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Abstract—Increased demand on spectrum sensing over a broad
frequency band requires a high sampling rate and thus leads
to a prohibitive volume of data samples. In some applications,
e.g., spectrum estimation, only the second-order statistics are
required. In this case, we may use a reduced data sampling rate
by exploiting a low-dimensional representation of the original
high dimensional signals. In particular, the covariance matrix
can be reconstructed from compressed data by utilizing its
specific structure, e.g., the Toeplitz property. Among a number
of techniques for compressive covariance sampler design, the
coprime sampler is considered attractive because it enables a
systematic design capability with a significantly reduced sampling
rate. In this paper, we propose a general coprime sampling
scheme that implements effective compression of Toeplitz co-
variance matrices. Given a fixed number of data samples, we
examine different schemes on covariance matrix acquisition for
performance evaluation, comparison and optimal design, based
on segmented data sequences.

Index Terms—Compressive covariance sampling, structured
matrix, coprime sampling, overlapping data segmentation

I. INTRODUCTION

Various applications require spectrum sensing over a broad
frequency band, which demand on the sampling rate and pro-
duce a large amount of data. In some cases, the original signal
is known to be sparse. This property allows the exploitation
of compressive sensing and sparse sampling approaches that
enable effective sparse signal reconstruction [3], [4], with no
loss of information. The signal reconstruction can be carried
out by a number of algorithms, such as orthogonal matching
pursuit (OMP), least absolute shrinkage and selection operator
(LASSO), and Bayesian compressive sensing [5]–[8].

Spectrum estimation based on the second-order statistics
adds to the abovementioned applications for signal reconstruc-
tion. In this case, the covariance function and the covariance
matrix can be constructed as low-dimensional representations
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of the original high-dimensional signals [9], [10]. This fact has
motivated the development of an alternate framework, referred
to as compressive covariance sampling, in which the signal
sparsity is not a requirement [11]–[13].

In this paper, we consider spectrum estimation of wide-
sense stationary (WSS) processes utilizing the Toeplitz prop-
erty of the covariance matrix. Note that, while our focus in
this paper is limited to the second-order statistics, extension
to techniques based on high-order statistics [14] is straightfor-
ward.

Several methods have been developed to tackle similar com-
pressive Toeplitz matrix sampling. For example, a generalized
nested sampler [15] was proposed to recover Toeplitz matrices
from a compressed covariance matrix. However, this approach
assumes an infinite number of data samples and does not
consider the achievable reconstruction performance when the
number of samples is finite. In addition, it imposes a minimum
sampling interval that follows the Nyquist criterion, which
makes it ineffective to implement low sampling rate systems
for wideband spectrum estimation. In [16], a minimal sparse
sampler was proposed through a set of properly designed
analog filters and then down-sampling the signals at a reduced
rate. A finite number of outputs was divided into multiple
blocks without overlapping, and the compressed covariance
was estimated by averaging over these blocks. However, the
requirement of using the designed analog filters complicates
the implementation. In addition, the effect of utilization of
overlapping blocks were not considered.

The proposed work is based on the recently developed
coprime sampling structure [17], which utilizes only two
uniform samplers to sample a WSS process with sampling
intervals, M and N . The integers M and N , which represent
the down-sampling rates, are chosen to be coprime. As a
result, it generates two sets of uniformly spaced samples with
a rate substantially lower than the nested [18] and with fewer
samplers than the schemes in [19]–[21].

In this paper, we design a sampling matrix to compress
Toeplitz matrices based on a coprime sampling scheme. In
particular, our focus is on effective estimations of the Toeplitz
covariance matrix and signal spectrum from a finite number
of samples of a WSS sequence. Toward this objective, we
generalize the coprime sampling approach to achieve a higher
number of degrees of freedom (DOFs) and low estimation
error. The generalization is carried out in the following two
aspects: (a) The first generalization is to use multiple coprime
units to obtain a higher number of DOFs and improved
power spectrum density (PSD) estimation performance. This
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is achieved through the use of an integer factor p, where a
coprime unit is defined as a full period of the output sample
pattern between x[bMN ] and x[(b + 1)MN − 1] for any
non-negative integer b. (b) The second generalization is to
exploit overlapping blocks in performing sample averaging,
enabling an increased number of blocks to be used for sample
averaging, leading to a reduced estimation variance.

The concept of generalized coprime sampling was first
developed in [1] where only the abovementioned first gen-
eralization is considered, whereas the second generation was
introduced in [2]. In this paper, we extend these preliminary
results by providing comprehensive theoretical support and
performance bound analysis of the developed techniques,
and describe the spectrum estimation algorithm based on the
cross-covariance between the outputs of the two samplers. A
number of simulation results are presented to clearly reveal
the relationship between the achieved performance and vari-
ous parameters related to the sampling strategies and signal
conditions.

The rest of the paper is organized as follows. We first
introduce the signal model in Section II. Generalized coprime
sampling that exploits multiple coprime units is presented in
Section III. Section IV describes spectrum estimation based on
the generalized coprime sampling scheme, and the correspond-
ing spectrum identifiability, compression factor, and Cramér-
Rao bound (CRB) are examined. In Section V, we propose
the exploitation of overlapping samples, and show analytically
that the overlapping sampling scheme achieves reduced vari-
ance in the estimated covariance matrix and signal spectrum.
Simulation results are provided in Section VI to numerically
verify the effectiveness of the proposed generalization and the
analysis. Section VII concludes the paper.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N × N identity matrix. (·)∗ implies complex conjugation,
whereas (·)T and (·)H respectively denote the transpose and
conjugate transpose of a matrix or a vector. E(·) is the
statistical expectation operator and ⊗ denotes the Kronecker
product. R and C denote the set of real values and complex
values, respectively, while N+ denotes the set of positive
integers. x ∼ CN (a, b) denotes that random variable x follows
the complex Gaussian distribution with mean a and variance b.
b·c denotes the floor function which returns the largest integer
not exceeding the argument. diag(x) denotes a diagonal matrix
that uses the elements of x as its diagonal elements, and
Tr{A} returns the trace of matrix A.

II. SIGNAL MODEL

Assume that a zero-mean WSS process X(t), t ∈ R,
which consists of signals corresponding to a number of
sparse frequencies, is confined within a bandwidth Bs. To
obtain its PSD, the covariance matrix needs to be provided
from a specific realization of X(t), t = 0, . . . , T − 1. It
suffices to consider the discrete-time random process, X[l],
obtained by sampling the analog signal X(t), with a Nyquist
sampling rate fs = 2Bs. Note that the discrete-time process
X[l] remains WSS in the discrete-time sense. Let xL[l] =

[x[l], x[l + 1], . . . , x[l + L− 1]]
T be a realized vector of X[l].

