2H

R2
[2ḢR−HṘ]− 2h

R2
[ḢR−HṘ], (5a)

dl2
dt
≈ Ṙ+

2H

R2
[2ḢR−HṘ] +

2h

R2
[ḢR−HṘ]. (5b)

In this paper, we only consider the case where both Ḣ and
Ṙ are constant. Note that, for both target and the ionosphere
layer, the positive velocity is defined such that the value of the
target range or the ionosphere height increases. The case with
an unchanged ionosphere height is considered as a specific
case with zero velocity, i.e., Ḣ = 0.

The Doppler frequencies of the three different paths are
then respectively given as

fD,1 = f̄D + ∆fD, (6a)
fD,2 = f̄D −∆fD, (6b)
fD,3 = f̄D, (6c)

where

f̄D = −fc
c

d(l1 + l2)

dt
≈ −2fc

c
Ṙ− 4fcH

cR2
[2ḢR−HṘ],

(7a)

∆fD = −fc
c

d(l1 − l2)

dt
≈ 4fch

cR2
[ḢR−HṘ]. (7b)

Therefore, the Doppler signatures for paths 1 and 2 are
symmetric with respect to that of path 3. The average Doppler
component, f̄D, is shared by all three paths, whereas the
small frequency difference between the Doppler signatures
corresponding to different paths is characterized by ∆fD.
Note that both f̄D and ∆fD are functions of Ṙ and Ḣ .
Moreover, the results in Eqs. (6) and (7) also apply to the
Doppler signature of the clutter by letting h = 0 and Ṙ = 0.

D. RECEIVED SIGNALS
The received signal at the OTHR receiver is the sum of
three multipath Doppler components and can be expressed
as follows:

x(t) =A1e
j(2π

∫ T
0
f̄Ddt+φ1) +A2e

j(2π
∫ T
0

(f̄D+∆fD)dt+φ2)

+A3e
j(2π

∫ T
0

(f̄D−∆fD)dt+φ3) + w(t),
(8)

where Ai denotes the respective signal magnitudes for the
three chirp signals, and φi are their corresponding initial
phases. The noise term w(t) is considered to be circularly
complex zero-mean white Gaussian noise of variance σ2

w and
j =
√
−1. The error analysis of such chirp signals in the time-

frequency domain has been extensively discussed in [28].
As discussed in [13], [17], [18], a detectable value of ∆fD

enables the individual estimation of fD,1, fD,2, and fD,3. In
this case, they can be used to estimate the parameters related
to the target and the ionosphere layer. We considered three
parameters, namely, the target altitude (h), the target speed
(Ṙ), and the ionosphere velocity (Ḣ).

III. STABLE IONOSPHERE LAYER CASE
In this section, we analyze the Doppler signatures and target
parameter estimation for the case where the altitude of the
ionosphere layer does not change over time, i.e., Ḣ = 0.
The case with time-varying ionosphere height is considered
in Section IV.

A. DOPPLER SIGNATURE ANALYSIS
When the ionosphere height does not change over time (i.e.,
Ḣ = 0), the Doppler frequency generated by the ground
clutter lies at zero frequency. For a target moving with a
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constant horizontal speed Ṙ, the average and the difference
Doppler frequencies of the target respectively become

f̄D ≈ −
2fc
c
Ṙ+

4fc
cR2

H2Ṙ, ∆fD ≈ −
4fc
cR2

HhṘ. (9)

Not surprisingly, the average target Doppler frequency
is almost constant (with very small variations due to the
changes in H and R). It is important to note that the differ-
ence Doppler frequency ∆fD is non-zero, and its magnitude
is proportional to fc, H , h, and Ṙ, and inversely proportional
to R2. Since R does not significantly change during a CPI,
the Doppler signatures can be well-characterized as three
parallel chirps.

