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ABSTRACT

Coprime array, which utilizes a coprime pair of uniform linear subarrays, is an attractive structure to achieve
sparse array configurations. Alternatively, effective coprime array configurations can be implemented using a
uniform linear array with two coprime sensing frequencies. This enables the integration of the coprime array
and filter concepts to achieve high capabilities in meeting system performance and complexity constraints. This
paper examines its performance for direction-of-arrival estimations. In particular, we analyze the number of
detectable signals and the estimation accuracy as related to the array configurations and sensing frequencies.
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1. INTRODUCTION

An important application of array signal processing is direction-of-arrival (DOA) estimation, which determines
the spatial spectra of the impinging electromagnetic waves. It is well known that an N -element uniform linear
array (ULA) has N − 1 degrees-of-freedom (DOFs), i.e., it resolves up to N − 1 sources by using conventional
DOA estimation methods, such as MUSIC and ESPRIT.1,2 On the other hand, a higher number of DOFs can
be achieved to resolve more sources by using the same number of array sensors if they are sparely placed.3 Such
higher DOFs are usually achieved by exploiting the extended difference co-array whose virtual sensor positions
are determined by the lag differences between physical sensors. The minimum redundancy array (MRA)4 is a
well-known configuration of sparse linear array which, for a given number of physical sensors, maximizes the
number of consecutive virtual sensors in the resulting difference co-array. A significant problem with the MRA
is that, given an arbitrary number of physical sensors, there is no systematical method to design an MRA
configuration and to assess its achievable DOFs.

Recently, several methods have been proposed for systematical construction of sparse arrays. The nested
array,5 which is designed with two uniform linear subarrays, in which one subarray has a unit interelement
spacing, can resolve O(N2) sources with N sensors. The coprime array concept was proposed in6 to resolve
O(MN) sources with M + N − 1 physical sensors. To obtained a longer consecutive set of virtual sensors, a
modified coprime array structure was proposed in7 by doubling the number of elements in the smaller subarray.
Such approach is generalized in8 by introducing an integer factor that compresses the interelement spacing of
one constituting subarray, and the exact number of DOFs is obtained. On the other hand, it is shown that, by
exploiting sparse signal reconstruction techniques, a higher number of DOFs is achieved by utilizing the non-
consecutive virtual sensors that are otherwise unused in conventional DOA estimation approaches.9 In addition,
by placing the two subarrays collinearly instead of collocated, the number of unique virtual sensors is further
increased, thus providing more DOFs of the coprime array when the sparse signal reconstruction techniques are
exploited.10

While the coprime array concept is developed by using two physical uniform linear subarrays, it is shown in9

that effective coprime array configurations can also be implemented using a single sparse ULA with two coprime
frequencies. This can be achieved, e.g., by exploiting two continuous-wave (CW) sinusoids whose frequencies
satisfy a certain coprime relationship. In this case, the ULA acts as two virtual subarrays at these two frequencies
with different interelement spacing in terms of the respective wavelengths, resulting in an equivalent structure to
coprime arrays. As such, it integrates the concept of coprime array and coprime filter to achieve high capabilities
in meeting system performance and complexity constraints. Unlike coprime arrays wherein the numbers of
subarray sensors and the interelement spacings have to satisfy the coprime relationship, only the two frequencies
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are required to be coprime. As a result, it provides greater flexibility in system design and the capability of
configuration adaptivity to the application environments. While the effectiveness of this equivalent coprime
array structure is verified through simulation examples, the number of the achievable DOFs remains unclear for
different choices of coprime frequency pairs.

The primary objective of this paper is to derived the analytical expression of the number of DOFs and
the resolvable sources with respect to the number of physical sensors and the selected coprime frequencies. In
addition, we find that the available DOFs are solely determined by the number of cross-lags between the two
effective subarrays. As such, the DOA estimation problem is cast as a sparse signal reconstruction problem
by using the difference co-array obtained from such cross-lags. On the other hand, the self-lags obtained for
each subarray can also be exploited for improving the performance. In the latter case, because the reflection
characteristics at the two frequencies generally differ due to the differences in the propagation phase and possibly
the target reflectivity, group sparse signal reconstruction methods have to be used to exploit both self- and cross-
lags.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In particular, IN
denotes the N ×N identity matrix. (.)∗ implies complex conjugation, whereas (.)T and (.)H respectively denote
the transpose and conjugate transpose of a matrix or vector. vec(·) denotes the vectorization operator that turns
a matrix into a vector by stacking all columns on top of the another, and diag(x) denotes a diagonal matrix that
uses the elements of x as its diagonal elements. ‖ · ‖2 and || · ||1 respectively denote the Euclidean (l2) and l1
norms, and E(·) is the statistical expectation operator.