Then, the resulting semi-positive definite, Hermitian and
Toeplitz covariance matrix can be given by

Rx = E
[
xL[l]xHL [l]

]

=


r[0] r[−1] . . . r[−L+ 1]
r[1] r[0] . . . r[−L+ 2]

...
... . . .

...
r[L− 2] r[L− 3] . . . r[−1]
r[L− 1] r[L− 2] . . . r[0]

 , (1)

in which the entry r[τ ] = E [x[l]x∗[l − τ ]] only depends on the
lags τ = −L+ 1, . . . , L− 1. It is clear from (1) that r[−τ ] =
r∗[τ ]. In addition, the Toeplitz structure of Rx implies that
many of its elements are redundant. As a result, Rx can be
obtained from a sparsely sampled data sequence. This fact
motivated compressive covariance sampling [11]–[13].

In this paper, we consider the problem of estimating an
L × L covariance matrix of xL[l] and the signal PSD from
an observation of X(t) with an available length of KTs,
where K ∈ N+ and K ≥ L. When sampled at the Nyquist
interval Ts = 1/fs, it yields K samples of discrete-time
observations x[k], k = 0, . . . ,K − 1. A common practice for
covariance matrix estimation is to segment the entire discrete-
time observation of length K into multiple length-L blocks,
and average the respectively sample covariances [22]. As
shown in Fig. 1, the entire observation period is segmented into
multiple, possibly overlapping, blocks. In Section III-B, we
first consider the non-overlapping segmentation to illustrate the
signal model, as shown in Fig. 1(a), whereas the overlapping
case depicted in Fig. 1(b) will be discussed in Section III-C.
Denote B as the number of data blocks for the non-overlapping
case. We assume for convenience that the B blocks cover the
entire sequence, i.e., BL = K.

Denote by xb[l] = x[l + (b − 1)L], l = 0, . . . , L − 1, and
xb = [xb[0], . . . , xb[L − 1]]T for b = 1, . . . , B. We sparsely
sample each data block using a V ×L sampling matrix As to
obtain yb = Asxb, where V � L. The estimated covariance
matrix obtained by averaging the available B blocks and is
expressed as

R̂y =
1

B

B∑
b=1

yby
H
b = As

(
1

B

B∑
b=1

xbx
H
b

)
AH
s = AsR̂xAH

s ,

(2)
where R̂x is an estimated covariance matrix of Rx. The
compressed covariance matrix R̂y with size V × V can be
exploited to reconstruct the L × L matrix R̂x, provided that
it includes all lags τ = 0, . . . , L − 1. Note that covariances
corresponding to negative lags τ = −L + 1, . . . ,−1 can be
obtained through the Hermitian operation r[τ ] = r∗[−τ ] and
thus does not contain additional information. Reconstruction
of full covariance matrix Rx from the compressed covariance
matrix R̂y can be made possible by designing a proper
sampling matrix As. It is clear that, since there are V 2

entries in R̂y, the number of samples required to enable
reconstruction of the Hermitian Toeplitz matrix R̂x is O(

√
L).
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In this end, R̂x can be reconstructed as

R̂x =


r̂[0] r̂[−1] . . . r̂[−L+ 1]
r̂[1] r̂[0] . . . r̂[−L+ 2]

...
... . . .

...
r̂[L− 2] r̂[L− 3] . . . r̂[−1]
r̂[L− 1] r̂[L− 2] . . . r̂[0]

 , (3)

where r̂[τ ], τ = −L+1, . . . , L−1 are estimated by averaging
all the entries with the same lag τ in R̂y.

0 𝐾 − 1 

0 𝐿 − 1 

𝐿 2𝐿 − 1 

𝐵 − 1 𝐿 𝐾 − 1 

𝑥[𝑘] 

𝑥1[𝑙] 

𝑥2[𝑙] 

𝑥𝐵[𝑙] 

(a)

0 𝐾 − 1 

0 𝐿 − 1 

𝐷 𝐷 + 𝐿 − 1 

𝐵 − 1 𝐷 𝐾 − 1 

𝑥[𝑘] 

𝑥1[𝑙] 

𝑥2[𝑙] 

𝑥𝐵 [𝑙] 

(b)

Fig. 1. Illustration of segmentations. (a) Non-overlapping segmentation; (b)
Overlapping segmentation.

III. GENERALIZED COPRIME SAMPLING

Coprime sampling exploits two uniform sub-Nyquist sam-
plers with sampling period being coprime multiples of the
Nyquist sampling period [17], [23]. In this section, the general-
ized coprime sampling scheme is presented in two operations.
A multiple coprime unit factor p ∈ N+ [1], aiming to increase
the number of lags in the compressed covariance matrix, is
first introduced. Then, the utilization of overlapping samples
between blocks is pursued to yield a reduced estimation
variance through the use of a non-overlapping factor q ∈ N+.

A. The concept of coprime sampling

In coprime sampling, the sampling matrix As can be
denoted as As = [AT

s1 AT
s2]T , where As1 and As2 are

the sub-sampling matrices corresponding to the two coprime
samplers.

Definition 1: The (i, j)th entry of the sampling matrices As1

and As2 can be designed as:

[As1]i,j =

{
1, j = Mi, i ∈ N+,

0, elsewhere,

and

[As2]i,j =

{
1, j = Ni, i ∈ N+,

0, elsewhere,
(4)

where M ∈ N+ and N ∈ N+ are coprime integers.
From a data acquisition perspective, there are two sets of

uniformly spaced samples of the input WSS signal X(t), t =
0, . . . , T , from two samplers with sampling intervals MTs and
NTs, respectively, as illustrated in Fig. 2. Without loss of
generality, we assume M < N . Then, the highest sampling
rate of the system is 1/(MTs) = fs/M and the two sampled
stream outputs can be given as

y1[k1] = x[Mk1] = X(Mk1Ts),

y2[k2] = x[Nk2] = X(Nk2Ts). (5)

𝑋(𝑡) 

𝑁𝑇𝑠 

𝑀𝑇𝑠 
𝑦1[𝑘1] 

𝑦2[𝑘2] 

Fig. 2. Coprime sampling structure.