The required CPI depends on the Doppler difference be-
tween the local multipath signal components. For the param-
eters considered in this paper, the Doppler difference between
the local multipath signal components is generally in the
order of a fraction of a Hz. We know that the required ob-
servation time T to resolve two closely separated frequencies
with a separation of ∆f is given by T ∝ 1/∆f . Therefore,
a long CPI is typically required to resolve a small frequency
separation between the three local multipath Doppler compo-
nents generated by the target. Such a long CPI is supported
by the current state-of-the-art [7], [18], [24], [25]. It is noted
that the use of a long CPI may reduce the surveillance volume
and frequency of revisits. However, a desirable frequency of
revisits may be maintained by using multi-beam operation
and time-frequency analysis for signals with missing samples
[30]–[33]. The latter enables processing of discontinuous
sensing data.

B. TARGET PARAMETER ESTIMATION
If the Doppler signatures are resolvable, the estimated values
of f̄ and ∆f can be exploited to obtain the target parameters.
From Eq. (9), we can estimate the target altitude as

ĥ =
(R2 − 2H2)∆fD

2Hf̄D
. (10)

On the other hand, the target velocity is estimated from Eq.
(9) as

ˆ̇R = − cR2f̄D
2fc(R2 − 2H2)

. (11)

IV. TIME-VARYING IONOSPHERE ALTITUDE CASE
In this section, we analyze the multipath Doppler signatures
resulting from the target as well as the ionosphere for the
case when the ionosphere height undergoes a change over
time. For this purpose, the target and ionosphere velocity Ḣ
is assumed to be constant over a CPI.

A. DOPPLER SIGNATURE ANALYSIS
The resulting Doppler signatures due to the target are ex-
pressed in Eq. (7). For this case, Ḣ contributes to both
the average Doppler frequency and the difference Doppler
frequency. Note that the difference Doppler frequency is now
proportional to ḢR −HṘ. These parameters may add con-
structively or destructively, depending on the moving direc-

tions of the target and the ionosphere layer. As they are in the
same order of magnitude, a destructive combination of their
contributions will significantly reduce the difference Doppler
frequency. For example, when the target moves towards the
radar (with a negative velocity) and the ionosphere layer
ascends (with a positive velocity), they add constructively,
rendering a higher value of |∆fD| for easier separation of
the three components. On the other hand, when one of these
two components changes direction, |∆fD| becomes smaller
and the Doppler signatures of the multipath signals become
more difficult to resolve.

B. IONOSPHERE VELOCITY ESTIMATION FROM
CLUTTER DOPPLER SIGNATURE

As we can see from the above discussion, one of the im-
portant parameters that affect the observed target Doppler
signatures is the ionosphere velocity. While the OTHR sys-
tem typically provides a coarse estimate of the ionosphere
altitude from ionosonde outputs, it generally does not provide
a timely update about the ionosphere velocity. As such, the
ionosphere velocity should be estimated.

We consider the clutter Doppler frequencies in Eq. (7) by
letting Ṙ = 0 and h = 0. As such, the Doppler difference
∆fD,clutter = 0, as there are no local multipaths for the
ground clutter, whereas the average Doppler frequency is
given by

f̄D,clutter ≈ −
8fcH

cR
Ḣ. (12)

Hence, given a coarse knowledge of the initial target range
and the initial ionosphere height, the ionosphere velocity can
be estimated from the observed clutter Doppler frequency as

ˆ̇H = −cRf̄D,clutter

8fcH
. (13)

In practice, the clutter Doppler signature may suffer from
Doppler spreading and smearing due to the distributed nature
of the clutter reflections. In the case of sea clutter, it is
also contaminated by the ocean waves, which are typically
characterized by the Bragg frequencies.

C. VARIATION RATE OF THE DOPPLER FREQUENCIES

From the approximated Doppler frequencies in Eq. (7), we
can derive the chirp rate, i.e., the derivative of the average
Doppler frequency f̄D with respect to time, as:

˙̄fD ≈ −
8fc
cR3

(ḢR−HṘ)2, (14)

which is apparently negative. The term (ḢR − HṘ) is the
same as that in the ∆fD expression in Eq. (7). That is, when
the motion of the target and the ionosphere constructively
contribute to enlarge the Doppler difference, the Doppler
signature has a more steep slope.

