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ABSTRACT

Spectrum analysis of speech signals is important for their detection, recognition, and separation. Speech signals
are nonstationary with time-varying frequencies which, when analyzed by Fourier analysis over a short time
window, exhibit harmonic spectra, i.e., the fundamental frequencies are accompanied by multiple associated
harmonic frequencies. With proper modeling, such harmonic signal components can be cast as group sparse and
solved using group sparse signal reconstruction methods. In this case, all harmonic components contribute to
effective signal detection and fundamental frequency estimation with improved reliability and spectrum resolu-
tion. The estimation of the fundamental frequency signature is implemented using the block sparse Bayesian
learning technique, which is known to provide high-resolution spectrum estimations. Simulation results confirm
the superiority of the proposed technique when compared to the conventional STFT-based methods.

1. INTRODUCTION

Speech signals and, more generally, frequency modulated (FM) nonstationary signals, are widely encountered
in radar, sonar, biomedicine, and speech signal processing. For such signals, because of their time-varying
characteristics, traditional Fourier transform cannot provide high-resolution spectrum analysis and reveal time-
varying instantaneous frequency signatures. Time-frequency analysis is an effective technique to process such
nonstationary signals and thus has attracted significant interests [1, 2]. In particular, the short-time Fourier
transform (STFT) is a commonly used linear time-frequency analysis method to analyze such nonstationary
signals. STFT divides the signals into several overlapping segments with a fixed window, and the window
width trades off between the time and frequency resolutions. A short window leads to a high time resolution
but yields a poor frequency resolution, whereas a long window improves the frequency resolution but reduces
the time resolution. The short-time Fan-Chirp transform (STFChT) is also commonly used for speech signal
analysis [3, 4]. The STFChT can reach the limit of the timeCfrequency uncertainty principle when the signals
are chirp-periodic.

On the other hand, compressed sensing and sparse reconstruction techniques have achieved great success
in recent years [5, 6]. Numerous algorithms, such as orthogonal matching pursuit (OMP) [7], Lasso [8], and
sparse Bayesian learning [9, 10], have been developed toward this purpose. Among different Sparse Bayesian
learning or Bayesian compressive sensing techniques generally provide robust and high-resolution sparse signal
reconstruction, and permit flexible treatment of sparse signal structures through prior designs (e.g., [11–13]).

In addition to sparsity, many real-world signals exhibit the so-called group sparsity, i.e., elements belong to the
same group have the same sparse support whereas their values generally differ. Such group sparse (also referred
to as block sparse) problems can be similarly solved by a number of methods, such as block OMP [14], group
Lasso [15], multi-task compressive sensing (mt-CS) [16, 17], and block sparse Bayesian learning (BSBL) [18].
Group sparsity allows exploitation of multiple observations for better determination of the sparse signal support
and thus achieve improved sparse reconstruction performance as compared to conventional methods without
considering such group sparsity.

In this paper, we formulate the spectrum estimation of harmonic FM signals, with the focus on speech sig-
nals, as a group sparse signal reconstruction problem, which is then effectively solved using the BSBL methods.
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The group sparsity arises from the fact that the harmonic frequencies always appear as integer multiples of the
fundamental frequency, which is also called the first harmonic [19]. In the BSBL framework, all harmonic com-
ponents contribute to effective signal detection and spectrum estimation with improved reliability and spectrum
resolution.

The remainder of this paper is organized as follows. In Section 2, we present the Gaussian-enveloped harmonic
chirp signal of interest and a brief review of the STFT, then we derive the block sparse Bayesian reconstruction
algorithm. Section 3 utilizes the group sparse property of the harmonic chirp signal in their time-frequency
domain to estimate the fundamental frequency. Simulations in Section 4 demonstrate the effectiveness of the
proposed method and finally, the conclusion is given in Section 5.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IL
denotes the L × L identity matrix. (·)T and (·)H respectively denote the transpose and conjugate transpose of
a matrix or vector. diag(x) represents a diagonal matrix that uses the elements of x as its diagonal elements,
and bdiag{A1, ...,AU} denotes a block diagonal matrix with principal diagonal blocks A1, ...,AU being in turn.
CN (a,B) represents multivariate complex Gaussian distribution with mean vector a and covariance matrix B.