Note that, due to the coprime property of M and N , there
are no overlapping outputs between the two sets other than
x[bMN ] for any non-negative integer b. The outputs between
x[(b− 1)MN ] and x[bMN − 1] are referred to as a coprime
unit, positioned at

Pb = {bMN +Mk1}
⋃
{bMN +Nk2}. (6)

Over an observation with an available length of KTs,
K/MN coprime units can be obtained, each consists of
M+N physical samples. As such, the total number of physical
samples is given by

Ks = K

(
M +N

MN

)
= K

(
1

M
+

1

N

)
. (7)

For illustration, an example is presented in Fig. 3, where two
coprime samplers with M = 3 and N = 4 are considered.
The length of K = 60 output streams consist of 5 coprime
units, and Ks = 35 physical samples are distributed between
x[12(b − 1)] and x[12b − 1], for b = 1, . . . , 5, where 5 pairs
of samples overlap between the output of the two samplers at
positions 0, 12, 24, 36, and 48.

Denote yb1 = [yb1 [0], . . . , yb1 [N −1]]T as an N ×1 vector,
and yb2 = [yb2 [0], . . . , yb2 [M − 1]]T as an M × 1 vector,
with yb1 [k1] = x[(b − 1)MN + Mk1] and yb2 [k2] = x[(b −
1)MN +Nk2], where 0 ≤ k1 ≤ N − 1 and 0 ≤ k2 ≤M − 1,
for 1 ≤ b ≤ K/(MN). In addition, let yb = [yTb1 yTb2 ]T . As
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0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Unit Unit Unit Unit Unit

Fig. 3. An example for coprime sampling (M = 3, and N = 4; •: Nyquist
sampler; 4: first sampler outputs; ∇: second sampler outputs.)

such, the (M +N)× (M +N) covariance matrix Ry can be
expressed as

Ry =

Ry11 Ry12

Ry21
Ry22

 =

E[yb1y
H
b1

] E[yb1y
H
b2

]

E[yb2y
H
b1

] E[yb2y
H
b2

]

 . (8)

In Ry, matrices Ry11 and Ry22 contains self-lags of the two
sampler output streams, while their cross-lags are included in
matrices Ry12

and Ry21
. Note that Ry21

= R∗y12
. In addition,

because the two sampler outputs share the first sample in each
coprime unit, the self-lags can be taken as cross-lags between
every sample from one sampler and the first sample from the
other sampler. As such, the self-lags form a subset of the
cross-lags. Thus, Rx can be reconstructed by using only Ry12

,
whose cross-lags (including the negated ones) are given by the
following set,

L = {τ |τ = ±(Mk1 −Nk2)}, (9)

where 0 ≤ k1 ≤ N − 1 and 0 ≤ k2 ≤M − 1.
The prototype scheme uses one coprime unit samples to

generate all lags in L. However, it should be noticed that they
are distributed in the range [−M(N − 1),M(N − 1)] with
some missing integers at (aM+bN), where a ≥ 1 and b ≥ 1,
as shown in Fig. 4(a), for M = 3 and N = 4. That is, they
are not sufficient to reconstruct R̂x with dimension L = MN .
To overcome this limitation, two coprime units from the first
sampler and one coprime unit from the second sampler are
used to form one block in [17], and the resulting lags are
contiguous in the range [−MN − N + 1,MN + N − 1], as
depicted in Fig. 4(b). This scheme is referred in this paper
to as the conventional scheme. In this case, the maximum
achievable L is Lmax = MN +N .

B. Generalized coprime sampling scheme using non-
overlapping blocks

In the sequel, an integer factor p ≥ 2, representing the
number of multiple coprime units, is first introduced to achieve
a higher value of L. In each block, outputs from p coprime
units from both samplers, i.e., p(M + N) physical samples
spawning a time period of pMNTs, are used to estimate the

0 3 6 9 12 15 18 21

0 4 8 12 16 20

Block 1 Block 2

−20 −15 −10 −5 0 5 10 15 20

(a)

0 3 6 9 12 15 18 21

0 4 8 12 16 20

Block 1

−20 −15 −10 −5 0 5 10 15 20

(b)

Fig. 4. An example for different schemes (M = 3, and N = 4; 4: first
sampler outputs; ∇: second sampler outputs; •: lags; ×: holes. (a) Prototype;
(b) Conventional.)

covariance matrix. In this case, the resulting lags fall into the
following set,

L̃ = {τ |τ = ±(Mk1 −Nk2)}, (10)

for 0 ≤ k1 ≤ pN−1 and 0 ≤ k2 ≤ pM−1. Note that varying
p changes the set L̃. The following proposition about the set
L̃ reveals the property of the resulting lag positions.

Proposition 1: The set L̃ contains all integer lags in the range
−(p−1)MN −M −N +1 ≤ τ ≤ (p−1)MN +M +N −1.

The proof is provided in Appendix A. Note that, all resulting
lags using conventional scheme are included in L̃ as a special
case of p = 2. For the generalized scheme, the maximum
achievable value of L becomes

L̃max = (p− 1)MN +M +N, (11)

and the number of the corresponding non-overlapping blocks
is given by

B =

⌊
K

pMN

⌋
. (12)

An example for different values of p is illustrated in Fig.
5, where K = 120, M = 3, and N = 4 are assumed. For
the case of p = 2, i.e., the conventional scheme, each block
forms consecutive lags within [−18, 18]. That is, R̂x can be
reconstructed with a maximum of dimension L̃max = 19 by
averaging B = 5 blocks. For the case of p = 5, L̃max = 55
can be obtained by a consecutive lag range of [−54, 54] in
each block, whereas the number of the blocks is reduced to
B = 2.

We examine the compression factor, which is defined as the
ratio of the number of entries in R̂x over the corresponding
number in R̂ỹ12

, expressed as

κ =
L× L

pM × pN
=

L2

p2MN
. (13)

Because the maximum value of L is L̃max = (p − 1)MN +
M +N , the maximum achievable value of κ is given by

κmax =
[(p− 1)MN +M +N ]

2

p2MN
. (14)
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0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1 Block 2 Block 3 Block 4 Block 5

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(a)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1 Block 2

−55 −50 −45 −40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40 45 50 55

(b)

Fig. 5. An example for different values of p (K = 120, M = 3, and N = 4;
(a) p = 2; (b) p = 5.)