Note that this conclusion is derived for the case when the
target and the ionosphere are moving with constant veloci-
ties. Specifically, for clutter, Ṙ = 0, and the above expression
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becomes:
˙̄fD,clutter ≈ −

8fc
cR

Ḣ2. (15)

D. TARGET PARAMETER ESTIMATION

To estimate the target parameters and ionosphere velocity,
we first isolate Ṙ from Eq. (8a), and obtain the following
estimate of the target velocity:

ˆ̇R = − R2

R2 − 2H2

(
cf̄D
2fc

+
4HḢ

R

)
, (16)

where the ionosphere velocity Ḣ is estimated from Eq. (13).

The target altitude h can be obtained by substituting the
estimated Ṙ and Ḣ into Eq. (8b). Because the estimate of
Ṙ depends on the average frequency f̄D, we express the
estimate of the target altitude as

ĥ =
cR∆fD

(
R2 − 2H2

)
2cRHf̄D + 4fcḢ (R2 + 2H2)

(17)

to explicitly show the dependence of ĥ on both the average
Doppler frequency, f̄D and the difference Doppler frequency,
∆fD.

Note that, for target parameter estimation, a coarse esti-
mate of the ionosphere height is assumed to be known from
ionosonde monitoring. Since ionosonde monitoring does not
necessarily provide real-time data of ionosphere, the iono-
sphere velocity can be estimated using Eq. (15). We can
also utilize Eq. (15) to keep track of the ionosphere height
between the ionosonde updates.

V. DOPPLER SIGNATURE SEPARATION

In this section, we discuss Doppler signature separation for
OTHR by employing conventional time-frequency methods.
A convenient way to visually analyze the time-varying fre-
quency components is by constructing a spectrogram which
is defined as the magnitude square of the short-time Fourier
transform and is expressed for a signal x(t) as

S(t, f) =

∣∣∣∣∫ ∞
−∞

x(u)g(t− u) exp(−j2πfu)du

∣∣∣∣2 , (18)

where g(t) is a window function.

Since all the received OTHR signals are regarded as paral-
lel chirp signals, various methods, that have been developed
for chirp parameter estimation, can be used to estimate the
chirp parameters. In this paper, we use FrFT to estimate
the chirp rate and frequency separation of the Doppler
components. High-resolution frequency estimation will be
discussed in the next section.

The α-angle FrFT of a signal x(t), denoted as Xα(u), is
defined as [22], [23]:

Xα(u) =

∫ ∞
−∞

x(t)Kα(t, u)dt, (19)

where

Kα(t, u) =



√
1− jcot (φ)

2π
ej

u2

2 cot(φ)

×ej t
2

2 cot(φ)e−ju csc(φ), φ 6= kπ,

δ(t− u), φ = 2kπ,

δ(t+ u), φ+ π = 2kπ,
(20)

k is a non-negative integer, u is the angular fractional fre-
quency, and φ = απ/2. Once the optimal rotation angle αopt,
which aligns a chirp as a sinusoid in the fractional frequency
domain, is determined, we can find the chirp rate using the
following equation [22], [23]:

µ̂ = − cot
(
αopt

π

2

) f2
s

N
, (21)

where µ̂ is the estimated chirp rate of the Doppler com-
ponents and fs is the pulse repetition frequency. Moreover,
N = fsT is the number of samples used for calculating the
FrFT and T is the coherent processing time.

The centroid frequency of the chirp can be found as [34]:

fcenter =
ffrft

sin(αoptπ/2)
, (22)

where ffrft = upeakfs/π and upeak is the estimated peak
angular frequency of the individual chirp in the fractional
domain.

VI. IMPROVED DOPPLER FREQUENCY ESTIMATION
BASED ON FREQUENCY FOCUSED LASSO
The FrFT considered in the previous section is not a high
frequency resolution technique. To analyze closely separated
Doppler signatures, we propose a variant of the LASSO
algorithm, which provides better frequency resolution and is
computationally more efficient compared to existing meth-
ods.