⊗
denotes the Kronecker product, and b·c denotes the

largest integer not exceeding the argument.

2. SYSTEM MODEL

We consider a DOA estimation problem by exploiting signals at two coprime frequencies f1 and f2. This can be
achieved either actively by simultaneously emitting two CW signals at these frequencies from a single transmit
antenna or a phased array, or passively by properly filtering signals at such frequencies. The signals received
from Q unknown far-field targets are received at an L-element ULA, which has an interelement spacing of d.

For a CW waveform with frequency fi, where i is either 1 or 2, the return signal from the Q far-field targets,
located at DOAs θq, q = 1, 2, · · · , Q, is expressed as

x̃i(t) = exp(j2πfit)

Q∑
q=1

ρ
(q)
i (t)ai(θq) + ñi(t), (1)

where ρ
(q)
i (t) is the complex signal envelop which does not vary with the receive antennas but is in general

frequency-dependent due to the different propagation phase delays. We assume ρ
(q)
i (t) to be uncorrelated for

different sources/targets due to independent source waveforms or, in the active sensing scenario, target motion or
radar cross section (RCS) fluctuations. In addition, ai(θq) is the steering vector corresponding to θq, expressed
as

ai(θq) =
[
1, e

−j 2πd
λi

sin(θq), ..., e
−j 2π(L−1)d

λi
sin(θq)

]T
(2)

where λi = c/fi denotes the wavelength corresponding to fi, and c is the velocity of wave propagation. Further-
more, ñi(t) is the additive noise vector, whose elements are assumed to be spatially and temporally white.

After converting the received signal vector to baseband using the respective transmitted CW waveforms,
followed by low-pass filtering, we obtain

xi(t) =

Q∑
q=1

ρ
(q)
i (t)ai(θq) + ni(t) = Aidi(t) + ni(t), (3)

where Ai = [ai(θ1), · · · ,ai(θQ)] and di(t) = [ρ
(1)
i (t), · · · , ρ(Q)

i (t)]T . We denote the noise variance at the filter

output as σ
(i)
n .



(a) A sparse ULA

(b) Equivalent structure with two coprime frequencies

Figure 1. A sparse ULA with two coprime frequencies configuration.

In,11 a sufficient condition for alias-free DOA estimation is achieved by choosing the two frequencies to be
coprime, i.e., the ratio equals the ratio between two coprime numbers. In this paper, the problem is considered
in the context of coprime arrays.9 We assume that d is an integer multiple of the half-wavelength at both
frequencies, i.e., Mi = 2d/λi are integers for i = 1, 2. As such, the ULA is sparse (spatially undersampled) at
each frequency. M1 and M2 are chosen to be coprime, i.e., their greatest common divisor is one. In this case,
we can rewrite the steering vectors in a frequency-independent form for better clarity,

ai(θq) =
[
1, e−jMi sin(θq), ..., e−jMi(L−1)d sin(θq)

]T
. (4)

It is clear that the DOA estimation problem is similar to the coprime arrays considered in.6 It is noted, however,
that both subarrays share the same number of sensors, L.

3. CO-ARRAY GENERATED FROM THE EQUIVALENT ARRAYS

Without loss of generality, we assume M1 < M2, illustrated in Fig. 1. The two equivalent subarrays are located
at

P = {M1l1d0, 0 ≤ l1 ≤ L− 1} ∪ {M2l2d0, 0 ≤ l2 ≤ L− 1}. (5)

where d0 denotes half-wavelength in a normalized frequency sense (i.e., no specific frequency is referred to). As
such, the aperture of this equivalent coprime array structure is M2(L − 1). In addition, the two uniform linear
subarrays in the underlying problem have the same L sensors, which align in the zeroth position and whenever
l/M2 is an integer. Therefore, there are 2L− 1− b(L− 1)/M2c equivalent physical sensors.

Because the two subarrays share the first sensor at the zeroth position, the self-lags of each subarray can be
taken as cross-lags between every sensor of one subarray and the first sensor of the other subarray. That is, the
self-lags form a subset of the cross-lags and, therefore, we only need to examine the cross-lags in determining the
number of DOFs of the equivalent coprime array. The difference co-array between the two equivalent subarrays
consists of the following cross-lags

x(l1, l2) = {M1l1 −M2l2, 0 ≤ l1 ≤ L− 1, 0 ≤ l2 ≤ L− 1}, (6)

and corresponding negative set is

−x(l1, l2) = {M2l2 −M1l1, 0 ≤ l1 ≤ L− 1, 0 ≤ l2 ≤ L− 1}. (7)

It is apparent that 2L2 − 1 lags are in set {−x(l1, l2) ∪ x(l1, l2)}, which determines the global upper bound
of the number of DOFs achievable from the difference co-array. The actual number of lags, η, is the number of



unique lags in set {−x(l1, l2) ∪ x(l1, l2)}, which may be smaller than 2L2 − 1 if some lags are redundant. The
number of DOFs achieved by a co-array of η unique lags is equivalent to that of an array with (η+ 1)/2 sensors.