Fig. 6 shows κmax, as a function of M , N , and p. It is clear
that κmax improves as M and N increase. Notice that, while
the number of entries in R̂ỹ12

increases with p, κmax does not
significantly change. It asymptotically approaches MN when
p� 1.

For a given number of compression factor, i.e., the constant
value of MN , the optimal coprime pair in terms of total
number of physical samples, Ks, can be derived by solving
the optimization problem:

Minimize Ks = K

(
1

M
+

1

N

)
subject to MN = constant, (15)

0 < M < N.

It is demonstrated in [23], [31] that the valid optimal coprime
pair is the one that has M and N as close as possible. This is
satisfied by choosing N = M+1. This relationship is assumed
in the remainder of the paper. In this case, Ks becomes

Ks = K

(
1

M
+

1

M + 1

)
, (16)

and the corresponding compression factor, κmax, can be ex-
pressed as

κmax =
L̃2
max

p2M(M + 1)
∝M2, (17)

with L̃max = (p− 1)M2 + (p+ 1)M + 1.

C. Utilization of overlapping blocks

The variance of the estimated covariance and spectrum is
generally reduced by utilizing a higher number of averag-
ing blocks. In addition to averaging over non-overlapping
segments, as discussed earlier, a general and more effective
alternative for spectrum estimation is to exploit overlapping
segments. In so doing, the number of applicable blocks for
sample averaging can be substantially increased. The overlap-
ping samples used are set by non-overlapping factor q ∈ N+.

As shown in Fig. 1(b), we maintain the same segment length
pM(M+1), and let the starting points of two adjacent blocks
D = qM(M + 1) units apart, where 1 ≤ q ≤ p. Similarly, we

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

p

κ
m
a
x

 

 

M=2, N=3

M=2, N=5

M=2, N=7

M=3, N=7

M=5, N=7

Fig. 6. κmax, as a function of M , N , and p.

assume, for convenience, that (B̃ − 1)D + pM(M + 1) = K
covers the entire recorded sequence.

Definition 2: Assume that D consists of the length of q
coprime units, i.e., D = qM(M + 1), where 1 ≤ q ≤ p.
Then, the number of blocks can be expressed as

B̃ =

⌊
K − pM(M + 1)

D

⌋
+ 1 =

⌊
K

qM(M + 1)
− p

q

⌋
+ 1

=

⌊
p

q
B − p

q

⌋
+ 1. (18)

It is straightforward to confirm that B̃ ≥ B since q ≤ p. In
addition, B̃/B approaches p/q when B is large. As such, p/q
can be considered as the overlapping ratio that approximately
describes the level of additional blocks used for sample
averaging. It is clear that B̃ increases as q decreases and is
maximized when q = 1. Note that the non-overlapping case
can be considered as a special case of q = p and B̃ = B.

For illustration, an example of p = 5 and q = 1 is
considered in Fig. 7, where K and M are assumed to be the
same as those in Fig. 5. It is shown that B̃ = 6 blocks can
be used in Fig. 7, whereas only B = 2 blocks are obtained
in the corresponding non-overlapping scenario, as depicted in
Fig. 5(b).

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102105108111114117

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

Block 1
Block 2

Block 3
Block 4

Block 5

Block 6

Fig. 7. An example of utilization of overlapping samples (K = 120, M = 3,
p = 5, and q = 1.)

Denote ỹb1 [k1] = x[(b − 1) × qM(M + 1) + Mk1] and
ỹb2 [k2] = x[(b− 1)× qM(M + 1) + (M + 1)k2], where 0 ≤
k1 ≤ p(M + 1) − 1 and 0 ≤ k2 ≤ pM − 1, for 1 ≤ b ≤ B̃.
In addition, let ỹb1 = [ỹb1 [0], . . . , ỹb1 [p(M + 1) − 1]]T and
ỹb2 = [ỹb2 [0], . . . , ỹb2 [pM−1]]T . The covariance matrix R̂ỹ12

,
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using the generalized scheme, can be estimated as

R̂ỹ12
=

1

B̃

B̃∑
b̃=1

ỹb1 ỹ
H
b2 . (19)

Note that, for each 1 ≤ b ≤ B̃, the entries rb(k1, k2) =
ỹb1 [k1]ỹ∗b2 [k2] corresponding to the same position (k1, k2) in
covariance matrix are still independent. As discussed above,
the value of B̃ is increased from that of B approximately by a
factor of p/q. Thus, utilizing overlapping blocks for averaging,
the variance of the estimated covariance is generally reduced
to q/p of the corresponding non-overlapping case.

Then, R̂x with dimension L×L, where L ≤ L̃max, can be
reconstructed as

R̂x =


ˆ̃r[0] ˆ̃r[−1] . . . ˆ̃r[−L+ 1]
ˆ̃r[1] ˆ̃r[0] . . . ˆ̃r[−L+ 2]

...
... . . .

...
ˆ̃r[L− 2] ˆ̃r[L− 3] . . . ˆ̃r[−1]
ˆ̃r[L− 1] ˆ̃r[L− 2] . . . ˆ̃r[0]

 , (20)

where ˆ̃r[τ ], τ = −L+1, . . . , L−1, are estimated by averaging
all the entries with the same lag τ in R̂ỹ12

.
We make the following two remarks:
1. In the generalized coprime sampling scheme, (B̃ −

1)qM(M + 1) + pM(M + 1) = K, where p, q ∈ N+, is
assumed to cover the entire recorded sequence. When B̃ = 1,
factor q does not have a physical meaning. Thus, B̃ ≥ 2 needs
to be guaranteed, which is equivalent to

p+ q ≤ K

M(M + 1)
. (21)

As such, the range of the pair of (p, q) falls into the following
set,

Πp,q =

{
(p, q) | p+ q ≤ K

M(M + 1)
, 1 ≤ q ≤ p, p, q ∈ N+

}
.

(22)
2. The covariance matrix Rỹ12

is estimated using the B̃
available samples. In practice, p and q are generally chosen
to yield the large number of blocks B̃ to achieve to rigid
estimation of Rỹ12 .

3. As p increases, a higher number of DOFs in the com-
pressed covariance matrix Rỹ12

can be achieved. As a result,
we can reconstruct covariance matrix R̂x with a higher dimen-
sion, yielding an improved spectrum resolution and estimation
accuracy. When q increases, the estimation accuracy can be
improved because a higher number of blocks are used in the
averaging. However, such higher dimension and higher number
of blocks result in a higher computational complexity.

