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Abstract—In this paper, we develop a novel structured
Bayesian compressive sensing algorithm with location
dependence for high-resolution imaging in ultra-narrowband
passive synthetic aperture radar (SAR) systems. The proposed
technique exploits wide-angle and/or multi-angle observations
for image resolution enhancement. We first introduce a forward
model based on sparse synthetic apertures. The problem of
sparse scatterer imaging is formulated as an optimization
problem of reconstructing group sparse signals. A logistic
Gaussian kernel model, which involves a logistic model and
location-dependent Gaussian kernel, and takes the correlation
between entire scatterers into account, is then used to encourage
the underlying continuity structure of illuminated target scene
in a nonparametric Bayesian learning framework. The posterior
inference of the proposed method is then provided in the
Markov Chain Monte Carlo (MCMC) sampling scheme. The
proposed technique enables high-resolution SAR imaging in
wide-angle as well as multi-angle observation systems, and the
imaging performance is improved by exploiting the underlying
structure of the target scene. Simulation and experiment results
demonstrate the superiority of the proposed algorithms in
preserving the continuous structure and suppressing isolated
components over existing state-of-the-art compressive sensing
methods.

Index Terms—Passive radar, synthetic aperture radar (SAR),
wide-angle imaging, multiple-angle imaging, Bayesian compres-
sive sensing

I. INTRODUCTION

Radar imaging, such as synthetic aperture radar (SAR) and
inverse SAR (ISAR), has been widely used in active radar
systems [1]. In recent years, passive radar systems, which
utilize broadcast, navigation, and communication signals as
sources of opportunity, have attracted significant interests due
to their low cost, covertness, and availability of rich illuminator
sources [2, 3].
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Passive radars differ from active radar systems in a number
of aspects, such as the extremely narrow signal bandwidth,
low operating frequency, low signal-to-noise ratio (SNR),
and bistatic or multistatic operations [2–4]. From a radar
imaging perspective, both the low operating frequency and
extremely narrow signal bandwidth are adverse factors to
high-resolution imaging, causing coarse range resolutions [5–
7]. For example, a Digital Video Broadcasting-Terrestrial
(DVB-T) channel uses a 7.8 MHz bandwidth in the 450-
900 MHz band. The corresponding bistatic range resolution
is approximately 20 m when applying conventional Fourier-
based methods, such as the filtered backprojection (FBP)
[8] and direct Fourier reconstruction (DFR) [9]. This figure
is far below the submeter resolution achieved by typical
active SAR imaging systems. Resolution enhancement can be
achieved via spectrum synthesis techniques [10–12] and spec-
trum estimation-based techniques [13]. Fortunately, spectrum
diversity is also a trait of passive radar systems due to the
presence of diverse illuminator sources, i.e., the receivers can
be designed to acquire a wide range of spectrum such that
the image resolution can be enhanced [14]. However, unlike
the wide continuous spectrum available in active SAR/ISAR
systems, the resulting spectrum in a passive radar usually
assumes a sparse support consisting of multiple disconnected
sub-spectra depending on the available sources of opportunity
and the geometries of the transmitter-receiver pairs [5, 7]. This
property lends itself to high sidelobes and artifacts in Fourier-
based imaging methods.

High-resolution techniques based on regularized optimiza-
tion have shown effective in active SAR/ISAR imaging [15–
18]. The main idea is to formulate radar imaging as a sparse
signal recovery problem. The orthogonal matching pursuit
(OMP) [19] and Lasso [20] algorithms are widely used regular-
ized optimization tools for effective sparse signal reconstruc-
tion. Direct applications of these methods assume invariant
scattering coefficients during the radar beam illumination due
to a narrow observation aperture [15, 16]. This assumption is
reasonable in active SAR/ISAR imaging systems because of
their high operating frequencies. For example, to achieve a 1-
m azimuth resolution, an observation angle of about 0.86◦ is
required in the X-band SAR system, whereas this requirement
becomes 20◦ in a passive radar exploiting DVB-T signals.
According to the radar backscattering principle, invariant
scattering coefficients in such a wide observation aperture is
impractical [21]. This becomes more pronounced in multi-
angle observation systems involving multiple distributed trans-
mitters (illuminators) and/or multiple distributed receivers.
In such multi-angle scenarios, the scattering coefficients of
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targets are different due to the diverse observation angles.
Given a sparse scene, we utilize the fact that the support