Because all the Doppler components in x(t) have the same
chirp rate µ which can be estimated using Eq. (21), the
estimated chirp rate µ̂ can be exploited to stationarize or de-
chirp the received signal x(t) as:

y(t) = x(t)e−jπµt2 ≈ x(t)e−jπµ̂t2

≈ A1e
j(2πf̄Dt+φ1) +A2e

j(2π(f̄D+∆fD)t+φ2)

+A3e
j(2π(f̄D−∆fD)t+φ3) + w̃(t),

(23)

where w̃(t) is the noise term. Because y(t) contains multiple
sinusoidal signal components, conventional high-resolution
spectrum estimation methods, such as MUSIC [26] and ES-
PRIT [27], can be employed to resolve the three Doppler
components from y(t). However, due to the long CPI, these
methods need to perform eigen- or singular-value decompo-
sition of the data covariance matrix with a high dimension,
which is computational very intensive. In the following, we
propose a computationally efficient version of LASSO [29]
by employing a spectral focusing transform to focus only
on the area of our spectral interest. This approach results in
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a more computationally efficient estimation of the Doppler
signatures.

The proposed strategy exploits the spectral range of in-
terest along with the estimated chirp rate estimated by the
FrFT. Furthermore, it employs a LASSO-based regression on
the reduced-dimension data to extract the sparse frequency
estimates. For this purpose, we first adopt the signal model
for a LASSO-based frequency estimation. The data vector of
the sampled de-chirped signal y(t) is constructed as:

y = [y(1), y(2), · · · , y(N)]T. (24)

We construct an inverse Fourier transform dictionary matrix
corresponding to a K-point fine grid of frequencies as:

A = [a(f1),a(f2), · · · ,a(fK)], (25)

where fk denotes the kth frequency on the grid and

a(f) = [1, ej2πft, ej4πft, · · · , ej2(N−1)πft]T. (26)

It is important to note that, because we have the coarse
knowledge of the spectral range of interest through the FrFT,
the dictionary matrix A corresponds only to this spectral
range so that the number of columns K is much lower
than the case with the entire frequency band being taken
into account. The LASSO algorithm performs the following
optimization [29]:

r̂ = arg min
r
‖Ar− y‖22 + η ‖r‖1 , (27)

where r is a K × 1 sparse column vector whose non-
zero elements select the columns in the dictionary matrix
A corresponding to the estimated frequencies and η is the
regularization parameter. The computational complexity of
LASSO exploiting the least angle regression (LARS) algo-
rithm [35] forN×1 data vector y andK×1 sparse vector r is
O(K3 +NK2). In order to further reduce this computational
load, we exploit again the coarse knowledge of the spectral
range of interest to project y into the focused frequency band.
For this purpose, we construct a B × N frequency focusing
matrix B (with B � K � N ) whose B rows collectively
cover the focused spectral range of interest. The b-th row of
B is given by

[B]b =
1

N

[
ej(N−1

2 )b 2π
N , ej(N−3

2 )b 2π
N , · · · , e−j(N−1

2 )b 2π
N

]
,

(28)
which corresponds to a frequency sector centered at bfs/N .
The function of the matrix B is analogous to the beamspace
processing matrix [36] used in beamspace direction-of-
arrival estimation problems which enables data processing
only for a specific spatial sector of interest and significantly
reduces the computational complexity. The frequency fo-
cused data vector and the corresponding dictionary matrix
take the following form:

ỹ = By, Ã = BA. (29)

The new data vector ỹ and the dictionary matrix Ã have sizes
B×1 andB×K, respectively. The resulting optimization for

TABLE 1. Simulation parameters

Parameter Notation Value
Initial range R(0) 2,500 km
Initial ionosphere height H(0) 350 km
Aircraft altitude h(0) 20 km
Target holizontal velocity Ṙ 300 m/s
Ionosphere vertical velocity Ḣ 55 m/s
Carrier frequency fc 16 MHz
Pulse repetition frequency fs 80 Hz
Number of slow-time samples N 9,600

frequency estimation using the frequency focused LASSO
approach takes the following form:

r̂ = arg min
r

∥∥∥Ãr− ỹ
∥∥∥2

2
+ η ‖r‖1

= arg min
r
‖B (Ar− y)‖22 + η ‖r‖1 .

(30)

The computational complexity of the frequency focused
LASSO is reduced to O(K3 + BK2), which is much lower
compared to the complexity of O(K3 + NK2) for LASSO
and O(N3/8) for the eigen-decomposition involved in MU-
SIC and ESPRIT.