2. PROBLEM FORMULATION

In this section, we introduce the time-frequency analysis of a harmonic nonstationary signal using the STFT, and
then formulate the spectrum estimation of nonstationary harmonic signals as a group sparse signal reconstruction
problem.

2.1 Short-time Fourier transform of harmonic nonstationary signals

Consider a general model of a harmonic nonstationary signal in the following form:

s(t) =

H∑
h=1

K∑
k=1

ah,k(t) exp (jkφh(t)), (1)

where H is the number of the fundamental frequency components, K is the maximum order of the harmonics,
ah,k(t) is a slowly time-varying coefficient of the kth harmonic corresponding to the hth fundamental frequency,
and φh(t) is the time-varying phase of the hth fundamental frequency component. In this paper, we only consider
a single signal component, i.e., H = 1. In this case, the above formulation is simplified as

s(t) =

K∑
k=1

ak(t) exp (jkφ(t)). (2)

We sample the signal with a sample frequency fs, and the measurement time is T . Thus, we can obtain
N = fsT discrete-time samples as s[1], s[2], ..., s[N ]. The noisy observations can be expressed as

x[i] = s[i] + v[i], i = 1, ..., N, (3)

where v[i] is additive white Gaussian noise vector with zero mean and variance σ.

Let us now consider the STFT of a harmonic FM signal. A time-domain sequence s[i], i = 1, ..., N , is divided
into D overlapping segments and each segment has M elements. The segment-to-segment shift (frame hop) is S
samples, where 1 ≤ S < M . Thus, the number of overlapping samples between two adjacent segments is M −S.
As such, we obtain an M ×D matrix of the observed data, expressed as:

X = [x1,x2, · · · ,xD] = [s1, s2, · · · , sD] + [v1,v2, · · · ,vD], (4)

where xd = [x[(d− 1)S + 1], x[(d− 1)S + 2], · · · , x[(d− 1)S +M ]]T is the dth segment, 1 ≤ d ≤ D. The STFT
basis matrix Ψ is expressed as a weighted Fourier transform matrix, given by

Ψ = W Π, (5)



where Π is the M -point Fourier transform matrix, and W = diag{w} with w = [w1, w2, · · · , wM ]T denoting an
M -length window vector. Thus, the STFT vector yd is related with xd through the weighted Fourier transform
matrix, expressed as

yd = Ψxd. (6)

We can also obtain the following relationship between Y and X with all D segments accounted for:

Y = ΨX. (7)

Consider an example of harmonic FM signal which consists of two successive Gaussian-enveloped harmonic
chirps with duration 0.8 second and are spaced 0.4 second apart [21]. Both harmonic chirps have K=10 harmonic
components. The fundamental frequency of the first harmonic chirp starts from 200 Hz and rises to 230 Hz,
whereas that of the second harmonic chirp varies from 245 Hz to 210 Hz. The sampling frequency is fs = 8 KHz,
and a Hamming window with a duration of 2048 samples is used. The 2048-point fast Fourier transform (FFT)
is used, and the frame hop is set to 128 samples. Fig. 1(a) shows the time-domain waveforms of this signal, and
Fig. 1(b) shows the STFT magnitude.

From this result, the following observations are made for the direct application of STFT to the harmonic FM
signals:

(a) The STFT of the high-order harmonic signal components becomes broadened with smeared time-frequency
distribution. It makes difficult to analysis the spectrum of harmonic signal components for their detection,
recognition and separation.

(b) As each harmonic signal component is independently analyzed and estimated, the intrinsic relationship that
the harmonic frequencies are integer multiples of the fundamental frequency is not used in the spectrum
estimation.