of sparse scatterers, referred in the two-dimensional (2-D)
scene coordinates, is identical or at least highly overlaps
across different observation angles. As such, we can make
use of such group sparsity (also referred to as block sparsity)
of the scatterers for significant reconstruction performance
enhancement [22, 23]. Bayesian compressive sensing (BCS)
techniques are effective tools for sparse signal reconstruction
[24–28]. BCS methods have been successfully applied in
microwave imaging, direction finding, space-time adaptive
processing, diagnosis of large linear array, and time-frequency
analysis [29–36]. The multi-task CS (mt-CS) algorithm [27],
which solves group sparse problems in the BCS context, was
originally designed to recover real-valued sparse entries as
encountered in, for example, image and video processing. The
mt-CS was extended to solve complex-valued problems which
are typical in radar applications, such as direction finding and
radar imaging [29, 30, 36–38]. These methods exploit the fact
that the real and imaginary components of a complex-valued
sparse entry share the same support and, thereby, achieve
improved performance and robustness to noise.

The aforementioned algorithms, however, do not consider
the structure of the scatterer scene. In practical radar imaging
applications, different signal structures may be exploited to
facilitate the sparse reconstruction and enhance the image
quality. For example, scatterers considered in the SAR/ISAR
imaging often exhibit clustered structures, which can be used
to enhance the imaging quality [39–42]. In these methods, the
correlation of scatterers are considered over a small local re-
gion, such as the first-order neighboring scatterers as discussed
in [39, 41, 42] and the extended second-order neighboring
scatterers as investigated in [39]. These approaches designate
a number of structured patterns where favorable priors are
placed to encourage a subset of patterns whereas the other
patterns are discouraged. In real-world applications, the signal
patterns do not necessarily match such designated patterns,
thereby leading to sparse reconstruction performance loss. The
Boltzmann machine, a commonly used graphical model, is
introduced to model the general structure correlation between
pixels, and massage passing and mean-field approximation
techniques are, respectively introduced to perform inference
[43, 44]. Dynamic CS technique is proposed to capture
both amplitude and support correlation structure of time-
varying signals [45]. However, these methods do not take the
group sparsity into account induced by wide-angle/multi-angle
observations.

In this paper, we develop a novel structure-aware BCS
algorithm to acquire enhanced high-resolution images for
wide-angle and/or multi-angle passive radar systems. While
we focus our discussion on passive radar SAR imaging,
the proposed approach can be used for ISAR imaging as
well. The proposed method can also be applied to other
radar applications, such as active SAR and through-the-
wall radar imaging. In the problem being considered in
this paper, we assume that the signals of opportunity used
for radar imaging is extremely narrowband, and wide-angle
and/or multi-angle observations are utilized to achieve high-

resolution imaging. The scatterers are considered to have
spatially extended structures. To encourage the continuity of
the reconstructed target scene, the proposed BCS algorithm
adopts a novel logistic Gaussian kernel, which involves a
logistic model and location-dependence Gaussian kernel, to
account for the correlation among scatterers with location-
dependent weighting coefficients. The subsequent posterior
inference is implemented based on Markov Chain Monte
Carlo (MCMC) sampling scheme. The concept of the logis-
tic Gaussian kernel was first presented in our earlier work
[46]. In this paper, we further extend the proposed logistic
Gaussian kernel model into the wide-angle/multi-angle SAR
imaging problem, where the underlying target structure within
each subaperture as well as the group sparsity across a
wide aperture are taken into account. As such, the proposed
technique provides a powerful means for high-resolution
passive radar imaging from a synthetic aperture formed from
wide-angle and/or multi-angle observations with multi-static
transmitter/receiver pairs. The wide-angle and/or multi-angle
observations are group sparse, i.e., they correspond to the same
scatterer position support but the exact scattering coefficients
are generally aspect-dependent. The proposed structure-aware
BCS technique utilizes both continuous target structure as
well as the group sparsity due to wide-angle/multi-angle
observations.

