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ABSTRACT

In this paper, we consider resolving over-the-horizon radar (OTHR) Doppler returns. A high-resolution time-
frequency (TF) representation of the received signal is obtained by using the local polynomial Fourier transform
(LPFT). From the optimally concentrated LPFT, multicomponent Doppler signatures, which are only several
frequency bins apart, are extracted using an instantaneous frequency estimation method based on the Viterbi
algorithm. The performance of the proposed method is validated using real data.

Keywords: Over-the-horizon radar, instantaneous frequency estimation, Viterbi algorithm, local-polynomial
Fourier transform.

1. INTRODUCTION

Over-the-horizon radar (OTHR) performs wide-area surveillance at ranges well beyond the limit of conventional
line-of-sight (LOS) radars.1 Maneuvering targets generate multi-component Doppler signatures corresponding to
the direct and non-direct paths, both encounter reflections from the ionosphere. These signatures contain impor-
tant information about the position, maneuvering and altitude of the targets, and they are usually characterized
by significant variation of their instantaneous frequencies (IFs). If properly estimated, the multi-component
target Doppler signatures reveal the moving target altitude trajectories. Time-frequency (TF) methods can be
successfully applied for high-resolution analysis of the OTHR Doppler returns.2 Clearly, the main challenge
facing parametric and nonparametric time-frequency representation methods in OTHR is the ability to resolve
close signal components arising from close Doppler values when the aircraft is viewed by different multipaths.
It is noted that in the TF plane, the Doppler components can be only several frequency bins apart and even
visual detection could be hardly done. High-resolution methods, such as the Capon and the MUSIC techniques,
cannot be applied due to the IF variations. The use of bilinear TF signal representations, either in non-adaptive
or adaptive mode, is also restricted due to inherent interferences. The spectrogram, as a very popular TF tool,
has poor resolution for such OTHR Doppler signals.

In this paper, we propose a hybrid TF-based method for resolving OTHR Doppler returns. The method
comprises several recently proposed tools and its high-quality performance is validated using real data. First,
the Viterbi algorithm-based IF estimator3 is used to detect the TF-domain positions of the signal of interest
in heavily cluttered data. After detecting regions of interest, the local polynomial Fourier transform (LPFT) is
used to produce high-resolution TF representations without cross-terms.4 In the LPFT, the adaptive chirp-rate
is estimated at each time instant and selected to compensate higher order terms in the signal’s IF and, as such,
improve the signal concentration. Finally, an efficient high-resolution interpolation strategy is used to refine the
estimation of the considered signal component.

The paper is organized as follows. In Section 2, background material regarding signal model, Doppler char-
acteristics of the received signal, the LPFT and the IF estimation based on the Viterbi algorithm is presented.
The proposed method is introduced and validated in Section 3. Section 4 concludes the paper.
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Figure 1. Flat ground model of the OTHR system.

2. BACKGROUND

2.1 Signal model and Doppler characteristics

In this paper, we will adopt the flat ground model of the OTHR system for the simplicity of mathematical
analysis. The model is presented in Fig. 1. After pulse or sweep matched filtering and beamforming at the
receiver side, the received signal y(t) can be expressed as

y(t) = x(t) + u(t) + n(t), (1)

where x(t) represents the return signal from the target, u(t) the clutter, and n(t) the ambient noise. Signal x(t)
can be expressed as

x(t) = Ae−jωc(dt+dr)/c, (2)

where A is a complex scalar that represents the propagation loss and phase, dt and dr are the one-way slant
range between the transmitter and the target, and between the target and the receiver, respectively, c is the
speed of light and ωc = 2πfc is the carrier frequency. In this paper, the noise term n(t) is ignored, since its
power is usually very small compared to the other components of the received signal. Typically, in the OTHR
system, two paths of the radar signal exist, one directly reflected from the ionosphere, and the other reflected
from the earth surface (ocean or ground) near the target, as shown in Fig. 1. The propagation distance of
the two paths will be denoted as l1 and l2, respectively. Therefore, if we assume that the OTHR system is a
monostatic one (location of the transmitter and receiver coincide), dt and dr can take the value of either l1 and
l2. If we denote the path losses corresponding to l1 and l2 as A1 and A2, respectively, the radar return will
contain four components corresponding to four combination paths: (l1 : l1) as path I, (l2 : l2) as path II, and
combination of paths (l1 : l2) and (l2 : l1) as path III. The radar return can be now expressed as

x(t) = A1e
−jωc2l1/c +A2e

−jωc2l2/c +A3e
−jωc(l1+l2)/c. (3)

From Fig. 1, the distances l1 and l2 can be expressed in terms of the range distance R, the ionosphere height H
and the aircraft height h, as follows:

l1 =
√
R2 + (2H − h)2 ≈ R+

2H2 − 2Hh

R
,

l2 =
√
R2 + (2H + h)2 ≈ R+

2H2 + 2Hh

R
.

