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Abstract—In this paper, we consider the problem of multi-
target tracking in a multi-static passive radar system using
Doppler-only measurements. In a multi-static configuration, the
observability and estimation accuracy of target states can be
significantly improved by simultaneously exploiting all available
measurements. Track-before-fuse and fuse-before-track are the
two fusion paradigms proposed in the literature to utilize
such multi-static measurements. The fuse-before-track approach
involves a minimal information loss and thus achieves a better
accuracy and robustness than the track-before-fuse counterpart.
However, despite the obvious advantages in terms of estimation
accuracy and robustness, the centralized measurement fusion
approach is difficult due to the prohibitive computational cost.
As such, the track-before-fuse approach has been commonly used
in multi-static passive radar tracking systems using Doppler-
only measurements. In this paper, we exploit a group-sparsity
based algorithm to simultaneously utilize the Doppler shift
measurements at all bistatic pairs to obtain the target state
estimates directly in Cartesian coordinate system. The estimated
target states at each sampling instant are then fed as the inputs
to the linear Gaussian mixture probability hypothesis filter,
which removes the false measurements and correctly associates
the measurements to the respective targets. Simulation results
are provided to validate the ability of the proposed method
to successfully handle the multi-target tracking problem in a
challenging environment characterized by missed detection and
false measurements.

I. INTRODUCTION

Multi-target tracking (MTT) is a well investigated problem
(e.g., [1–4]) relevant to diverse application areas including air
traffic control, intelligence, surveillance, and reconnaissance
(ISR), space applications, remote sensing, biomedicine, and
robotics. MTT refers to a problem of jointly estimating the
number of targets and their states, at successive time intervals,
from a noisy and cluttered set of observations [5]. In recent
years, the problem of MTT using Doppler-only measurements
has emerged as an area of interest, specially in the context
of multi-static passive radar (MPR) systems (e.g., [6–8]), as
the Doppler sensors have become increasingly accurate and
inexpensive. A Doppler-only tracking passive radar system
being considered comprises an illuminator of opportunity
(e.g., DAB/DVB broadcast station, FM radio transmitter, and
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cellular mobile transmitter), a distributed network of Doppler
sensors that collect independent measurements in the form of
Doppler shift of the target-reflected signals, and an information
fusion center. Alternatively, a network comprising multiple
spatially-separated transmitters and a single Doppler sensor
can be deployed. Doppler-only tracking offers two key advan-
tages in terms of ease-of-implementation and system expenses
because (a) it does not require a strictly synchronous operation
among the sensors, and (b) the required volume of information
exchange, or the bandwidth, for communication among the
sensors and/or between each sensor and the information fusion
center is significantly reduced. On the other hand and from
a signal processing perspective, there are several challenges
associated with the Doppler-only MTT, such as measurement
origin uncertainties, track initiation and management, data
association, clutter, and detection loss [13].

There are several algorithms available in the literature that
address the problem of multi-target measurement association
and track management. Some of the common data association
algorithms are multiple hypothesis tracking (MHT) [14], prob-
abilistic data association (PDA) [15], and joint probabilistic
data association (JPDA) [16]. These data association based
algorithms suffer from exponentially increasing computational
complexity as the number of targets increases. The probability
hypothesis density (PHD) filter, based on a random finite set
(RFS) framework and Bayesian analysis [2], avoids data asso-
ciation and, thus, has emerged as a computationally efficient
alternative in MTT, particularly for problems involving a large
number of targets. There are two algorithms available for the
implementation of the PHD filter: the sequential Monte Carlo
method (SMCPHD) and the Gaussian Mixture representation
(GMPHD). The GMPHD algorithm provides a closed-form
solution and is computationally efficient in linear dynamic
systems, while the SMCPHD algorithm is more suited to the
non-linear target state dynamics [7]. Several recent works (e.g.,
[6–8]) have investigated the application of the PHD filter for
multi-target tracking using Doppler-only measurements.