When M2 ≥ L, the number of unique lags of the co-array is given by

η = 2L2 − 1−max{0, 2L− 1−M2}min{M1 + 1, 2L− 1−M1}, (8)

where M1 and M2 are coprime, and M1 < M2. The case of M2 < L yields redundant lags in x(l1, l2) and thus
results in a smaller number of unique lags. For this reason, this case is not considered here.

It can be seen that, while x(l1, l2) has L2 distinct lags in line with the coprimality of M1 and M2, the actual
value of η depends on the values of M1 and M2. The reduction of the unique lags is due to the overlaps between
x(l1, l2) and −x(l1, l2). In the following, we consider (8) in three different cases:

• Case a: η = 2L2−1 when M2 ≥ 2L−1. In this case, η achieves the maximum value of 2L2−1 irrespective
of M1. It should be noted, however, that a large value of M2 may yield a high level sidelobe in the
corresponding point spread function (PSF) of the co-array.

• Case b: η = 2L2 − 1− (2L− 1−M2)(2L− 1−M1) when L ≤M1 < M2 and L ≤M2 < 2L− 1.

• Case c: η = 2L2 − 1− (2L− 1−M2)(M1 + 1) when 1 ≤M1 < L and L ≤M2 < 2L− 1.

For cases b and c, η depends on both M1 and M2 and is maximized when M1 = 1 (Case c) or M1 = M2 − 1
(Case b). The latter is preferred because it yields a smaller frequency separation between f1 and f2.

For illustrative purpose, two co-array examples of different pairs of M1 and M2 are shown in Fig. 2, where
the physical ULA has 6 sensors in both cases. It is clear that the difference co-arrays for all cases have more
sensors than the sparse ULA. Nonetheless, the number of unique co-array lags is 41 as shown in Fig. 2(b) for
the case of M1 = 5 and M2 = 6, whereas it increases to 71 in Fig. 2(a) when M1 = 10 and M2 = 11. Notice that
overlapping lags are observed between x(l1, l2) and −x(l1, l2) in Fig. 2(b), and no lags overlap in Fig. 2(a).

4. DOA ESTIMATION

As we discussed earlier, a full number of unique lags is achieved in the resulting co-array by using the cross-
lags between the two subarrays. As such, compressive sensing (CS)-based DOA estimation can be performed
based only on the cross-lag correlations without losing the available co-array DOFs. On the other hand, while
exploiting both the self- and cross-lag correlations does not increase the number of DOFs of the co-array, the
utilization of both self- and cross-lags makes better use of the observed data and thus may yield improved DOA
estimation performance. In this case, however, the CS methods have to deal with the group sparsity for the self-
and cross-lag correlations. In the following, we first discuss the DOA estimation from cross-lag observations, and
the approach with both self- and cross-lags then follows.

The cross-lag correlation matrix between x1(t) and x2(t) is obtained as

R(1,2)
xx = E[x1(t)xH2 (t)] = A1R

(1,2)
ss AH

2 =

Q∑
q=1

σ(1,2)
q a1(θq)a

H
2 (θq), (9)

where R
(1,2)
ss = E[d1(t)dH2 (t)] = diag([σ

(1,2)
1 , . . . , σ

(1,2)
Q ]) is the cross-correlation matrix between the source signals

at the two frequencies. Note that σ
(1,2)
q , p = 1, ..., Q, in general, takes a complex value. In addition, because

R
(2,1)
xx = (R

(1,2)
xx )H , the term R

(2,1)
xx does not carry additional information and thus is not considered in the

CS-based DOA estimation.

Vectorizing R
(1,2)
xx yields an L2 × 1 vector

z(1,2) = vec(R(1,2)
xx ) = Ã(1,2)b(1,2), (10)
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(b) M1 = 5 and M2 = 6
Figure 2. Co-array examples for different choices of M1 and M2 (L = 6).

where Ã(i,l) = [ã(i,l)(θ1), ..., ã(i,l)(θQ)], ã(i,l)(θq) = a∗i (θq)
⊗

al(θq), b
(i,l) = [σ

(i,l)
1 , ..., σ

(i,l)
Q ]T . The DOA estimates

can formulated as the following constrained l1-norm minimization problem,

b̂(1,2) = arg min
b(1,2)

||b(1,2)||1 (11)

s.t. ||z(1,2) − Ã(1,2)b(1,2)||2 < ε1,

where ε1 is a user-specific bound. This type of problems has been the objective of intensive studies in the area
of CS, and a number of effective numerical computation methods has been developed to obtain the solution by
solving a corresponding overdetermined problem defined in a dense search grid. In this paper, we use the batch
Lasso method, but other methods may also be used.