VII. SIMULATION RESULTS
We consider a target flying at an altitude of 20 km at the initial
range of 2,500 km. The ionosphere height is assumed to be
350 km. The OTHR is operating with a carrier frequency of
16 MHz and a pulse repetition frequency of 80 Hz. The input
signal-to-noise ratio (SNR) for each Doppler component is
assumed to be the same at −15 dB. The complete list of
parameters is shown in Table I unless otherwise specified.
A CPI of 120-second is considered as a default scenario,
but an example of 60-second CPI is also presented. For
computing spectrograms, a 4096-point Hamming window
spanning a time period of 51.2 seconds is used. For chirp
rate estimation using FrFT, we employ a two-stage strategy
to find the rotation angle. In the first stage, we employ a 100-
point grid between α = 0.995 and α = 1.005. In the second
stage, we employ a 200-point grid centered around the peak
of the first stage having a grid step size of ∆α = 10−6.

First, we illustrate the simulation performance for classical
time-frequency approaches of spectrogram and FrFT. In the
subsequent sub-section, the performance of high-resolution
frequency estimation algorithms and the proposed frequency
focused LASSO will be discussed.

A. PERFORMANCE OF CONVENTIONAL FREQUENCY
ESTIMATION METHODS
1) Stable Ionosphere Case
In this sub-section, we investigate Doppler frequency sepa-
ration and target localization performance for a stable iono-
sphere (Ḣ = 0). For the parameters listed in Table I, the av-
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FIGURE 2. Doppler signatures of local multipath signals due to the motion of target for a stable ionosphere case (Ḣ = 0). (a) Simulated Doppler signature; (b)
Spectrogram; (c) Fractional Fourier transform; (d) Peak detection in rotation angle α and frequency domains. Figs. 2(b)–2(d) are computed with input SNR = −15
dB.

erage target Doppler component f̄D computed using Eq. (2)
varies from 30.81 Hz to 30.78 Hz for an observation period of
120 seconds and is shown in Fig. 2(a). The value computed
from the approximation in Eq. (9) varies from 30.74 Hz to
30.71 Hz. On the other hand, the Doppler difference ∆fD
computed from the simulated slant range varies from 0.0640
Hz to 0.0657 Hz, and that computed from the approximated
expression varies from 0.0717 Hz to 0.0738 Hz. Note that the
difference due to the approximation is smaller in the average
Doppler frequency and is higher in the Doppler difference.
Note that the clutter has a zero Doppler frequency in this case
due to a stationary ionosphere and is thus well separated from
the target Doppler signature and can easily be filtered out.

Fig. 2(c) shows the FrFT results, with each column depict-
ing the results corresponding to different rotation angle α.
The three resolved peaks are detected when the correct rota-
tion angle is chosen. To examine the values more clearly, we
show the maximum magnitude with respect to the rotational
angle in the upper panel of Fig. 2(d), and the peak is detected
at αopt = 0.999735. In the lower panel of Fig. 2(d), we show
the magnitude spectrum of the FrFT corresponding to the
above-mentioned rotation angle, αopt. The three peaks are
clearly identified at 30.7260 Hz, 30.7926 Hz, and 30.8593 Hz

in the fractional Fourier domain. As a result, the difference
Doppler frequency is estimated to be 0.0666 Hz. According
to Eq. (21), the obtained rotation angle can be mapped to the
chirp rate of −2.77× 10−4 Hz/s which is close to the actual
chirp rate of −2.5× 10−4 Hz/s.

Recall that the resolution capability of the local multipath
components is a function of the value of ∆fD. Because
signals are deemed resolvable when the CPI is inversely
proportional to the difference Doppler frequency, the Doppler
signatures considered in this case become resolvable with
data observations as short as several seconds. Furthermore,
as we discussed above, the Doppler difference is proportional
to fc, H , h, and Ṙ, whereas it is inversely proportional to the
square of the ground range. That is, higher values of fc,H , h,
and Ṙ, or lower value of R will yield a larger value of ∆fD
and render the detection of the three Doppler components
easier.