In a multi-static configuration comprising multiple spa-
tially distributed illuminators or receivers, the observability
and accuracy of target state estimation can be significantly
improved by simultaneously exploiting all available measure-
ments. Also, when a target crosses the baseline between one of
the transmitter-receiver pairs, the information available from



other bistatic pairs can be exploited for reliable estimation,
provided that there are a sufficient number of bistatic pairs
in operation. In this paper, we consider the multiple receive
sensor scenario, although the multiple illuminator case can
be similarly formulated. There are two different fusion ap-
proaches available in the literature, namely, track-before-fuse
and fuse-before-track. The track-before-fuse approach is a
distributed algorithm where tracking is performed locally at
each sensor, followed by a track-to-track fusion at a fusion
center. On the other hand, the fuse-before-track approach is a
centralized mechanism that involves a fusion of measurements
from multiple sensors, followed by a tracking mechanism
[9]. It is well established that the latter approach involves a
minimal information loss and achieves better accuracy and
robustness (e.g., [9–11]). However, due to a prohibitively high
computational load associated with the existing centralized
measurement fusion for MTT using Doppler-only measure-
ments [8], most of the existing works related to Doppler-only
target tracking in multi-static networks rely on the traditional
track-before-fuse approach. For example, a random receiver
selection algorithm is adopted in [6], whereas a sequential
updating scheme is proposed in [12]. Nonetheless, there are
four critical issues associated with these existing procedures:
(a) The accuracy of the decentralized track-before-fuse method
is generally lower than the centralized counterpart; (b) The
target state remains unobservable until at least three Doppler
measurements from spatially separated sensors are observed
in a two-dimensional (2-D) tracking problem; (c) The entire
tracking process is adversely affected due to error propagation,
if the first few measurements provide poor bistatic Doppler
information; and (d) More complex and computationally de-
manding tracking algorithms, such as extended Kalman filter
(EKF)-based GMPHD or SMCPHD, are required to process
highly non-linear Doppler-shift measurements.

In this paper, we present a novel measurement fusion
scheme based on the group sparsity observed in an MPR sys-
tem for MTT using Doppler-only measurements. We consider
a situation where the sensors report a set of scalar and low-
rate Doppler-shift measurements, and rather than the entire
raw measurements, to the fusion center. We propose a group-
sparsity based sparse signal reconstruction approach to fuse
the information available in all bistatic links by exploiting
the sparsity of the target position and motion parameters
in a discretized position-velocity space. Using the group-
sparsity based approach, multiple target states, in terms of
the 2-D Cartesian coordinates of the position and velocity,
are estimated at each sampling instant and are directly fed
as instantaneous measurements to the GMPHD filter. This
avoids the use of a non-linear measurement model, allow-
ing a simple and computationally efficient Kalman filter-
based implementation of the GMPHD filter. The GMPHD
filter removes the false measurements and correctly associates
the target-generated measurements to the respective targets.
Simulation results are provided to validate the ability of
the proposed method to successfully handle the multi-target
tracking problem in a challenging environment characterized
by missed detection and false measurements. The optimal
subpattern assignment (OSPA) distance [17], which represents

the sum of the localization error and the cardinality error, is
used as an evaluation criterion to analyze the performance of
the tracking filter.

Notations: A lower (upper) case bold letter denotes a vector
(matrix). Specifically, IN and 0N denote the N ×N identity
and zero matrices, respectively. (.)∗, (.)T , and (.)H , respec-
tively, denote complex conjugation, transpose, and hermitian
operations. Rn×1 and Cn×1, respectively, represent the n-
dimensional real and complex vectors. ‖·‖ denotes the l2 norm
of a vector, whereas <(.) and =(.), respectively, stand for the
real and imaginary parts of a complex number, and N (x; a, b)
denotes variable x to be a Gaussian distributed with mean
a and variance b. In addition, diag(.) and tr(.), respectively,
denote the diagonal and trace operations.