IV. SPECTRUM ESTIMATION AND THE CRB

Spectrum estimation deals with the problem of estimating
the PSD of a random process, and finds applications in the
context of dynamic spectrum sharing [24]. In this case, a
broad frequency band should be sensed in order to locate
the unoccupied spectrum before establishing a communication
link. Sub-Nyquist sampling for cognitive radios is a widely
studied topic, e.g., in [25]–[30].

Generally, power spectrum sensing can be classified into
two major categories. The first category reconstructs the signal
waveforms and then estimate the power spectrum, whereas the
second category estimates the power spectrum from the signal
covariance, i.e., the second-order statistics. The approach
discussed in [25]–[27] belongs to the former where the signals
are assumed to be sparse in some domain and sub-Nyquist
sampling is implemented to recover the signal waveforms
through compressive sensing. The approach adopted in this
paper, along with [28]–[30] and several other references [11]–
[13], [15], [16] belong to the second category. Note, however,
that this paper makes significant difference to the papers in
its category, as our major contribution is the generalization
of the coprime sampling, where the multiple unit factor p is
used to improve the degrees-of-freedom (DOFs) and spectrum
resolution, and the non-overlapping factor q is used to improve
the estimation accuracy. Such generalization and the related
analyses are novel.

A. Spectrum estimation

The well-known Wiener-Khinchin theorem proves that the
PSD of a signal and the covariance function form a Fourier
transform pair, expressed as

P [f ] =

∞∑
τ=−∞

r[τ ]e−j2πτf/fs . (23)

Therefore, once R̂x is reconstructed, then P [f ] can be esti-
mated by employing the discrete Fourier transform which does
not require the assumptions of signal sparsity in the frequency
domain. The applicability to continuous spectrum signals will
be demonstrated using a simulation example in Section V.

For signals with sparse and discrete spectrum, however,
we can further achieve high-resolution spectrum estimation
by exploiting subspace-based spectrum estimation techniques,
in lieu of the Fourier transform. As such, in the following,
we focus on the spectrum estimation of sparse spectrum
signals which consist of a sum of multiple sinusoids, and the
corresponding CRB analysis is provided.

Assume that x[k], for k = 0, 1, . . . ,K − 1, are samples of
the analog signal X(t), which can be presented as a sum of
I independent frequency components

x[k] =

I−1∑
i=0

σie
−j2πkfi

fs + n[k], (24)

of frequency fi and complex magnitudes σi, i = 0, . . . , I − 1.
The additive noise n[k] is assumed to be an independent and
identically distributed (i.i.d.) random variable following the
zero-mean complex Gaussian distribution with a variance σ2

n,
i.e., n[k] ∼ CN (0, σ2

n).
Using the generalized coprime sampling scheme, in the bth

block, 0 ≤ b ≤ B̃−1, the received outputs at the two coprime
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samplers can be respectively written as

ỹb1 [k1] = x[(b− 1)× qM(M + 1) +Mk1]

=

I−1∑
i=0

σie
−j2π[(b−1)×qM(M+1)+Mk1]fi

fs + nb1 [k1], (25)

ỹb2 [k2] = x[(b− 1)× qM(M + 1) + (M + 1)k2]

=

I−1∑
i=0

σie
−j2π[(b−1)×qM(M+1)+(M+1)k2]fi

fs + nb2 [k2],

(26)

where 0 ≤ k1 ≤ p(M + 1) − 1, 0 ≤ k2 ≤ pM − 1, and the
range of the pair (p, q) is given in Πp,q . Stacking ỹb1 [k1] for
0 ≤ k1 ≤ p(M + 1) − 1 and ỹb2 [k2] for 0 ≤ k2 ≤ pM − 1,
yields the following received vector data

ỹb1 =

I−1∑
i=0

ab1(fi)e
−j2π[(b−1)×qM(M+1)]fi

fs σi = Ab1sΦ + nb1 ,

ỹb2 =

I−1∑
i=0

ab2(fi)e
−j2π[(b−1)×qM(M+1)]fi

fs σi = Ab2sΦ + nb2 ,

(27)

where s = [σ1, . . . , σI ]
T , Ab1 = [ab1(f1), . . . ,ab1(fI)], and

Ab2 = [ab2(f1), . . . ,ab2(fI)] with

ab1(fi) =
[
1, e

−j2πMfi
fs , . . . , e

−j2π[p(M+1)−1]Mfi
fs

]T
, (28)

ab2(fi) =
[
1, e

−j2π(M+1)fi
fs , . . . , e

−j2π(pM−1)(M+1)fi
fs

]T
. (29)

In addition, Φ is a diagonal matrix given by

Φ = diag([e
−j2π[(b−1)×qM(M+1)]f1

fs , . . . , e
−j2π[(b−1)×qM(M+1)]fI

fs ]).
(30)

Note that the noise vectors nb1 and nb2 follow the complex
Gaussian distribution CN (0, σ2

nIpM ) and CN (0, σ2
nIp(M+1)),

respectively. Then, the compressed covariance matrix Rỹ12
is

obtained as

Rỹ12
= E[ỹb1 ỹ

H
b2 ] = Ab1RssA

H
b2 + σ2

niỹ12

=

I−1∑
i=0

σ2
i ab1(fi)a

H
b2(fi) + σ2

niỹ12 , (31)

where iỹ12 returns a pM × p(M + 1) matrix with ones
on the main diagonal and zeros elsewhere. Note that, the
following vector with elements corresponding to different
lags, a(fi) = [1, e

−j2πfi
fs , e

−j4πfi
fs , . . . , e

−j2(L−1)πfi
fs ]T , can be

extracted based on ab1(fi) ⊗ a∗b2(fi) for 1 ≤ i ≤ I . Thus,
Rx ∈ CL×L, where L ≤ L̃max, can be reconstructed and
expressed as

Rx =

I−1∑
i=0

σ2
i a(fi)a

H(fi) + σ2
nIL. (32)

In practice, R̂ỹ12 is estimated by averaging the available
B̃ blocks as in (19), and R̂x is reconstructed as in (20). The
spectrum can be estimated using a variety of methods (e.g.,
[33]), with respect to R̂x. It is well known that subspace-based
methods are popular candidates to achieve a high spectrum

resolution with a moderate computational complexity. The
multiple signal classification (MUSIC) algorithm [34] is used
to evaluate the performance of our approach. Note that the
extension of other spectrum estimation techniques [35], [36]
is straightforward.

