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ABSTRACT

A coprime array consists of two uniform linear subarrays that con-

struct an effective difference co-array with certain desirable char-

acteristics. In this paper, we propose a generalized coprime array

concept through the compression of the interelement spacing of one

constituting subarray. As such, the existing variations of coprime ar-

ray and nested array structures are represented as special cases. The

achievable unique lags as well as consecutive lags in the resulting

virtual array are analytically expressed, and the direction-of-arrival

estimation performance is examined using both the MUSIC algo-

rithm and sparse signal reconstruction techniques.

Index Terms— Coprime array, sparse array, difference co-array,

direction-of-arrival estimation, compressive sensing

1. INTRODUCTION

Direction-of-arrival (DOA) estimation, which determines the spa-

tial spectra of the impinging electromagnetic waves, is an important

application area of antenna arrays. It is known that conventional

DOA estimation methods, such as MUSIC and ESPRIT [1, 2], re-

solve up to N − 1 sources with an N -element array. The problem

of detecting more sources than the number of sensors, on the other

hand, is of tremendous interest in various applications [3]. Virtual

arrays with a higher number of degrees-of-freedom (DOFs) can be

achieved from sparse array structures under the difference co-array

equivalence. The minimum redundancy array (MRA) [4] is a well-

known early configuration of linear array which, for a given number

of physical sensors, maximizes the number of consecutive virtual

sensors in the resulting difference co-array. There is no systematical

method to obtain the MRA configurations for an arbitrary number

of sensors and to assess the corresponding achievable DOFs. There-

fore, the optimum design and performance analysis of such arrays is

not straightforward.

Recently, several array configurations have been proposed as at-

tractive alternatives for sparse array construction. The nested array

[6] can resolve O(N2) sources with only O(N) sensors, and is ob-

tained by combining two uniform linear sub-arrays where one sub-

array assumes a unit interelement spacing. Unlike MRAs, the nested

array configuration is easy to construct and it is possible to provide

exact expressions for the sensor locations and the available DOFs

for a given number of the sensors. The total aperture and the num-

ber of unique and consecutive co-array sensors can be subsequently

obtained [6]. The coprime array developed in [7] which utilizes a

coprime pair of uniform linear subarrays is another attractive sparse

array structure. A standard coprime array, which is referred to as the

This work was supported in part by the Office of Naval Research (ONR)
under grant N00014-13-1-0061.

prototype coprime array in this paper, consists of two uniform subar-

rays, where one is of M sensors with an interelement spacing of N
units, and the other is of N elements with an interelement spacing

of M units. Note that M and N are required to be coprime positive

integers. A coprime array with M + N − 1 sensors can resolve up

to O(MN) sources.

The main objectives of this paper is to generalize the coprime

and nested array configurations developed in [6, 7, 8], and derive the

precise expressions of the achievable number of virtual array sen-

sors. In particular, we introduce the concept of generalized coprime

array (GCA), which permits an integer compression factor to be ap-

plied to the interelement spacing of one constituting subarray. As

such, the two coprime array structures developed in [7, 8] as well

as the nested array structure developed in [6] become special cases

of the proposed generalized coprime arrays. The performance of the

GCA structures is evaluated using their difference co-array equiva-

lence. The analytical expressions of the co-array aperture and the

numbers of unique lags as well as consecutive lags are given for

quantitative evaluation and optimal design.

Notations: We use lower-case (upper-case) bold characters to

denote vectors (matrices). In particular, IN denotes the N × N
identity matrix. (.)∗ implies complex conjugation, whereas (.)T and

(.)H respectively denote the transpose and conjugate transpose of a

matrix or vector. In addition, vec(·) denotes the vectorization oper-

ator that turns a matrix into a vector by stacking all columns on top

of the another, and diag(x) denotes a diagonal matrix that uses the

elements of x as its diagonal elements. ‖ · ‖2 and || · ||1 respectively

denote the Euclidean (l2) and l1 norms, and E(·) is the statistical ex-

pectation operator.
⊗

denotes the Kronecker product, and real(·)
and imag(·) respectively represent the real and imaginary part oper-

ations.

2. COPRIME ARRAY CONCEPT

A prototype coprime array, as described in the previous section, is

illustrated in Fig. 1. Without loss of generality, we assume M < N .