When considering both self- and cross-lags for the DOA estimation, we further obtain

R(i)
xx = E[xi(t)x

H
i (t)] = AiR

(i)
ss A

H
i + σ(i)

n IL =

Q∑
q=1

σ(i)
q ai(θq)a

H
i (θq) + σ(i)

n IL, (12)

where i takes a value of either 1 or 2. In the above expressions, R
(i)
ss = E[di(t)d

H
i (t)] = diag([σ

(i)
1 , . . . , σ

(i)
Q ]) is

the source covariance matrix where σ
(i)
q is real and positive. Vectorizing R

(i)
xx yields an L2 × 1 vector,

z(i) = vec(R(i)
xx) = Ã(i)b(i) + σ(i)

n i, (13)

where Ã(i) = [ã(i)(θ1), ..., ã(i)(θQ)], ã(i)(θq) = a∗i (θq)
⊗

ai(θq), b
(i) = [σ

(i)
1 , ..., σ

(i)
Q ]T .

As we can observe from the above discussion, elements of b(i) and b(i,l), respectively depicted in (13) and
(10), share the same sparsity support corresponding to the directions of the Q targets but generally take different
values. As such, the DOA estimation problem must be solved in the group sparse context.9 In this paper, we
use the group Lasso to locate the non-zero entries of b(i) and b(i,l) for DOA estimation.



Stacking vectors z(1), z(2), and z(1,2) as z = [(z(1))T , (z(2))T , (z(1,2))T ]T . Then, we can combine (10) and (13)
into a single expression as,

z = Ãb + Ĩσn, (14)

where b = [(b(1))T , (b(2))T , (b(1,2))T ]T , Ã is a block diagonal matrix consisting of Ã(1), Ã(2) and Ã(1,2). In

addition, σn = [σ
(1)
n , σ

(2)
n ]T , and Ĩ is a 3L2 × 2 matrix whose first [iT ,0T ,0T ]T , where 0 denotes the all zero

vector of dimension L2 × 1, and the second column is [0T , iT ,0T ]T . The estimation of b can be formulated as
the following minimization problem,

b̂ = arg min
b
||ξ(b)||1 (15)

s.t. ||z− Ãb− σnĨ||2 < ε2,

where ε2 is a user-specific bound, and ξ(.) is an operation that obtains the l2 norm of the three-element entries
corresponding to each spatial position. We use the group Lasso to solve a corresponding problem defined in a
dense search grid.

5. SIMULATION RESULTS

For illustration, we consider a ULA of L = 6 antenna sensors. Q = 19 targets, which are uniformly distributed
between −60◦ and 60◦, are assumed. The noise power at the two frequencies are assumed to be the same, and
the input SNR is −10 dB for all sources are assumed to be identical. The number of snapshots is 2000, and the
grid size for space angle search is 0.1◦. The phase difference between the received signal corresponding to the
two frequencies is independently and uniformly distributed over [0, 2π].

We first show the importance of using coprime frequencies to maximize the DOFs. To demonstrate this fact,
we show in Fig. 3 the results for different pairs of M1 and M2. Specifically, M1 = 4 and M2 = 6 are used in
Fig. 3(a). Only the cross-lags are used. In this case, M1 and M2 are not coprime and the number of resulting
unique lags is η = 29. As such, the yielding co-array does not resolve the 19 sources. As a comparison, in the
case of M1 = 5 and M2 = 6, which is depicted in Fig. 3(b), there are η=41 unique lags, and all the 19 sources
are resolved.

In the next example, we consider the advantage of using both self- and cross-lags as compared to the case
when only the cross-lag is used. Fig. 4(a) shows improved DOA estimation performance as the result of using
both self- and cross-lags as compared to the cross-lag only results replicated in Fig. 4(b).
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(a) M1 = 4, M2 = 6 (b) M1 = 5, M2 = 6

Figure 3. Spatial spectra estimated for different choice of M1 and M2.

6. CONCLUSION

In this paper, we examined the coprime array construction using a sparse uniform linear array with two coprime
frequencies. We derived the analytical expressions of the number of unique lags of the yielding co-array to
determine the number of detectable sources. It was shown that full degrees-of-freedom are achieved by using
only the cross-lag correlations, but the combined use of the self- and cross-lags improves the DOA estimation
performance.
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(a) Using self- and cross-lags (b) Using cross-lags only

Figure 4. Spatial spectra estimated for M1 = 5, M2 = 6.
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