The MUSIC approach is based on eigen-decomposition of
the reconstructed covariance matrix R̂x, given by

R̂x = ÛΛ̂ÛH , (33)

where Λ̂ = diag{λ̂1, λ̂2, . . . , λ̂L} is the diagonal matrix of the
eigenvalues in a descending order, and the L×L matrix Û con-
tains the corresponding eigenvectors. The MUSIC algorithm
requires the information of the rank of the signal subspace, i.e.,
the number of carrier frequencies of the signal arrivals. Various
mathematical criteria, such as Akaike information criterion
(AIC) [37], minimum description length (MDL) [38], and
Bayesian information criterion (BIC) [39], can be employed
to achieve the rank estimation. In this paper, we apply the BIC
on R̂x to obtain the value of I . It was shown that that BIC
based methods [40]–[42] generally outperform other methods,
such as those developed based on AIC and MDL [43]–[45]
due to the stronger consistency, particularly when the number
of array sensors is large and the number of samples is small.
Then, Eqn. (33) can be decomposed as

R̂x = ÛsΛ̂sÛ
H
s + ÛnΛ̂nÛH

n , (34)

where Ûs ∈ CL×I and Ûn ∈ CL×(L−I) contain the signal
and noise subspace sample eigenvectors, respectively, and
the corresponding sample eigenvalues are included in the
diagonal matrices Λ̂s = diag{λ̂1, λ̂2, . . . , λ̂I} and Λ̂n =
diag{λ̂I+1, λ̂I+2, . . . , λ̂L}. Then, the spectrum can be esti-
mated as

P̂ (f) =
1

aH(f)ÛnÛH
n a(f)

, (35)

where f is defined as the collection over all possible grids
in the spectrum and the values of f that produce peaks in
the estimator P̂ (f) are taken as estimates of the frequencies
fi, i = 1, . . . , I . The spectrum identifiability and resolution
are improved as L increases, and they are optimized when
L = L̃max. This relationship is assumed in the remainder of
the paper.

B. The Cramér-Rao Bound (CRB)

The CRB offers a lower bound on the variances of unbiased
estimates of the parameters. The specific CRB expressions
given in [46]–[48] are valid only when the number of frequen-
cies is less than the number of physical samples (I < Ks).
This is because the expressions are based on the inverse of
the matrix AHA, where A is the so-called array or frequency
manifold matrix. However, the assumption I < Ks is not
requirement for the existence of CRB, because even when
I ≥ Ks, with proper prior information, the Fisher information
matrix (FIM) can remain nonsingular (invertible) under a much
broader range of conditions. Thus, we use the inverse of FIM
as the CRB expression. After we have submitted the previous
version of the manuscript, several papers have been published
on the CRB analysis of the directions of arrival estimation
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when more sources than the number of sensors are handled
in the context of coarrays. We have cited these papers as
references [49]–[51]. However, none of these papers provide
revealing solutions in a compact matrix form.

For a set of vectors ỹb = [ỹTb1 ỹTb2 ]T , b = 1, . . . , B̃,
the CRB is calculated by the well-known expression [47]
involving the FIM elements

Fαiαj = B̃Tr

{
R−1ỹ

∂Rỹ

∂αi
R−1ỹ

∂Rỹ

∂αj

}
, (36)

for unknown variables αi and αj , where Rỹ is expressed as

Rỹ = E[ỹbỹ
H
b ] =

I−1∑
i=0

σ2
i ab(fi)a

H
b (fi) + σ2

nIp(2M+1), (37)

and ab(fi) = [aTb1(fi) aTb2(fi)]
T .

In the underlying case, the unknown parameters are the I
signal frequencies fi and powers σ2

i for i = 1, . . . , I , as well
as the noise power σ2

n. Therefore, the elements in the (2I +
1)× (2I + 1) Fisher matrix F can be written in terms of the
block matrices, for i, j = 1, . . . , I , given by

Fi,j = B̃Tr

{
R−1ỹ

∂Rỹ

∂fi
R−1ỹ

∂Rỹ

∂fj

}
,

Fi,j+I = B̃Tr

{
R−1ỹ

∂Rỹ

∂fi
R−1ỹ

∂Rỹ

∂σ2
j

}
,

Fi,2I+1 = B̃Tr

{
R−1ỹ

∂Rỹ

∂fi
R−1ỹ

∂Rỹ

∂σ2
n

}
,

Fi+I,j = B̃Tr

{
R−1ỹ

∂Rỹ

∂σ2
i

R−1ỹ

∂Rỹ

∂fj

}
,

Fi+I,j+I = B̃Tr

{
R−1ỹ

∂Rỹ

∂σ2
i

R−1ỹ

∂Rỹ

∂σ2
j

}
,

Fi+I,2I+1 = B̃Tr

{
R−1ỹ

∂Rỹ

∂σ2
i

R−1ỹ

∂Rỹ

∂σ2
n

}
,

F2I+1,2I+1 = B̃Tr

{
R−1ỹ

∂Rỹ

∂σ2
n

R−1ỹ

∂Rỹ

∂σ2
n

}
, (38)

where

∂Rỹ

∂fi
= σ2

i

[
∂ab(fi)

∂fi
aHb (fi) + ab(fi)

∂aHb (fi)

∂fi

]
,

∂Rỹ

∂σ2
i

= ab(fi)a
H
b (fi),

∂Rỹ

∂σ2
n

= Ip(2M+1). (39)

Then, the CRB of estimated frequencies is obtained as

CRB(fi) =
[
F−1

]
i,i
. (40)

V. SIMULATION RESULTS

For illustrative purposes, we demonstrate the spectrum esti-
mation performance under different choices of the arguments
within the generalized coprime sampling scheme. Assume that
I frequency components with identical powers are distributed
in the frequency band [−500, 500] MHz. Assume that K =
50000 samples are generated with a Nyquist sampling rate
fs=1 GHz. In addition, the noise power is assumed to be

identical across the entire spectrum. The MUSIC method is
used to estimate the power spectrum. Our benchmarks are the
spectrum DOFs and their statistical performance. The latter is
evaluated in terms of average relative root mean square error
(RMSE) of the estimated frequencies, defined as

Relatvie RMSE(fi) =
1

fs

√√√√ 1

500I

500∑
n=1

I∑
i=1

(f̂i(n)− fi)2,

(41)
where f̂i(n) is the estimate of fi from the nth Monte Carlo
trial, n = 1, . . . , 500.