The unit interelement spacing is set to d = λ/2. The array sensors

are positioned at

P = {Mnd, 0 ≤ n ≤ N − 1} ∪ {Nmd, 0 ≤ m ≤ M − 1}. (1)

Because the two subarrays share the first sensor at the zeroth po-

sition, the total number of the sensors used in the coprime array is

M + N − 1. Note that the minimum interelement spacing in this

coprime array is d.

Denote p = [p1, ..., pM+N−1]
T as the positions of the array

sensors where pi ∈ P , i = 1, ...,M + N − 1. The first sensor is

assumed as the reference, i.e., p1 = 0. Assume that Q uncorrelated

signals imping on the array from angles Θ = [θ1, ..., θQ]
T , and their

discritized baseband waveforms are expressed as sq(t), t = 1, ..., T ,



0 1  
 

0 1  2 

 

2 

Fig. 1. The prototype coprime array configuration.

for q = 1, ..., Q. Then, the data vector received at the coprime array

is expressed as

x(t) =

Q∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (2)

where

a(θq) =

[
1, ej

2πp2
λ

sin(θq), ..., ej
2πpM+N−1

λ
sin(θq)

]T

(3)

is the steering vector of the array corresponding to θq , A =
[a(θ1), ...,a(θQ)], and s(t) = [s1(t), ..., sQ(t)]

T . The elements

of the noise vector n(t) are assumed to be independent and iden-

tically distributed (i.i.d.) random variables following the complex

Gaussian distribution NC(0, σ2
n).

The covariance matrix of data vector x(t) is obtained as

Rxx = E[x(t)xH(t)] = ARssA
H + σ2

nIM+N−1

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nIM+N−1,

(4)

where Rss = E[s(t)sH(t)] = diag([σ2
1 , ..., σ

2
Q]) is the source co-

variance matrix, with σ2
q denoting the input signal power of the qth

source, q = 1, ..., Q. In practice, the covariance matrix is estimated

using the T available samples.

From antennas located at the ith and kth positions in p, the cor-

relation E[xi(t)x
∗
k(t)] yields an entry in Rxx with lag pi − pk. As

such, all the available values of i and k, where 0 ≤ i ≤ M +N − 1
and 0 ≤ k ≤ M + N − 1, yields virtual sensors of the following

difference co-array:

CP = {z|z = u− v,u ∈ P,v ∈ P}. (5)

The significance of the difference co-array is that the correlation

of the received signal can be calculated at all difference lags con-

tained in set CP . Such different lags form a virtual array at these

lag positions to achieve increased number of degrees-of-freedom

(DOFs) for DOA estimation. The number of unique elements in set

CP directly determines the number of distinct cross-correlation lags

in the covariance matrix, which is related to the number of DOFs.

By using part or the entire set of the obtained virtual sensors, instead

of the original array, to perform DOA estimation, we can increase

the number of sources that can be detected by the array.

3. DOA ESTIMATION

To understand the role of unique and consecutive co-array lags in

DOA estimation, we briefly summarize the MUSIC algorithm and

compressive sensing (CS)-based approaches exploiting coprime ar-

rays (refer to [8] and [9] for details).
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Fig. 2. The conventional coprime array configuration.

3.1. MUSIC Algorithm

Vectorizing Rxx yields

z = vec(Rxx) = Ãb+ σ2
n ĩ = Br, (6)

where Ã = [ã(θ1), ..., ã(θQ)], ã(θq) = a∗(θq)
⊗

a(θq), b =
[σ2

1 , ..., σ
2
Q]

T , ĩ = vec(IM̃+Ñ−1). In addition, B = [Ã, ĩ] and

r = [bT , σ2
n]

T = [σ2
1 , ..., σ

2
Q, σ

2
n] are used to simplify the notations.

The vector z amounts to the received data from a virtual array with

an extended co-array aperture whose corresponding steering matrix

is defined by Ã. However, the virtual source signal becomes a sin-

gle snapshot of b. Therefore, the rank of the noise-free covariance

matrix of z, Rzz = zzH , is one, and subspace-based DOA estima-

tion techniques, such as MUSIC, fail to yield DOA estimates when

multiple signals impinge to the array.