(4)

The approximations in (4) are derived having in mind that, in a typical OTHR scenario, we can assume that
R ≫ H ≫ h.



Generally, the flight of an aircraft consists of horizontal and elevation movements. Herein, we consider the
Doppler frequency characteristics of the aircrafts movement in the two different dimensions.

As an aircraft flies, R, and possibly also h, become functions of t. The height of the ionosphere H is also
slowly time-varying. However, we assume that H is constant over the processing time interval. From (4), we
have

dl1(t)

dt
≈ K(t)vR(t)−

2H

R(t)
vc(t),

dl2(t)

dt
≈ K(t)vR(t) +

2H

R(t)
vc(t),

(5)

where

K(t) = 1− 2H2/R2(t),

vR(t) = dR(t)/dt, (6)

vc(t) = dh(t)/dt.

In (6), vR(t) and vc(t) are the target velocity in the range direction toward the radar and the ascending velocity
of the target, respectively. The Doppler frequencies corresponding to the three different paths are obtained as

fI(t) =
2fc
c

dl1(t)

dt
≈ 2fc

c
K(t)vR(t)−

4fcH

R(t)c
vc(t),

fII(t) =
2fc
c

dl2(t)

dt
≈ 2fc

c
K(t)vR(t) +

4fcH

R(t)c
vc(t), (7)

fIII(t) =
fc
c

dl1(t) + dl2(t)

dt
≈ 2fc

c
K(t)vR(t).

From (7), the information about the aircraft height h(t) can be obtained by integrating the difference between
the Doppler frequencies.

If the target is changing its acceleration, height or direction, the velocity vR becomes time-varying and the
standard DFT-based approach does not provide high Doppler resolution even with a long coherent integration
time (CIT).5 In this case, the detection and estimation of the Doppler shift caused by a change of h become
difficult. The presence of strong clutter introduces additional difficulties. Due to low resolution, the spectrogram
and related TF-based methods smear the time-Doppler signatures of the target and therefore cannot be used to
resolve them.2 On the other hand, high-resolution Wigner distribution produces undesirable cross-terms when
multicomponent signals are considered, which can completely cover the target’s signatures in the TF plane.

2.2 Local polynomial Fourier transform

The LPFT has been introduced in the TF analysis in,6 and the M -th order LPFT is defined as

LPFT(t, ω; ω⃗) =

∞∫
−∞

x(t+ τ)w(τ)e−jθ(ω⃗,τ)e−jωτdτ, (8)

where

θ (ω⃗, τ) = ω1
τ2

2!
+ ω2

τ3

3!
+ · · ·+ ωM

τM+1

(M + 1)!
(9)

is a polynomial of order (M + 1) with variable τ , and ω⃗ = (ω1, ω2, · · · , ωM ) is the polynomial coefficients
vector. According to (8), the LPFT represents the Fourier transform (FT) of the product of signal, window and
exponential of polynomial, i.e.

LPFT(t, ω; ω⃗) = FT
[
x (t+ τ)w (τ) e−jθ(ω⃗,τ)

]
, (10)

where FT[·] represents the FT operator.



The LPFT is an (m+ 1) dimensional transform which concentrates at

ω⃗ = (ϕ(1)(t), ϕ(2)(t), ..., ϕ(m)(t)), (11)

where ϕ(t) is the signal’s phase, and ϕ(i)(t), i = 2, 3, · · · ,m+ 1, is the i-th phase derivative.6 Definition (8) also
implies that the short-time Fourier transform (STFT) represents a special case of the LPFT obtained when ω⃗ is
a zero-vector. Similarly to the STFT, the LPFT is a linear transform that does not produce cross-terms when
x(t) is a multicomponent signal.6