The remainder of the paper is organized as follows. Sec-
tion II introduces a forward model in the passive imaging
system. Section III describes the proposed structured BCS
approach for effective reconstruction of sparse signals with
the underlying structure. Subsequently, the posterior inference
based on MCMC sampling scheme is provided in Section IV.
Simulation and synthetic experiment results are presented in
Section V to verify the effectiveness of the proposed algorithm.
Finally, Section VI concludes this paper.

Notations: We use lower-case (upper-case) bold characters
to represent vectors (matrices). In particular, IN denotes the
N × N identity matrix. (.) represents complex conjugation,
whereas (.)T and (.)H , respectively, denote the transpose and
conjugate transpose of a matrix or vector. diag(x) represents
a diagonal matrix that uses the elements of x as its diagonal
elements, and ‖·‖ implies the Euclidean (l2) norm of a vector.
p(·) expresses the probability density function (pdf).N (x|a, b)
and CN (x|a, b), respectively, denote that random variable x
follows real and complex Gaussian distributions with mean a
and variance b. Gamma(x|a, b) denotes that random variable
x follows a Gamma distribution with parameters a and b.
Bern(x|π) implies that random variable x follows a Bernoulli
distribution with weight π, and PG(x|a, b) represents the
Polya-Gamma (PG) distribution with parameters a and b.
E(·) denotes the statistical expectation operation, and δ(x)
represents the Dirac delta function of x. We use ◦ to denote
element-wise multiplication of two vectors.

II. FORWARD MODEL

Consider a wide-angle passive SAR system that senses
a sparse scene, as depicted in Fig. 1. The receiver, which
is mounted on an airborne platform, has the capability of
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Fig. 1. Geometry of a passive sparse SAR system.

receiving reflected signals from the targets and direct-path
signals from the transmitter.

Denote the position of the stationary transmitter as t, and
the nth azimuth location of the moving receiver as sn, n =
1, · · · , N . The received signal is expressed by [47],

f(t, sn, t) ≈
∫

exp

(
−jω

[
t− R(sn,x, t)

c

])
· ω2p̂(ω)η(x, sn)A(ω,x, sn)dωdx, (1)

where t denotes time, c is the speed of light, R(sn,x, t) =
‖x− sn‖+ ‖x− t‖ is the bistatic range, and η(x, sn) is the
scattering amplitude of target at position x when the receiver
is positioned at sn. In addition, p̂(ω) is the Fourier transform
of the transmitted waveform p(t), ω is the transmitted radian
frequency, and A(ω,x, sn) is given by

A(ω,x, sn) =
JR(ω,x, sn) · JT (ω,x, t)

(2π)2‖x− sn‖ · ‖x− t‖
, (2)

where JT (ω,x, t) and JR(ω,x, sn) are the transmit and
receive antenna beam patterns, respectively. For narrowband
waveforms, the carrier frequency ω0 is used to replace ω in
Eq. (1), and the received signal (1) can be rewritten as [48, 49],

f(t, sn, t) =

∫
exp

[
−jω0

(
t− R(sn,x, t)

c

)]
· p̃
(
t− R(sn,x, t)

c

)
η(x, sn)A(ω0,x, sn)dx,

(3)

where p̃(t) is the slowly time-varying complex envelope of
p(t).

The direct-path (reference) waveform is expressed as

fref(t, sn, t) = exp

(
−jω0

[
t− ‖sn − t‖

c

])
· p̃
(
t− ‖sn − t‖

c

)
· JR(ω0, sn) · JT (ω0, t)

(2π)2‖sn − t‖
,

(4)

where JT (ω0, t) and JR(ω0, sn) are the transmit and receive
antenna gains. We assume that the direct-path reference signal
transmitted from each illuminator is perfectly reconstructed
free of multipath scattering and contamination from targets
and other objects. Such reference signal reconstruction can

be achieved by receiving a clean direct-path signal through
a directional antenna or an array beam toward the respective
transmitters, and minimizing the propagation error using the
error correction coding scheme. These are standard assump-
tions commonly used for passive radar signal processing
[4, 50].