II. SIGNAL MODEL

We consider the problem of tracking multiple ground mov-
ing targets in an MPR system. The MPR network comprises
a single broadcast station transmitting at a known carrier
frequency fc and N spatially distributed Doppler sensors. The
transmitter is assumed to be located at b, whereas the nth
receiver is located at r(n), n = 1, ..., N . The transmitter and
the receivers are assumed stationary and their locations are
precisely known a priori at the fusion center.

We consider T targets moving within the surveillance re-
gion. The state vector of the ith target at the kth observation,
xk,i, represents a point in the state space X ∈ R4×1 and
comprises its instantaneous position pk,i , [px,k,i, py,k,i]

T

and velocity vk,i , [vx,k,i, vy,k,i]
T in the 2-D Cartesian

coordinate system, i.e.,

xk,i = [pTk,i,v
T
k,i]

T . (1)

The target dynamics is commonly modeled as a linear Gaus-
sian constant velocity model [6], such that

xk,i = Fxk−1,i + wk,i, (2)

where F is the state transition matrix defined as

F =

[
I2 ∆I2

02 I2

]
, (3)

∆ is the sampling interval, In and 0n, respectively, represent
the n× n identity and zero matrices, and wk,i ∼ N (0,Q) is
the process noise modeled as additive white Gaussian noise.
The process noise covariance is defined as

Q = σ2
w

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
, (4)

where σ2
w is the variance of the process noise.

The bistatic Doppler-shift corresponding to the target state
xk,i measured at the nth sensor is obtained as [18]

f
(n)
k,i = −

vTk,i
λ

[
pk,i − r(n)

‖pk,i − r(n)‖
+

pk,i − b

‖pk,i − b‖

]
+ ek,i, (5)

where λ = c/fc is the wavelength of the transmitted signal, c
is the velocity of propagation of a radio signal in free space
and ek,i is the measurement error modeled as N (0, σ2

e). The
Doppler measurement space or the field-of-view is defined



over an interval [−f0,+f0] [8], where f0 denotes the max-
imum possible Doppler shift.

In a multi-sensor network, each sensor measures a different
Doppler-shift for the motion of the same target, depending
on its bistatic configuration. Unlike [19–21], where entire
raw measurement vectors corresponding to each bistatic link
are assumed available at the fusion center, it is not possible
to directly combine these scalar Doppler-shift measurements
across different bistatic links deploying the fuse-before-track
approach. Therefore, the existing tracking methods rely on the
sub-optimal track-before-fuse schemes. However, it is noted
that the Doppler-shift measurements share the same target
state. As a result, it is possible to combine the information
across all available bistatic links by exploiting the sparsity in a
discretized position-velocity space. In a recent work [22], the a
priori information regarding sparsity is exploited in developing
a hierarchical Bayesian Kalman filter, which basically com-
bines the sparse Bayesian learning and Kalman filter, where
the signal to be tracked is assumed to be sparse in its natural
basis. In the following, we propose a method to simultaneously
utilize the Doppler-shift measurements available at all sensors
by exploiting the group sparsity of the measurements in a
discretized position-velocity space.

III. MEASUREMENT FUSION USING GROUP SPARSITY

Let F (n)
k = {f (n)

k,1 , · · · , f
(n)
k,T } be the set of Doppler-shift

measurements at the nth sensor observed at the kth observation
interval corresponding to the T targets. Since the Doppler
measurements corresponding to multiple sensors share the
same set of target states, i.e., the position and velocity of
targets, as the common sparse support, we exploit the group
sparsity based technique to effectively fuse the Doppler-shift
measurements corresponding to all available bistatic links.

Each measurement can be represented as an impulse in a
discrete Fourier space and, as such, the Doppler spectrum can
be expressed as a linear sum of impulses in the frequency
domain as

Y
(n)
k (f) =

T∑
i=1

δ(f − f (n)
k,i ), (6)

where Fs is the sampling frequency and −Fs/2 ≤ f ≤ Fs/2.
Taking the inverse fourier transform, we obtain the time-
domain waveform as

y
(n)
k (t) =

T (k)∑
i=1

exp(−2πf (n)
k,i t), (7)

where 0 ≤ t ≤ ∆ and  =
√
−1. It is assumed that the

target motion is rectilinear and uniform within an observation
interval.