In the next subsection, we formulate the spectrum estimation of harmonic FM signals as a group sparse
signal reconstruction problem. As a result, all the harmonic signal components are exploited in the spectrum
estimation of each harmonic component, and a high-resolution spectrum estimation is achieved.
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Figure 1. Two successive Gaussian-enveloped harmonic chirps.

2.2 Group-sparse representation of harmonic nonstationary signals

In Eq. (6), vector yd describes the frequency spectrum of the signal in the dth segment. Without considering
the noise, most of the elements in yd are zeroes. In addition, the spectra of the harmonic signal components
occur in positions of the integer multiples of the fundamental frequency. These facts enable the formulation of



the harmonic spectrum estimation as a group sparsity based signal reconstruction. Toward this end, we first
express the dth noise-free signal vector, sd, as

sd = Γdλd, (8)

where

Γd =


1 · · · 1

ejωd · · · ejKωd

...
. . .

...
ej(M−1)ωd · · · ej(M−1)Kωd

 , (9)

λd = [a1(d), a2(d), · · · , aK(d)]T . (10)

Note that both the magnitude, ak(d), and the normalized fundamental radian frequency, ωd, are considered
time-invariant within the dth segment, for k = 1, ...,K, because of the short time period considered in each
segment.

To solve this problem under the group sparsity framework, we consider a fundamental frequency grid
[ω(1), ω(2), ..., ω(U)]T over the maximum possible fundamental frequency range [ωmin, ωmax]. In this case, the
harmonic frequency components can be expressed as

sd = Γ̃λ̃d, (11)

where
Γ̃ = [Γ̃1, Γ̃2, ..., Γ̃U ] (12)

and
λ̃d = [λ̃

T

1 (d), λ̃
T

2 (d), ..., λ̃
T

U (d)]T (13)

respectively represent the measurement (dictionary) matrix and the sparse vector of the group sparse reconstruc-
tion problem. In particular, Γ̃u and λ̃u corresponding to the hypothetic frequency component at the uth grid
entry are respectively expressed as

Γ̃u =


1 · · · 1

ejωu · · · ejKωu

...
. . .

...
ej(M−1)ωu · · · ej(M−1)Kωu

 , (14)

and
λ̃u(d) = [ã(1)u (d), ã(2)u (d), · · · , ã(K)

u (d)]T . (15)

Note that vector λ̃d in (13) is group sparse in the sense that (a) most of its elements take zero values; and (b)

elements in λ̃u(d) tend to be present or absent as a group. That is, for some u0, if ã
(1)
u0 (d) takes a nonzero value,

i.e., ωu0
is a valid fundamental frequency, then ã

(k)
u0 (d) for other values of k are also likely to take nonzero values,

as they are the coefficients of the associated harmonic signal components at frequencies kωu0
for k = 2, ...,K.

In the next section, we will use the BSBL method to effectively recover the positions and values of the sparse
frequency coefficients, thus achieving harmonic spectrum estimation based on all harmonic signals components.

3. GROUP SPARSE RECONSTRUCTION ALGORITHM

We write the formulation of λ̃d in the below:

λ̃d = [ã
(1)
1 (d), ã

(2)
1 (d), ..., ã

(K)
1 (d)︸ ︷︷ ︸

λ̃
T
1 (d)

, ã
(1)
2 (d), ã

(2)
2 (d), ..., ã

(K)
2 (d),︸ ︷︷ ︸

λ̃
T
2 (d)

· · · , ã(1)U (d), ã
(2)
U (d), ..., ã

(K)
U (d)︸ ︷︷ ︸

λ̃
T
U (d)

]T . (16)

As such, λ̃d clearly show the group sparsity as depicted in [20]. There are a number of methods that solve such
group sparse problems. In this paper, we use the BSBL algorithm [20] due to its superior performance when



compared to block orthogonal matching pursuit (BOMP) [14] and group Lasso (gLasso) [15]. Note that the
original BSBL was developed for real-valued problems, and is extended to complex-valued formulation to solve
our problem.