A. The performance of coprime sampling

We first illustrate the performance of coprime sampling.
Herein, the conventional coprime sampling scheme is consid-
ered, i.e., p = 2. In addition, M = 3 is assumed. As such, the
L× L = 19× 19 covariance matrix R̂x can be reconstructed
from R̂ỹ12

with dimension pM × p(M + 1) = 6 × 8. Thus,
the resulting compression factor is κmax ≈ 7.52 and up to
L− 1 = 18 frequencies can be estimated.

In Fig. 8, we consider I = 18 frequencies with δf = 50
MHz separation in the presence of noise with a 0 dB SNR. It
is evident that all 18 frequencies can be identified correctly.
In Fig. 9, the RMSE results are shown as a function of the
input SNR, where I = 1 is assumed. As expected, it displays a
strong inverse semi-logarithmic dependence on the input SNR.
It is also observed that there is a gap between the RMSE and
CRB even in the high SNR region, due to estimation bias. The
errors are mainly generated in two aspects. On one hand, R̂ỹ12

is used to reconstruct R̂x. On the other hand, only consecutive
lag entries in R̂ỹ12 are exploited. It is observed that the bias
errors increase with I due to a higher frequency components,
as shown in Fig. 10, where the input SNR is set to 0 dB.
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Fig. 8. Estimated spectrum (I = 18 and input SNR=0 dB).

B. The generalized coprime sampling scheme versus other
schemes

Next, we compare the generalized coprime sampling scheme
with the nested sampler and the sparse ruler based sampler,
where the same number of physical samples is assumed. For
the coprime sampler, we set M = 3, and thus there are
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Fig. 9. Relative RMSE versus SNR (I = 1).
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Fig. 10. Relative RMSE versus I (SNR=0 dB).

2M + 1 = 7 physical samples in each coprime unit. The
sampling patterns corresponding to the nested sampler and the
sparse ruler based sampler that yield the same 7-sample unit
are [0 1 2 3 7 11 15] and [0 1 4 10 12 15 17], respectively.
In this simulation, p = 3 coprime units are used to form
the covariance matrix for the generalized coprime scheme,
whereas the nested sampler and minimal sparse ruler based
sampler each uses one unit as in [15] and [12]. Their relative
RMSEs are depicted as a function of input SNR in Fig. 11,
where I = 5 frequencies are considered. It is clear that
the generalized coprime scheme outperform the other two
sampling schemes due to the higher number of DOFs and
improved resolution.

C. Relative RMSE for various p

In Figs. 12–14, we compare the performance corresponding
to different choices of p under different criteria, where non-
overlapping segmentation is used.

Figs. 12 and Fig. 13 examine the performance for different
choices of p, based on the same compression factor, where
M = 3 is assumed. In Fig. 12, the distinction on spectrum
identifiability is depicted for the cases of p = 10 and p = 45.
We consider I = 100 frequencies with δf = 2 MHz separation
in the presence of noise with a 0 dB SNR. It is evident
that only the scenario of p = 45 can resolve all frequencies
correctly, although in the case of p = 10 the number of
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Fig. 11. Relative RMSE versus SNR for different sampling schemes (I=5).

DOFs L − 1 = 114, is slightly higher than the number of
frequency components. Fig. 13 presents the RMSE and CRB
with respect to p, where I = 5 is assumed. It is observed
that the estimation performance is improved as p increases.
In addition, the bias error between the estimated frequency
and the CRB becomes smaller, since the ratio between the
number of consecutive lags and the number of total lags in
R̂ỹ12

increases with p. In summary, a higher value of p can
improve DOFs and spectrum estimation performance under the
same compression factor. However, the requirement of storage
space and the computational load become higher, due to the
resulting higher value of L.

In Fig. 14, we present the relative RMSE as a function of
the input SNR for different values of (p,M) pairs, where the
dimension of the covariance matrix is L = (p− 1)M2 + (p+
1)M + 1 = 161, and the number of frequencies is I = 5.
It is clear that, as the value of M decreases (and so does the
compression factor κmax because κmax ∝M2), the estimated
relative RMSE is reduced since a higher number of physical
samples (Ks = K(1/M + 1/(M + 1))) can be used.

D. Relative RMSE for various q

Finally, the advantage of utilization of overlapping blocks
is demonstrated in Fig. 15, where M = 3 and p = 12 are
assumed and I = 5 frequency is considered with a 0 dB SNR.
In addition, q is chosen within the range of {1, 2, 3, 4, 6, 12}.
It is evident that the estimation performance can be improved
as q decreases, compared to the non-overlapping case, i.e.,
q = p = 12.

E. Relative RMSE versus K

In Fig. 16, we present the relative RMSE performance with
respect to K, where M=3 is assumed, and I=5 frequencies
with a 0 dB input SNR are considered. It is evident that
the estimated relative RMSE performance is improved as K
increases because a higher number of blocks is used to reduce
the noise effect. Asymptotically, when K is large, the relative
RMSE asymptotically decreases with a factor of 1/

√
K. In

addition, various cases with different values of p and q are
compared in this figure. By assuming a large value of p
and a small value of q, the generalized coprime sampling
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Fig. 12. Estimated spectra for the cases of p = 10 and p = 45 (M = 3 and input SNR=0 dB).
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Fig. 13. Relative RMSE versus p, based on the same M (I = 5 and M = 3).
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Fig. 14. Relative RMSE versus SNR, based on the same L (I = 5 and
L = 161).

scheme improves the RMSE performance as it benefits from
the high dimension of the reconstructed covariance matrix and
the utilization of overlapping blocks, respectively.
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Fig. 15. Relative RMSE versus q (M = 3, p = 12, and I = 5).
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Fig. 16. Relative RMSE versus K (M=3 and I=5).

F. Estimation for continuous spectrum

Finally, we consider an example of continuous spectrum
signals in Fig. 17, where x(t) is assumed to have continuous
rectangular spectrum supports in [−350,−230] MHz and
[150, 280] MHz. Multiple coprime unit factors of p = 2, 3, 7
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are considered. As p increases, it is clear that the mainlobe
becomes closer to the ideal signal bandwidth due to the larger
dimension of the reconstructed matrix R̂x. For comparison,
the case of p = 7 and q = 1 generally outperforms the case
of p = 7 and q = 7 because a higher number of blocks,
achieved by using overlapping segmentation, become available
for averaging.
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Fig. 17. Estimated spectrum.