Specially, the first-order LPFT,

LPFT(t, ω;ω1) =

∞∫
−∞

x(t+ τ)w(τ)e−jω1
τ2

2 e−jωτdτ (12)

of a linear FM signal

x(t) = e
j
(
at+b t2

2

)
(13)

equals

LPFT(t, ω;ω1) = e
j
(
at+b t2

2

) ∞∫
−∞

w(τ)e−j(ω−a−bt)τe−j(ω1−b) τ2

2 dτ. (14)

For ω1 = b, the quadratic variation of the phase is compensated within the considered window, so the first-order

LPFT reduces to the STFT of a sinusoid with frequency a+ bt and initial phase at+ b t
2

2 . Analytically,

LPFT(t, ω;ω1) = e
j
(
at+b t2

2

) ∞∫
−∞

w(τ)e−j(ω−a−bt)τdτ = e
j
(
at+b t2

2

)
W (ω − a− bt), (15)

where W (ω) represents the FT of window w(τ).

The discrete form of the LPFT is defined as follows:

LPFT(n, k) =

N
2 −1∑

m=−N
2

x(n+m)w(m)e
−j

M∑
i=1

ωi
mi+1

(i+1)!
e−j 2π

N mk

= DFT

x (n+m)w (m) e
−j

M∑
i=1

ωi
mi+1

(i+1)!

 (16)

where x(n) and w(m) are discrete versions of signal and window, respectively, and DFT[·] represents the discrete
FT operator.

In Fig. 2, we compare the STFT and the LPFT for two FM types of signals, namely linear FM and sinusoidal
FM signal. The signal length is 512 and the Hanning window of length 128 is used in calculation of both the
STFT and LPFT. In the case of linear FM signal (top row in Fig. 2), the first-order LPFT, denoted as LPFT1, is
considered and it is calculated for the optimal coefficient value in accordance with (15). The bottom row in Fig.
2 represents results obtained for the sinusoidal FM signal. Now, the second-order LPFT, denoted as LPFT2,
is considered and its coefficients ω1 and ω2 are calculated according to (11), i.e., ω1 and ω2 correspond to the
second-order and third-order phase derivative, respectively, calculated at the central window position. Although
higher order phase derivatives exist, in this case only the first two terms suffice to properly concentrate the signal
in the TF plane.
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Figure 2. Top row: The STFT and the first-order LPFT of a linear FM signal. Bottom row: The STFT and the
second-order LPFT of a sinusoidal FM signal.

2.3 IF estimation based on the Viterbi algorithm

The IF estimation algorithm used in this paper is proposed in3 and is based on the edge-following algorithm
in digital image processing proposed in.7 The problem in7 was to find a line that passes through pixels with
as high as possible values of the edge detector, and such that variations of the edge direction are as small as
possible. Our estimation algorithm may be viewed as connecting points on a map such that the path length and
the altitude variations are as small as possible. The problem can be resolved in a recursive manner using the
well known Viterbi algorithm.8

Let us consider the time interval n ∈ [n1, n2], and assume that all paths between n1 and n2 belong to a set
K and that these paths can take only discrete frequency values belonging to a set Qk.

The IF estimation is obtained as

ω̂(n) = argmin
K(n)∈K

[
n2−1∑
n=n1

g(K(n),K(n+ 1)) +

n2∑
n=n1

f(TF(n,K(n)))

]
= argmin

K(n)∈K

p(K(n);n1, n2), (17)

where p(K(n);n1, n2) is the sum of penalty functions g(x, y) and f(x), along the line K(n), from the instant
n1 to n2, and TF(n, k) represents a TF transform of the considered signal. Function g(x, y) = g(|x − y|) is
a nondecreasing one with respect to |x − y| (between the IF values in the consecutive points x = K(n) and
y = K(n + 1)), while f(x) is a nonincreasing function of x = TF(n,K(n)). In this way, larger values of
TF(n,K(n)) are more important candidates for the IF estimation at the considered instant. For the considered
n, f(x) can be formed as follows. The values of TF(n, k), k ∈ Qk, are sorted into the nonincreasing order, i.e.

TF(n, k1) ≥ TF(n, k2) ≥ · · · ≥ TF(n, kM ), kj ∈ Qk, j ∈ [1,M ], (18)



where j = 1, 2, ...,M , is the position within the sorted sequence. Then, the function f(x) is formed as

f(TF(n, kj)) = j − 1, (19)

which corresponds to the idea that larger transform values yield smaller f(x) values and therefore are more
important candidates for the IF estimates.