Rewrite (11) as follows with the noise vector vd added:

xd = sd + vd = Γ̃λ̃d + vd. (17)

Assume that each block λ̃i(d) ∈ RK satisfies the following parameterized multivariate Gaussian distribution:

p(λ̃i(d); γi,Bi) ∼ CN (0, γiBi), i = 1, · · · , U, (18)

where γi and Bi are unknown parameters. Here, γi is a nonnegative parameter controlling the block-sparsity
of vector λ̃i(d). In particular, it becomes zero when γi = 0. In addition, Bi ∈ RK×K is a positive definite
matrix that captures the covariance matrix structure of vector λ̃i(d). In our paper, the blocks are considered
mutually uncorrelated and, as such, the prior of λ̃d can be represented as p(λ̃d; γi,Bi) ∼ CN (0,Σ0), where
Σ0 = bdiag{γ1B1, · · · , γUBU}. Let the noise vector satisfies p(vd;σ) ∼ N (0, σIM ), where σ is a positive scalar
representing the noise variance. Thus, the posterior of λ̃d can be obtained as

p(λ̃d |xd ;σ, {γi,Bi}Ui=1) = CN (µλd
,Σλd

) (19)

where

µλd
= Σ0Γ̃

H
(
σIM + Γ̃Σ0Γ̃

H
)−1

xd, (20)

Σλd
=

(
Σ−1

0 +
1

σ
Γ̃
H

Γ̃

)−1

. (21)

Utilizing the Expectation Maximization (EM) method, we can derive the learning rules for Bi, γi and σ:

Bi ←
1

U

U∑
i=1

Σi
λd

+ µiλd

(
µiλd

)T
γi

(22)

γi ← 1
KTr

[
B−1
i

(
Σi
λd

+ µiλd

(
µiλd

)T)]
, i = 1, · · · , U (23)

σ ←

∥∥∥xd − Γ̃µλd

∥∥∥2
2

+
U∑
i=1

Tr

(
Σi
λd

(
Γ̃
i
)T

Γ̃
i
)

M
(24)

where µiλd
∈ RK×1 is the corresponding ith block in µλd

, Σi
λd
∈ RK×K is the corresponding ith principal

diagonal block in Σλd
, and Γ̃

i
∈ RM×K is the submatrix of Γ̃ which corresponds to the ith block of xd.

After the parameters σ,{γi,Bi}Ui=1 are calculated, the maximum a posteriori (MAP) estimate of λ̃d can be
obtained from the mean of the posterior, expressed as

λ̂d ← Σ0Γ̃
H
(
σIM + Γ̃Σ0Γ̃

H
)−1

xd. (25)

4. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate the effectiveness of the proposed technique. We use
the successive harmonic chirps as described in Section 2.1 and depicted in Fig. 1 as example.

Fig. 2 shows the time-frequency domain representations of the recovery result of the first 0.8 second of the
data covering the first harmonic chirp signal utilizing the proposed method and the STFChT, respectively.
Complex Gaussian noise is added to yield an average signal-to-noise ratio (SNR) of 5 dB. The fundamental
frequency grid used in the dictionary matrix Γ̂ is between 180 Hz and 270 Hz with a 1 Hz increment, yielding
U = 91 group entries in the sparse spectrum. We assume 15 hypothetic harmonic components in the group
sparse reconstruction, which is higher than the actual harmonic order of 10. In both figures, we divide the signal
into multiple segments where each segment has 512 hamming-windowed samples. The number of overlapped
samples between two adjacent segments is 292. Compared with the STFChT method, the proposed method has
a much higher frequency resolution.



(a) Proposed method (b) SFTChT method

Figure 2. Spectrum estimation utilizing proposed method and STFChT method.

5. CONCLUSION

In this paper, we proposed a novel spectrum estimation technique for harmonic frequency modulated signals
with time-varying fundamental frequencies. The proposed method casts the spectrum estimation as a group
sparse signal reconstruction problem where all the harmonic spectra are jointly estimated using all available
harmonic signal components. Compared with the conventional STFT and STFChT methods, the proposed
method achieves improved frequency resolution and performance.
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