From the estimated average Doppler frequency and the
difference Doppler frequency, the target altitude is estimated
as 18,555 meters, which is very close to the actual target
altitude of 20, 000 meters.
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2) Dynamic Ionosphere Case
Note that the difference Doppler frequency is now propor-
tional to ḢR − HṘ. For the parameters listed in Table I,
the magnitude of ḢR(0) is 1.375 × 108 m2/s, whereas the
magnitude of H(0)Ṙ is 1.05 × 108 m2/s. The former is
approximately 1.31 times the latter. They may add construc-
tively or destructively, depending on the moving directions
of the target and the ionosphere layer. As they are in the
same order of magnitude, destructive combination of their
contributions will significantly reduce the difference Doppler
frequency.

To verify this, we perform simulations in two scenarios,
where the ionosphere velocity respectively takes values of 55
m/s and−55 m/s [20]. The target velocity remains−300 m/s.
The values of ionosphere velocity considered here represent
the extreme cases of Doppler frequency estimates [20] and
the lower values are much more typical. As such, the first
case (Ḣ = 55 m/s) renders a higher value of |∆fD|, whereas
the second case yields a smaller value of |∆fD|.

Fig. 3 shows the first scenario, where the Doppler dif-
ference varies from 0.148 Hz to 0.151 Hz over the 120-
second period. As expected, it is about 2.31 times the value
obtained in the stable ionosphere case. In this case, the
three components are clearly separated in the spectrogram
and in the fractional Fourier domain. The rotation angle
that yields the peak value in the upper panel of Fig. 3(d)
is αopt = 0.9986, and the Doppler difference obtained
from the lower panel of Fig. 3(d) is 0.150 Hz. The average
Doppler frequency corresponding to the center position is
27.560 Hz, which matches well the middle-point value (at
time of 60 seconds) of the simulated Doppler frequency,
which varies from 27.651 Hz to 27.476 Hz. For this case, the
chirp rate calculated using the rotation angle and Eq. (21) is
−1.5×10−3 Hz/s, which again coincides well with the actual
chirp rate of −1.46× 10−3 Hz/s. It is noted that the Doppler
frequencies in this case contain the contributions from the
motions of both the target as well as the ionosphere layer.

Fig. 4 shows the second scenario, where the Doppler
difference varies from −0.0198 Hz to −0.0204 Hz over the
120-second period. It confirms that the Doppler difference
is about 31% the value obtained in the stable ionosphere
case (notice the change of the sign as ḢR has a higher
magnitude than HṘ). In this case, the separation of the three
components becomes less clear in both the spectrogram and
in the fractional Fourier domain. In Fig. 4(b), we used a
longer window size of 8, 192 points (which amounts to 102.4
seconds) for better frequency resolution. The rotation angle
that yields the peak value in the upper panel of Fig. 4(d)
is αopt = 0.99997, and the Doppler difference obtained
from the lower panel of Fig. 4(d) is 0.0208 Hz (note that the
time-frequency analysis cannot provide the sign information
of the Doppler difference). The average Doppler frequency
corresponding to the center position is 33.976 Hz, which
still matches well the middle-point value of the simulated
Doppler frequency, which varies from 33.978 Hz to 33.974
Hz. The chirp rate calculated using the fractional Fourier

frequency for this case is −3.14× 10−5 Hz/s, which is close
to the actual chirp rate of −3.33× 10−5 Hz/s.

Fig. 5 shows the actual clutter Doppler signatures corre-
sponding to the two scenarios discussed above. For the
former, the clutter Doppler frequency varies from −3.164
Hz to −3.219 Hz, whereas for the latter, it varies from 3.164
Hz to 3.108 Hz. This actual clutter frequency is obtained
from Eqs. (1)–(3) by substituting h = 0. Note that Eq. (12),
which is the basis for calculating the ionosphere velocity,
provides the approximated clutter frequency.

Recall that the difference Doppler component is propor-
tional to ḢR−HṘ which can add constructively or destruc-
tively depending on the values of Ṙ and Ḣ . Therefore, ex-
treme values of Ḣ are used in simulation results to emphasize
the easiest and hardest cases of Doppler frequency resolution.
It is evident from Fig. 3 that the resulting Doppler signatures
have maximum spectral distance from each other, resulting in
the easiest case for frequency resolution. On the other hand,
Doppler signatures were extremely close to each other in Fig.
4, illustrating the most challenging case. As these extreme
cases were successfully resolved, it is evident that all typical
values for Ḣ will lead to resolvable Doppler signatures.