We use the reference waveform fref(t, sn, t) to perform
matched filtering of f(t, sn, t), resulting in

g(τ, sn, t) =

∫
f(t, sn, t)fref(t− τ, sn, t)dt

=

∫
C0ψn(τ,x, sn, t)wn(x)dx, (5)

where τ is the sampling delay that corresponds to the range,

C0 =
JR(ω0, sn) · JT (ω0, t)

(2π)2‖sn − t‖
(6)

is a scalar which is independent of the illuminated scene, and

ψn(τ,x, sn, t) = χ(τ,x, sn, t) exp(−jω0ηn(x)) (7)

is the observation kernel at position sn. In addition,

χ(τ,x, sn, t)=

∫
p̃

(
t− R(sn,x, t)

c

)
p̃

(
t− τ − ‖sn − t‖

c

)
dt

(8)

is the autocorrelation function of the transmitted waveform
p̃(t) that determines the range resolution of the radar system,
ηn(x) = [R(sn,x, t)− ‖sn − t‖]/c denotes the difference of
time delay, and

κn(x) = η(x, sn)A(ω0,x, sn) (9)

denotes the complex scattering coefficient. It should be noted
that the scattering coefficients are dependent on the observa-
tion position sn. In the conventional SAR imaging system,
it is reasonable to assume that the scattering coefficient of
each scatterer is invariant during the entire period of radar
beam illumination due to the narrow observation aperture.
It is impractical, however, for this same assumption to be
valid in the underlying wide-angle passive SAR system that
is operated with a low carrier frequency. The scattering
coefficients become even more distinct when a number of
widely distributed receivers are used to acquire multiple,
possibly disjoint, sub-apertures. Without loss of generality,
we divide the entire observation aperture into L smaller
observation sub-apertures (groups). The scattering coefficients
are assumed to be invariant within each sub-aperture, whereas
they vary across different sub-apertures. As a result, there are
L groups of incoherent echo data of the scene. Let D be the
number of azimuth positions of the receiver within each group,
and LD = N .

Now we discretize the sparse target scene into M pixels.
The sparse scene is represented by q targets with a continuous
structure, occupying a total number of Q pixels in the entire
M -pixel region, where Q � M , whereas the reflectivity of
the other M −Q pixels are assumed to be negligible. In this
case, (5) becomes

g(τ, sn, t) =

M∑
m=1

C0ψn(τ,m)κmn. (10)
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Denote g(τ, sn, t)/C0 by gn(τ) for simplicity. Then, by
stacking the observations over all sampled delays, i.e., gn =
[gn(τ1), ..., gn(τB)]T , where B is the number of range cells
being observed, we obtain

gn = Ψnκn + εn, (11)

where Ψn = [ψTn (τ1), · · · ,ψTMn(τB)]T , in which ψn(τ) =
[ψn(τ, 1), · · · , ψn(τ,M)], is the observation matrix corre-
sponding to azimuth position sn corresponding to all M pixels
of κmn collected in κn = [κ1n, ..., κMn]T , and εn is a vector
that accounts for the additive measurement noise. Note that
κn is sparse in the sense that only Q non-zero coefficients are
dominant.

To account for the aspect-dependent scattering coefficients,
as we described previously, we group the measured data cor-
responding to different aspect angles due to wide-angle and/or
multi-angle observations into multiple tasks. In the multi-static
case, each task corresponds to a bistatic observation. In the
wide-angle case, the observations obtained in the N azimuth
positions are divided into L tasks. i.e., {gn, n = 1, ..., N}
is labeled as {g(1)

1 , ...,g
(1)
D , ...g

(l)
1 , ...,g

(l)
D , ...,g

(L)
1 , ...,g

(L)
D }.