To overcome the above problem, as shown in Fig. 2, it is pro-

posed in [8] to double the number of array sensor in the first subar-

ray, which has fewer sensors than the other. In this paper, we refer to

this array structure as the conventional coprime array. In such a con-

ventional coprime array, the number of sensors in the two subarrays

are N and 2M , respectively, where M < N . Because the zeroth

sensor positions of the two arrays are collocated, the total number of

the physical sensors in this coprime array structure is N + 2M − 1.

Note that the minimum interelement spacing remains d. This co-

prime array generates all the consecutive 2MN + 1 lag differences

from −MN to MN [8]. By extracting these lags, we can construct

a (2MN + 1) × (2MN + 1) covariance matrix, denoted as R′
zz.

Performing spatial smoothing yields an (MN+1)×(MN+1) full-

rank covariance matrix. The MUSIC algorithm can then be applied

to estimate in theory DOAs, up to MN sources.

3.2. Compressive Sensing Approach

Alternatively, (6) can be solved using the CS approach [9, 10]. The

desired result of b is represented as the solution to the following

constrained l1-norm minimization problem

r̂◦ = argmin
r◦

||r◦||1 s.t. ||z−B◦r◦||2 < ε, (7)

where ε is a user-specific bound, B◦ is a sensing matrix consisting

of the searching steering vectors, and r◦ is a sparse vector to be

determined with entries defined in these search grids.

This type of problems has been the objective of intensive studies

in the area of CS, and a number of effective numerical computation

methods have been developed. Similar to [9, 10], we use the batch

Lasso algorithm [11, 12] in this paper, however other methods may

also be used.

4. GENERALIZED COPRIME ARRAY CONFIGURATIONS

Now we consider the generalization of coprime array structures with

two subarrays with M and N sensors, where M and N are coprime.



Unlike the prototype coprime array, an integer compression factor p
is introduced for changing the interelement spacing of one subarray.

Let

M = pM̃, N = Ñ , (8)

where p is an integer and 2 ≤ p ≤ M . It is easy to confirm that

M̃ and Ñ are also coprime since M and N do not have common

factors other than unity. It is also clear that the coprime array varia-

tion configuration in [8] is a special case of the generalized coprime

configuration by choosing p = 2.

As shown in Fig. 3, in the generalized coprime array, the M -

element subarray has an interelement space of Ñd = Nd, whereas

the N -element subarray has an interelement space of M̃d = Md/p.

As such, the generalized coprime array permits the interelement

spacing of one constituting subarray to be compressed by an integer

factor of p. Note that all arrays under this generalization consist of

the same M + N − 1 physical antenna sensors regardless of the

value of p.

To gain more insights about this array configuration, we sepa-

rately consider the self-lags of the two subarrays and their cross-lags.

Denote

Ls = {M̃n, 0 ≤ n ≤ N − 1} ∪ {Ñm, 0 ≤ m ≤ M − 1}, (9)

and

Lc = {Ñm− M̃n, 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1}. (10)

respectively, as the self- and the cross-lags.

Since Rxx is a Hermitian matrix, {−Ls} and {−Lc} are also

valid lag sets. Consequently, the overall lag set of the entire virtual

array is given by

LP = {Ls} ∪ {Lc} ∪ {−Ls} ∪ {−Lc}. (11)

To completely exploit the DOFs of the GCA configuration, we

summarize the properties of Ls and Lc in Proposition 1.

Proposition 1: The following facts hold for GCA:

(a) There are MN distinct integers in set Lc.

(b) Lc contains all the contiguous integers in the range −(N −
1) ≤ lc ≤ MN − M̃(N − 1)− 1.

(c) The negative values in set Lc form a subset of the flipped

positive counterpart, i.e., {lc, lc < 0} � {–lc, lc > 0}.

(d) Ls � Lc.

(e) The “holes” are located at −(aM̃+bÑ) in the negative range

of Lc, where a ≥ 0 and b > 0 are integers.

The proof is provided in [13].

Based on Proposition 1, the entire lags set in virtual array defined

in (11) consists of {lc, lc ≥ 0} ∪ {−lc, lc ≥ 0}, thus resulting in

Proposition 2.

Proposition 2: The GCA configuration yields a virtual array such

that:

(a) It contains 2MN−(M̃+1)(N−1)−1 unique lags of virtual

sensors.