In order to apply a group sparsity based approach, we define
a CNs×1 observation vector for the kth observation instant as

y
(n)
k = [y

(n)
k (1), · · · , y(n)

k (Ns)]
T , (8)

where Ns = ∆×Fs represents the number of discrete samples.
The entire target state space is represented by a 4-D discrete
space, where both position and velocity are measured in a 2-
D Cartesian coordinate system. Let an NpxNpyNvxNvy × 1

vector u
(n)
k be the unknown sparse vector which vectorizes the

discretized 4-D position-velocity space such that the jth ele-
ment of u

(n)
k is associated with the jth hypothetical target state

vector xk,j = [pTk,j ,v
T
k,j ]

T , where pk,j = [px,k,j , py,k,j ]
T

and vk,j = [vx,k,j , vy,k,j ]
T . The corresponding hypothetical

bistatic Doppler-shift measurement at the nth sensor is given
as

f
(n)
k,j = −

vTk,j
λ

[
pk,j − r(n)

‖pk,j − r(n)‖
+

pk,j − b

‖pk,j − b‖

]
, (9)

and following (8), we define an Ns × 1 column vector

y
(n)
k,j = [y

(n)
k,j (1), · · · , y(n)

k,j (Ns)]
T , (10)

where
y

(n)
k,j (t) = exp(−2πf (n)

k,j t). (11)

The column vector y
(n)
k,j comprises the jth column of the

Ns × NpxNpyNvxNvy dictionary matrix Ψ
(n)
k defined for

the nth bistatic link. Since we deal with complex data, we
adopt a commonly used technique to decompose the complex
observation into its real and imaginary parts, and rewrite the
nth observation vector as

ỹ
(n)
k = [<(y

(n)
k )T ,=(y

(n)
k )T ]T , (12)

and the corresponding dictionary matrix as

Ψ̃′(n)

k =

[
<(Ψ′(n)

k ) −=(Ψ′(n)
k )

=(Ψ′(n)
k ) <(Ψ′(n)

k )

]
, (13)

Thus, we can reformulate the underlying problem into a real-
valued expression as

ỹ(n) = Ψ̃
(n)

u(n), (14)

where the sparse vectors u(n), n = 1, · · · , N , share a common
sparse support because the same set of target state is shared
among all N bistatic links. As such, the underlying problem
can be formulated as a group sparse problem [23]. There
are a number of algorithms available to solve the group
sparse problems such as group basis pursuit [24], group
LASSO [25], block orthogonal matching pursuit [26]. Multi-
task Bayesian compressive sensing algorithm [27, 28] provides
an adaptive learning framework and generally outperforms
conventional compressive sensing algorithms. In this paper,
we use the complex multi-task Bayesian compressive sensing
(CMT-BCS) algorithm [28], which is based on the Bayesian
framework that exploits the statistical relationship between
multiple measurements or sensing tasks and that between the
real and imaginary parts of the sparse entries.

For every observation interval k, the solution of the CMT-
BCS algorithm converges to an T̂ (k)-sparse solution, whose
indices correspond to estimates of T̂ (k) state vectors, x̂k,i =
[p̂x,k,i, p̂y,k,i, v̂x,k,i, v̂y,k,i]

T , where i = 1, · · · , T̂ (k). A safe
threshold is used in the CMT-BCS algorithm to relax the spar-
sity constraint, such that, the estimated number of targets may
be larger than the actual number of targets, i.e., T̂ (k) > T .
At every k, a set of these T̂ (k) target state estimates is sent
to the MTT filter, i.e.,

Zk = {zk,1, · · · , zk,T̂ (k)}, (15)



where zk,i = x̂k,i, i = 1, · · · , T̂ (k). As such, the tracking fil-
ter is required to remove the false measurements and properly
identify and associate the true target-generated measurements
to the respective targets.