For a constant g(x, y), the IF estimation (17) is reduced to finding the position of the transform maxima,
i.e., the function f(x) completely determines the minimum of (17). In this paper, we will use a linear form of
g(x, y) for the difference between two points greater than an assumed threshold ∆3

g(x, y) =

{
0 |x− y| ≤ ∆

c(|x− y| −∆) |x− y| > ∆.
(20)

The reasonable choice for ∆ would be the maximal expected value of the IF variation between consecutive points.
It means that there is no additional penalty due to this function for small IF variation (within ∆ points, for
two consecutive instants). In the realization we obtained good results by taking ∆ which corresponds to a few
neighboring points (for example, values around ∆ = 3). For ∆ → ∞, the estimation given by (17) will reduce to
the estimation based on the transform maxima.

The optimization problem (17) will be solved as follows. Let the TF plane contain M frequencies and Q
time-instants, T = {(ni, kj)|i ∈ [1, Q], j = [1,M ]}. The total number of paths between two ending points is
MQ. This fact makes a direct search for the optimal path impossible. Fortunately the algorithm can be realized
recursively, as an instance of the generalized Viterbi algorithm.8 Its realization can be described by the following
fundamental steps.

(a) Let optimal paths, which connect the instant n1 and all points to the instant ni, are determined. These
paths, denoted as πi(n; kj), n ∈ [n1, ni] for j ∈ [1,M ] can be written as

πi(n; kj) = argmin
K(n)∈Kij

p(K(n);n1, (ni, kj)), j ∈ [1,M ], (21)

where the set Kij contains all the paths between the instant n1 and the point (ni, kj), while p(K(n);n1, (ni, kj))
is the sum of the path penalty functions for the line K(n). In the Viterbi algorithm terminology, paths (21) are
known as the partial best paths. Current IF estimate, within the interval [n1, ni], can be written as:

ω̂(i)(n) = argmin
πi(n;kj),j∈[1,M ]

p(πi(n; kj);n1, (ni, kj)), (22)

for the interval [n1, ni].

(b) The partial best paths at the next instant ni+1 can be represented as concatenation of (21) with the
points at the new instant πi+1(n; kj) = [πi(n; kl),(ni+1, kj)], j ∈ [1,M ], for l ∈ [1,M ], that produce the minimal
value of

p(πi(n; kl);n1, (ni, kl)) + g(kl, kj) + f(TF(ni+1, kj)), (23)

for each kj , j ∈ [1,M ]. Note that the function f(TF(ni+1, kj)) is constant for the considered partial best path.
Generally, for the considered point it is necessary to search over M paths, M2 for the entire instant, and QM2

for the entire plane.

Step (b) should be repeated for each point.

In,3 the described IF estimation algorithm is illustrated in detail using an example of a TF plane with M = 3
and Q = 8 points. For additional applications of the Viterbi algorithm we refer to.9,10
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Figure 3. The spectrogram of the received signal.

3. HIGH-RESOLUTION METHOD FOR TARGET DETECTION IN THE OTHR

In this section, we propose a high-resolution method for target detection and classification in the OTHR. As a
TF tool, the method uses the LPFT. By adopting shorter analysis window, we can use the first-order LPFT to
successfully resolve components of the received signal in the TF plane. We also assume that the clutter has been
suppressed.2

The proposed method can be described by the following steps:

Step 1. Detecting TF region of interest In this step, we detect the TF region where time-Doppler frequency
signatures are located. To that end, we apply the IF estimation based on the Viterbi algorithm on the
spectrogram of the received signal. We do not consider signature separation at this point.

Step 2. Optimizing LPFT in detected TF region of interest After the TF region containing time-Doppler
frequency signatures is detected, we optimize the LPFT within that region. The optimal LPFT is one with
the most concentrated signatures. We assume that all the three signatures are parallel so that the optimal
concentration of one signature implies the optimal concentration of other signatures.

Step 3. Extracting signatures Time-Doppler frequency signatures are extracted from the optimal LPFT.
The IF of the strongest signature is estimated by applying the Viterbi algorithm-based IF estimation on
the optimal LPFT. After the IF is estimated, the obtained signature is removed by excising a band of
frequencies around the obtained signature. The procedure is repeated two more times to obtain the other
two time-Doppler frequency signatures.