Fig. 6 shows the peak detection results of the FrFT for both
cases of Ḣ = 55 m/s and Ḣ = −55 m/s. The input clutter-to-
noise ratio (CNR) is 35 dB. The estimated rotation angle for
both cases is αopt = 0.99956, which translates to a chirp rate
of −4.607 × 10−4 Hz/s. The estimated Doppler frequency
at the middle-point is −3.1955 Hz for the Ḣ = 55 m/s case
and 3.1288 Hz for the Ḣ = −55 m/s case. To estimate the
ionosphere velocity, we map the Doppler frequency at time
0 (seconds) so as to use the initial values of R and H . As
such, the initial Doppler frequencies in both cases become
−3.1672 Hz and 3.1571 Hz, and the corresponding estimates
of the ionosphere velocity are 53.03 m/s and −52.85 m/s.

For the first case where the ionosphere moves with a veloc-
ity of 55 m/s, the estimated average Doppler frequency at the
initial state is 27.47 Hz, and the difference Doppler frequency
is 0.15 Hz. As a result, the estimated target velocity and target
altitude are −298.95 m/s and 18, 526 m, respectively.

Similarly, for the second case where the ionosphere moves
with a velocity of−55 m/s, the target velocity and altitude are
estimated as −300.59 m/s and 22, 639 m, respectively. The
estimated target velocity is accurate, whereas the estimated
target altitude has some discrepancies due to the Taylor
approximated model in computing the path lengths. It is
important to note that existing methods for target parameter
estimation do not consider the problem for ionosphere to
experience any drift in the elevation velocity.

B. HIGH-RESOLUTION FREQUENCY ESTIMATION
USING MUSIC, ESPRIT, LASSO, AND PROPOSED
FOCUSSED LASSO
Now, we illustrate the performance of MUSIC, ESPRIT, and
LASSO algorithms for Doppler frequency estimation and
compare the results with the proposed frequency focused
LASSO algorithm. For MUSIC, LASSO, and frequency
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FIGURE 3. Doppler signatures of local multipath signals for the case of a moving ionosphere at Ḣ = 55 m/s. (a) Simulated Doppler signature; (b) Spectrogram; (c)
Fractional Fourier transform; (d) Peak detection in rotation angle α and frequency domains. Figs. 3(b)–3(d) are computed with input SNR = −15 dB.

focused LASSO simulations, we use a ±0.2 Hz spectral
sector of interest around the frequency peak of FrFT and
a frequency resolution of 0.002 Hz, rendering K = 200
frequency grid points for these methods. The results by
ESPRIT are rounded-off for fair comparison. For frequency
focused LASSO, we use B = 60 rows for the 1-Hz spectral
sector. Note that all these algorithms are employed on the
de-chirped version of the received signals. The estimated
chirp rate in Eq. (21) is used to de-chirp the received OTHR
signals. Note also the fact that B � K � N results in a
highly computationally efficient frequency estimation using
the frequency focused LASSO.

For the scenarios depicted in Figs. 2–4, we employ high
resolution frequency estimation algorithms discussed in this
section. All the strategies presented in this section provide the
same estimation performance for the three scenarios being
considered, but the frequency focused LASSO requires a
much lower computational complexity. For the cases of a
stable ionosphere (Ḣ = 0), positive ionosphere velocity
(Ḣ = 55 m/s), and negative ionosphere velocity (Ḣ = −55
m/s), the corresponding target altitudes estimated using Eqs.
(10) and (17) are 18,097 m, 18,545 m, and 21,768 m, respec-
tively. The errors in the altitude estimates are primarily due
to the Taylor approximation exploited in the data model.

For the three different simulation scenarios discussed here,
we compare the numeric results of the proposed frequency
focused LASSO strategy with FrFT and conventional Fourier
transform in Table 2. Note that the conventional Fourier
transform does not successfully resolve three Doppler sig-
natures for all the scenarios due to the chirp nature of the
frequency components. We can visually inspect from Figs.
2(a), 3(a), and 4(a) that the resulting Doppler components
have the highest chirp rate for the case of Ḣ = 55 m/s.
Although the corresponding Doppler components for this
case are well separated in the spectral domain with the
highest value of ∆f , the conventional Fourier transform
fails to resolve the three Doppler signatures due to their
high chirp rates. On the other hand, the proposed frequency
focused LASSO approach provides better estimates of the
three Doppler frequencies.