In the following, we use the RFS based filtering to tackle
the problem of dynamically estimating multiple targets in the
presence of false measurements and association uncertainty in
the Bayesian filtering framework [5].

IV. RANDOM FINITE SET BASED FILTERING

In the RFS framework, we define a set-valued state and
set-valued measurement at the nth sensor, respectively, as

Xk = {xk,1, · · · ,xk,T }, (16)

and
Zk = {zk,1, · · · , zk,T̂ (k)}, (17)

where T is the actual number of targets and the T̂ (k) is the
estimated number of targets at the kth observation. An RFS
model for the time evolution of a multi-target state Xk at time
k from Xk−1 is defined as [5]

Xk =

 ⋃
ζ∈Xk

Sk|k−1(ζ)

⋃Γk, (18)

where Sk|k−1(ζ) represents the RFS of the surviving targets
and Γk is the RFS of the spontaneous target births at k. The
corresponding RFS measurement model observed at the kth
observation can be expressed as [5]

Zk = Kk

⋃[ ⋃
x∈Xk

Θk(x)

]
, (19)

where Kk is the RFS of the false measurements and Θk(x)
is the RFS of the target-generated measurements.

The multi-target posterior density pk(.|Z1:k), conditioned
on the sets of measurements up to time k, can be determined
using the Bayesian recursion [6]

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)pk−1(X|Z1:k−1)dX,

(20)

pk(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)pk|k−1(X|Z1:k−1)dX

, (21)

where fk|k−1(Xk|X) is the multi-target transition density and
gk(Zk|Xk) is the multi-target likelihood. The optimal multi-
target Bayesian recursion involves multi-set integrals which
are computationally infeasible. The PHD filter provides a
computationally efficient alternative by propagating the first-
order statistical moment of the multi-target state, rather than
the multi-target posterior density. As such, the PHD recursion
is defined as [5, 6]

νk|k−1(x) =

∫
pSfk|k−1(x|ζ)νk−1(ζ)dζ + γk(x), (22)

νk(x) = (1− pD)νk|k−1(x)

+
∑
z∈Zk

pDgk(z|x)νk|k−1(x)

κk(z) +
∫
pDgk(z|ξ)νk|k−1(ξ)dξ

, (23)
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Fig. 1. Multi-static network configuration and true trajectories of the targets.

where pS is the probability of target survival, γk(x) is the
intensity of spontaneous birth RFS at time k, κk(z) is the
intensity of the clutter RFS at time k, and pD is the probability
of target detection.

The GMPHD filter provides a closed-form solution to the
PHD filter derived in [5]. It is noted that, unlike the existing
works (e.g., [6, 8]) that require an EKF based adaptation
of the GMPHD filter in order to handle the Doppler-shift
measurement based non-linear measurements, we can directly
implement the linear Gaussian multi-target models discussed
in [5].

V. SIMULATION RESULTS

In the simulations, we consider a geo-location scenario
as illustrated in Fig. 1, where a broadcast station is located
at the origin and transmitting at 950 MHz, and 5 Doppler-
shift measurement sensors are distributed along a circle of
radius 1 km from the transmitter. We assume that the Doppler
measurements are updated every 2 s at each sensor and the
overall tracking duration is considered to be 50 s. We consider
two targets, initially located at [−200, 0]T m and [200, 0]T m,
moving away from each other in anti-parallel directions with
a speed of [−10, 0]T m/s and [10, 0]T m/s, respectively, as
illustrated in Fig. 1.