VI. CONCLUSIONS

We proposed an effective approach to compressively sam-
ple wide-sense stationary processes. The coprime sampling
matrix was used to obtain a compressed representation for
their second-order statistics. Using a fixed number of data,
different schemes for the acquisition of a covariance matrix
were presented, based on segmenting the data sequence. The
performance of these schemes was compared and numerically
evaluated. The effectiveness of the proposed technique was
evidently verified using simulation results.

VII. APPENDIX

Proof of Proposition 1
For the convenience of presentation, we define the function

Γ ([k1min
, k1max

], [k2min
, k2max

]) as the operation ±(Mk1 −
Nk2) with k1 ∈ [k1min

, k1max
] and k2 ∈ [k2min

, k2max
]. Denote

L̃1 = {τ1|Γ([0, pN − 1], [0,M − 1])}, (42)

L̃2 = {τ2|Γ([0, N − 1], [0, pM − 1])}, (43)

and the proposition 1 can be obtained by proving the following
propositions:
1(a) L̃ = L̃1

⋃
L̃2.

1(b) For the set L̃1, it contains all integer lags in the range
−(p− 1)MN −N + 1 ≤ τ1 ≤ (p− 1)MN +N − 1, and
the “holes” are located at ±[(p − 1)MN + aM + bN ],
where a ≥ 0 and b > 0 are integers.

1(c) For the set L̃2, it contains all integer lags in the range
−(p−1)MN −M +1 ≤ τ2 ≤ (p−1)MN +M −1, and
the “holes” are located at ±[(p − 1)MN + aM + bN ],
where a > 0 and b ≥ 0 are integers.

1(d) The first pair of holes ±[p− 1)MN + bN ] in L̃1, where
b ≥ 0, can be aligned by the non-consecutive element in
L̃2.

Proof of proposition 1(a): The lag set

L̃ ={Γ([0, pN − 1], [0, pM − 1])},

=

p⋃
p1=1

{Γ([0, pN − 1], [(p1 − 1)M,p1M − 1])}
⋃

p⋃
p2=1

{Γ([(p2 − 1)N, p2N − 1], [0, pM − 1])}

=L̃1

⋃(
p⋃

p1=2

{Γ([0, pN − 1], [(p1 − 1)M,p1M − 1])}

)⋃
L̃2

⋃(
p⋃

p2=2

{Γ([(p2 − 1)N, p2N − 1], [0, pM − 1])}

)
.

(44)

Note that the union of the sets
⋃p
p1=2{Γ([0, pN − 1], [(p1 −

1)M,p1M−1])} and
⋃p
p2=2{Γ([(p2−1)N, p2N−1], [0, pM−

1])} is the subset of L̃1

⋃
L̃2. Therefore, (44) can be simplified

as

L̃ = L̃1

⋃
L̃2. (45)

Proof of proposition 1(b): Given any integer τ1 satisfying

0 ≤ τ1 ≤ (p− 1)MN +N − 1, (46)

we need to prove that there exist integers k1 ∈ [0, pN − 1]
and k2 ∈ [0,M − 1] such that τ1 = Mk1 − Nk2 holds. The
requirement k2 ∈ [0,M − 1] is equivalent to

0 ≤ Nk2 ≤MN −N. (47)

Because Mk1 = τ1 +Nk2, we obtain the following relation-
ship by combining (46) and (47),

0 ≤Mk1 ≤ pMN − 1 < pMN. (48)

This result can be equivalently expressed as 0 ≤ k1 < pN .
Because k1 is an integer, this requirement is equivalent to

0 ≤ k1 ≤ pN − 1, (49)

which is satisfied in the underlying coprime array configura-
tion.

Next, we prove the hole positions by contradiction. We
suppose Mk1 − Nk2 = (p − 1)MN + aM + bN holds for
some integers k1 ∈ [0, pN − 1] and k2 ∈ [0,M − 1], where
a ≥ 0 and b > 0 are integers, then relationship

M

N
=

k2 −M + b

k1 − pN − a
(50)

must be valid. From k1 ∈ [0, pN − 1] and a ≥ 0, we find
Mk1 − Nk2 = (p − 1)MN + aM + bN < pMN , and
then b < M . As a result, |k2 − M + b| < M . Due to the
coprimality between M and N , we cannot find a k1 to satisfy
(50). Therefore, Mk1−Nk2 6= (p− 1)MN + aM + bN , i.e.,
there are holes at (p− 1)MN + aM + bN in L̃1.

Due to the symmetry of L̃1, we can draw the conclusions
that L̃1 all integer lags in the range −(p− 1)MN −N + 1 ≤
τ1 ≤ (p − 1)MN + N − 1, and the “holes” are located at
±[(p − 1)MN + aM + bN ], where a ≥ 0 and b > 0 are
integers.
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Proof of proposition 1(c): We omit the proof of proposition
1(c), which can be proved by using the same method as in the
proof of proposition 1(b).

Proof of proposition 1(d): Based on the proposition 1(b), there
are holes (p − 1)MN + aM + bN in L̃1, where a ≥ 0 and
b > 0 are integers. If the holes are aligned by the elements in
L̃2, the following relationship

(p− 1)MN + aM + bN = ±(Mk1 −Nk2) (51)

must be valid for k1 ∈ [0, N − 1] and k2 ∈ [0, pM − 1]. The
requirement is equivalent to

(p− 1)MN + aM + (b+ k2)N = Mk1,

or
(p− 1)MN + (a+ k1)M + bN = Nk2,

i.e.,
b = −k2, or a = −k1. (52)

It is only possible for a = k1 = 0 when k1 ∈ [0, N − 1],
k2 ∈ [0, pM − 1], a ∈ [0,∝), and b ∈ (0,∝). Then, the
requirement further becomes

(p− 1)M + b = k2. (53)

In the proof of proposition 1(b), it is shown that b < M , i.e.,
b ≤M−1. As such, k2 ∈ ((p− 1)M,pM − 1] ⊆ [0, pM−1].
Therefore, the holes (p−1)MN+bN(a = 0) in L̃1 are aligned
by the element in L̃2 for some integers k2 ∈ [0, pM − 1].
As a result, the first hole outside the consecutive range of L̃
becomes (p− 1)MN +M +N . Then, the set L̃ contains all
integer lags in the range

−(p−1)MN −M −N +1 ≤ τ ≤ (p−1)MN +M +N −1.
(54)
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