The proposed method is evaluated on real data.11 The duration of the received signal, sampled at Fs = 40Hz,
is 181.6 sec. In the received signal, the clutter has been suppressed. The spectrogram of the received signal is
represented in Fig. 3. It is calculated using the Hanning window with 256 samples. Time-Doppler signatures
in the spectrogram are completely obscured. Although the spectrogram cannot be used for signature resolving,
it can be used in our method to detect the TF region where signatures are located. Clearly, the IF estimation
based on the maxima of the spectrogram would not yield satisfactory results. Therefore, we use the IF estimation
based on the Viterbi algorithm. The obtained IF estimation is depicted by the thick solid line in Fig. 4, whereas
the TF region of interest is delimited by the dotted lines. Note that the IF estimation algorithm successfully
deals with a strong remaining clutter that occurs at around 95 sec and −5 Hz, even though the spectrogram
maximum corresponds to this clutter component. In general, the Viterbi algorithm can successfully extract IF
trajectories containing many discontinuities, which is not the case for the maxima based estimation.
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Figure 4. The IF estimation obtained from the spectrogram of the received signal (see Fig. 3). The solid line represents
the IF estimation, while the dotted lines delimit the TF region of interest.
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Figure 5. The optimal first-order LPFT of the received signal.

After obtaining the TF region of interest, we perform the LPFT optimization of signatures within that region.
In this paper, we consider the first-order LPFT, i.e., we approximate the signatures within the considered window
as linear FM signals. In order to optimize the first-order LPFT, we first adopt a finite set Ω1 of coefficients ω1

and, for each time instant n, we calculate the LPFT for all values of ω1 from Ω1. The optimal LPFT is one with
the best concentration in the TF plane, where we use the concentration measure introduced in12 obtained as the
ratio of the L4 norm to the square of the L2 norm of the LPFT, i.e., the optimal ω1 at time instant n, denoted
as ωopt

1 (n), is obtained as

ωopt
1 (n) = argmin

ω1∈Ω1

∑
k |LPFT(n, k)|4

(
∑

k |LPFT(n, k)|2)
2 . (24)

The optimal first-order LPFT of the underlying signal is presented in Fig. 5. Now the presence of three close
time-Doppler frequency signatures is obvious during a significant part of signal length. Two TF regions in Fig.
5 are zoomed to emphasize the presence of three signatures. In addition, the signatures are parallel, implying
that all the three signatures are optimized simultaneously.
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Figure 6. The extracted time-Doppler frequency signatures from the LPFT of the received signal.

In order to extract the signatures from the optimal LPFT, we perform the Viterbi algorithm-based IF esti-
mation three times, once for each signature. We start with the strongest signature. After its IF is estimated,
we remove it by excising a narrow TF band around the obtained IF estimation. The procedure is repeated for
the next strongest signature, and finally for the weakest signature. Since the signatures are close to each other
and have similar amplitudes, it may happen that the Viterbi algorithm ”jumps” from one signature to another.
Therefore, to obtain the final smooth signatures we perform two steps. The first one is to sort the obtained
estimates in frequency at each time instant. In the second step, we form three signatures, namely top, middle
and the bottom one, by connecting estimates with the highest, middle and lowest frequency, respectively. The
final signatures are depicted in Fig. 6. Note that the spectrum aliasing, that occurs around 75 sec, has been
corrected in the IF estimation.

A closer look at Fig. 6 reveals that the proposed algorithm has not extracted all the three signatures
within some time intervals. By observing the LPFT in Fig. 5, we see that the signatures overlap within some
time intervals so that they cannot be distinguished. Furthermore, in order to suppress the occurrence of false
signatures, we performed amplitude thresholding in the signature extraction procedure by discarding all the
signature candidates whose amplitude is below 3% of the maximum of the LPFT within the TF region of
interest.

4. CONCLUSIONS

We proposed a TF-based method for resolving OTHR Doppler returns. As a TF tool, the LPFT is used and it is
shown that it can successfully resolve close non-stationary time-Doppler frequency signatures. The IF estimation
is performed using the Viterbi algorithm-based approach that can deal with the IF signatures containing many
discontinuities. Simulations carried out on the real data prove the robustness and effectiveness of the proposed
method.
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