The standard deviation of the additive white Gaussian noise
associated with the Doppler shift measurements is assumed
to be σe = 0.1 Hz. For the implementation of the GMPHD
filter, we consider the probability of target survival to be
pS = 0.99 for both targets. Each target follows a linear
Gaussian dynamics as defined in (2). The sampling period
∆ is considered to be 2 s, and the initial value of the standard
deviation of the process noise, σw, is assumed to be 0.2 m/s2.
A Poisson RFS Γk with intensity

γk(X) = 0.1N (m(1)
γ , Pγ) + 0.1N (m(2)

γ , Pγ), (24)

is used to model spontaneous births in the vicinity of
m

(1)
γ and m

(2)
γ , where m

(1)
γ = [−250, 0,−15, 0]T , m(2)

γ =
[250, 0, 15, 0]T and Pγ = diag([100, 100, 100, 100]T ). Each
target is assumed to be detected with a probability of pD =
0.98.

The output of the group-sparsity based target state estima-
tion, described in section III, is shown in Fig. 2 for each
sampling instant. It can be observed that, by exploiting the
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Fig. 2. Instantaneous target positions estimated from group sparse reconstruc-
tion.
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Fig. 3. Results of the GMPHD filter.

group sparsity of the multi-static Doppler shift measurements
in the discretized position-velocity space, the proposed method
for target state estimation obtains estimations closely grouped
around the actual target trajectory throughout the observation
period. However, since the number of targets in the observation
scene is unknown, a safe threshold is chosen to relax the
sparsity constraint in the CMT-BCS algorithm. As a result,
we observe some false measurements distributed over the
observation scene.

The estimated target states obtained at each sampling instant
are fed into the GMPHD filter, which has the following
tasks: (a) discerning false measurements from target-generated
measurements and removing them; (b) performing multi-target
measurement association; and (c) reducing the position error
for each track or smoothing the estimated track. The estimated
trajectories of the targets are shown in Fig. 3, which verify that
the GMPHD filter successfully discards the false estimates that
appear as outliers from the actual target trajectory.
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Fig. 4. Illustration of performance of GMPHD filter.
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In order to demonstrate that the tracking filter successfully
handles the remaining two tasks of multi-target measurement
association and reducing the position error, we enlarge the
trajectory of one of the targets in Fig. 4. It is evident that,
at the steady state, the tracking filter reduces the overall
cardinality and position errors by exploiting the estimations
obtained from the group sparsity based signal reconstruction.
The performance of the filter, in terms of the OSPA error, is
shown in Fig. 5. The OSPA error between the ground truth
state set Xk and the estimated state set X̂k with cardinalities
m and n, respectively, is defined as [6, 17]

dp,β(Xk, X̂k) =

(
min
π∈Πm

1

m

n∑
i=1

dβ(xi, x̂πi)
p +

βp

m
(m− n)

) 1
p

(25)
if m ≤ n, and dp,β(Xk, X̂k) = dp,β(X̂k, Xk) if n > m,
where p < ∞ is the OSPA metric order parameter, and
dβ(xi, x̂πi) = min(β, d(xi, x̂πi)) is the cut-off distance be-
tween two tracks, with d(xi, x̂πi) being the base distance
error between the two tracks and β > 0 being the cut-off
parameter which determines the relative weight given to the
cardinality error against the base distance error. The variable
Πm represents the set of all permutations of length m with
elements taken from 1, · · · , n. In this simulation, we use p = 1
and β = 1000, respectively. It is observed that initially it takes
sometime for the GMPHD filter to detect the presence of the
targets and associate the measurements with the respective
targets. After some observations, the filter correctly detects
and closely tracks the targets, providing an accurate tracking
performance.

VI. CONCLUSIONS

In this paper, we have developed a fusion scheme based
on the signal group sparsity available in all bistatic links
in an MPR system for MTT using Doppler-only measure-
ments. The estimates of the multiple target states, i.e., 2-D
Cartesian coordinates of position and velocity, are directly
fed as instantaneous measurements to a Kalman filter-based
implementation of the GMPHD filter. Simulation results ver-
ified a successful implementation of a multi-target tracking
problem in a challenging environment and the performance of
the GMPHD filter was evaluated using the OSPA error metric.
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