(b) Among them there are 2MN − 2M̃(N − 1)− 1 consecutive

integers within the range of [−MN+M̃(N−1)+1, MN−
M̃(N − 1)− 1].
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Fig. 3. The GCA configuration.

The proof is also provided in [13]. Note that our result contains more

consecutive lags and is more precise than the result in [8] provided

for the case of M = 2M̃ .

According to Proposition 2, we can draw a conclusion that, for

a specific pair of M and N , the smaller M̃ is, the more unique and

consecutive lags that virtual sensors have. In other words, both num-

bers increase with the compression factor p. The minimum value that

M̃ can take is 1. In this case, the GCA configuration becomes the

nested array which provides the highest numbers of the unique and

consecutive virtual sensors.

5. SIMULATION RESULTS

For illustrative purposes, we consider M=6 and N=7 with different

values of the compression factor p, as shown in Fig. 4. All configura-

tions consist of 12 physical antenna sensors and the unit interelement

spacing is d = λ/2. Fig. 4(a) depicts the example for p = 2 where

the coprime array forms a virtual array with 59 unique lags, among

which 47 lags within [−23, 23] are consecutive. Note that there are

holes in the difference co-array that are indicated by “×” in the fig-

ure. Fig. 4(b) shows for the case of p = 3, and the resulting virtual

array has 65 unique lags, among which 59 lags with [−29, 29] are

consecutive. When p = M = 6, i.e., M̃ = 1, as shown in Fig.

4(c), the coprime array becomes the nested array structure with 71

unique lags, which are all consecutive. It is clear that both numbers

of the unique and consecutive lags increase with p, and the nested

array achieves the maximum number for both.

To compare the DOA estimation performance, we first consider

a relatively clean covariance matrix by assuming 2000 noise-free

snapshots in order to fully explore the DOFs offered by the resulting

virtual arrays. Q = 33 uncorrelated narrowband sources are con-

sidered, which are uniformly distributed between −60◦ and 60◦. In

Figs. 5(a) and 5(b), we respectively obtained 29 and 35 DOFs for

p = 3 and p = 6 when applying the MUSIC algorithm, which only

exploits consecutive virtual array lags. Note that only the latter has

sufficient DOFs to resolve all 33 impinging signals. This is verified

in the two plots as only the nested array (p = 6) resolves all the 33

signals, whereas not all sources are correctly identified for the case

of p = 3. Due to space limitation, the result for p = 2 is not shown

as it has even lower number of DOFs than the p = 3 case. For CS, a

higher number of DOFs is achieved because all unique lags are ex-

ploited. The results obtained from the Lasso are shown in Figs. 5(c)

and 5(d), where a grid interval of θgi = 0.25◦ is used to perform.

The results further demonstrate the optimality of the nested array. In

addition, it is clearly shown that, while both MUSIC and CS based

methods resolve all 33 signals for the nested array structure, the CS-

based technique results in better estimated spectra.

Next, the performance of GCA configurations is considered in

the presence of noise with a 0 dB SNR for all signals, and the num-

ber of snapshots is reduced to 500. In this case, the disturbance in the



covariance matrix becomes higher due to noise and the limited num-

ber of samples. The DOA estimation results are compared in Fig. 6

for Q = 26 sources, which is smaller than the available DOFs for

both array configurations under p = 3 and p = 6. It is evident that

the latter outperforms the former. As a comparison, the CS based

method obtains better spatial spectra.

6. CONCLUSIONS

We proposed a general coprime array structure, termed GCA, for

direction-of-arrival (DOA) estimations. The proposed configu-

rations can exploit different compression factors that reduce the

interelement spacing of one constituting subarray. The resulting

difference co-array aperture, the number of unique lags, and the

number of consecutive lags are analytically given. A quantitative

evaluation is provided by demonstrating the capability of DOA es-

timation of a high number of sources, which is consistent with the

increased number of virtual sensors.
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Fig. 4. Virtual sensor positions for GCA configurations with differ-
ent values of compression factor p (M=6 and N=7).
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(a) MUSIC with p=3 (b) MUSIC with p=6
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(c) Lasso with p=3 (d) Lasso with p=6

Fig. 5. Estimated spatial spectra (noise-free, 2000 snapshots, Q=33).
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