In order to compare all the algorithms considered in this
paper, the root mean squared error (RMSE) of the three
cases under consideration is plotted in Fig. 8 using 100
Monte Carlo trials. All the RMSE results show that the
proposed frequency focused LASSO approach provides the
same estimation performance as the LASSO but with a
substantial reduction in the computational complexity, and
is the most computationally efficient Doppler frequency esti-
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FIGURE 4. Doppler signatures of local multipath signals for the case of a moving ionosphere at Ḣ = −55 m/s. (a) Simulated Doppler signature; (b) Spectrogram;
(c) Fractional Fourier transform; (d) Peak detection in rotation angle α and frequency domains. Figs. 4(b)–4(d) are computed with input SNR = −15 dB.

TABLE 2. Summary of Doppler frequency estimation results using conventional and proposed frequency estimation strategies

Fourier
Parameter Actual Transform FrFT Proposed
f̄D (Ḣ = 0 m/s) 30.814 Hz 30.80 Hz 30.792 Hz 30.812 Hz
∆̄fD (Ḣ = 0 m/s) 0.064 Hz 0.063 Hz 0.066 Hz 0.065 Hz
f̄D (Ḣ = 55 m/s) 27.651 Hz failed 27.650 Hz 27.652 Hz
∆̄fD (Ḣ = 55 m/s) 0.148 Hz failed 0.150 Hz 0.149 Hz
f̄D (Ḣ = −55 m/s) 33.978 Hz 33.979 Hz 33.979 Hz 33.978 Hz
∆̄fD (Ḣ = −55 m/s) 0.198 Hz 0.195 Hz 0.196 Hz 0.200 Hz

mation approach among all those being considered here. On
average, the computation time of the MUSIC, ESPRIT, and
LASSO for one trial is more than 2 minutes each, whereas
the frequency focused LASSO provides frequency estimates
in less than 2 seconds. The RMSE of the MUSIC, LASSO,
and frequency focused LASSO is lower than the ESPRIT and
FrFT for the −30 dB to −25 dB input SNR cases because
of the narrow search range of ±0.2 Hz around the FrFT
peak. In summary, all the high-resolution algorithms provide
comparable performance, but the frequency focused LASSO
is most computationally efficient. The saturation region for
SNR to be greater than−25 dB is due to the off-grid rounding
effects of frequency grids. For fair comparison, the floating
point accuracy of ESPRIT estimates is also kept the same as

other algorithms by rounding-off the frequency estimates to
the nearest grid point.

VIII. CONCLUSION
In this paper, we analyzed the Doppler signatures of a target
with a constant horizontal velocity in an OTHR system. It is
revealed that these Doppler signatures due to local multipath
propagation can be characterized by parallel chirp signals and
their frequency difference renders these signatures resolvable
through time-frequency analyses. As such, the Doppler pa-
rameters of these signals, such as the average Doppler fre-
quency and chirp rate, can be estimated. These parameters, in
turn, enable the estimation of target altitude, target velocity,
and ionosphere velocity. We investigated the performance
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FIGURE 5. Doppler signatures of the clutter for a dynamic ionosphere case. (a) For an ionosphere velocity of 55 m/s; (b) For an ionosphere velocity of −55 m/s.
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FIGURE 6. Fractional Fourier transform of the clutter for a dynamic ionosphere moving with velocity of (a) 55 m/s and (b) −55 m/s. The input CNR is 35 dB.

of the proposed strategy by employing subspace-based fre-
quency estimation methods, such as MUSIC and ESPRIT.
Moreover, we proposed a reduced complexity version of
LASSO by employing a frequency focusing transform. We
argued that the existing classical frequency estimation meth-
ods exhibit high computational complexity and fail to resolve
the target Doppler signatures in challenging cases. On the
other hand, the proposed strategy provides high-resolution
frequency estimates and is computationally efficient. Sim-
ulation results evidently demonstrate the feasibility of the
proposed strategies for target altitude estimation.
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