The observation matrix Ψn and sparse vector κn are similarly
arranged. The scattering coefficients in κn are considered
aspect-independent within the same task, and they vary in-
dependently for different tasks.

By stacking those echoes with respect to the observation
aperture positions which belong to the same task (group), say,
the lth task, we have

yl = Φlwl + εl, l ∈ [1, · · · , L], (12)

where

yl =

[
g
(l)
1

T
, · · · ,g(l)

D

T
]T

, (13)

Φl =

[
Ψ

(l)
1

T
, · · · ,Ψ(l)

D

T
]T

, (14)

wl =

[
κ
(l)
1

T
, · · · ,κ(l)

D

T
]T

, (15)

εl =

[
ε
(l)
1

T
, · · · , ε(l)D

T
]T

. (16)

It should be noted that the supports of the sparse targets are
approximately identical across the L groups (i.e., the non-zero
entries of wl lie in the same positions across different values
of l), whereas their scattering coefficients are different.

Equation (12) is a typical discrete forward model of group
sparse apertures for a passive imaging radar system. As such,
the radar imaging problem in wide-angle and/or multi-angle
passive SAR system can be regarded as the reconstruction of
L-group sparse scattering coefficients.

III. PROPOSED STRUCTURE-AWARE BAYESIAN
COMPRESSIVE SENSING ALGORITHM

In this section, we first introduce the spike-and-slab prior
[51–53] in Section III-A. Based on the spike-and-slab prior
platform, we then present in Section III-B the proposed
structure-aware BCS algorithm using a novel logistic Gaussian
kernel.

A. Spike-and-slab prior for signal sparsity

Consider a clustered sparse reconstruction problem with L
tasks, each consisting of M entries. To encourage the group
sparsity described in (12), we place a spike-and-slab prior to
wl, i.e., [51–53]

p(wl|π,β) =

M∏
i=1

[
(1− πi)δ(wil) + πiCN (wil|0, β−1l )

]
,

(17)

where πi is the prior probability of a non-zero element, i.e., a
large weight πi corresponds to a high probability that the entry
takes a non-zero value, whereas a small πi tends to generate
a zero entry. In addition, βl is the precision (reciprocal of the
variance) of the Gaussian distribution.

To facilitate the inference of (17) which is complicated
by the involvement of the delta function, a simple reparam-
eterization of the spike-and-slab prior is introduced in [51–
53]. This prior exploits a complex Gaussian random vector
θl = [θ1l, ..., θMl]

T with p(θl) =
∏M
i=1 CN (θil|0, β−1l ),

l = 1, ..., L and a Bernoulli random vector z = [z1, ..., zM ]T

with p(z) =
∏M
i=1 Bern(zi|πi), where zi = 1 corresponds to

a non-zero entry in the ith position. The product of these two
latent vectors, θl ◦ z, forms a new random vector that follows
the pdf in (17), i.e.,

wl = θl ◦ z. (18)

In this expression, the group sparsity is characterized by
the same zi for the ith position of θl across all L tasks.
On the other hand, scattering coefficients in the ith block
θi· = [θi1, · · · , θiL] generally assume different values for each
task. Considering the fact that θl and z are not independent but
rather strongly correlated, the following paired spike-and-slab
prior

p(θl, z) =

M∏
i=1

[
CN (θil|0, β−1l )

]zi
πzii (1− πi)1−zi (19)

is introduced in [54] to enhance the sparse reconstruction
performance.

To acquire the trackable posterior of βl, we place a Gamma
prior, which is conjugate to the Gaussian distribution, on βl,
i.e., βl ∼ Gamma(al, bl), l ∈ [1, · · · , L], where al and bl
are, respectively, the lth element of hyper-parameter vectors
a = [a1, · · · , al, · · · , aL]T and b = [b1, · · · , bl, · · · , bL]T .
Similarly, we place a complex Gaussian prior on the addi-
tive noise as εl ∼ CN (εl|0, α−1l IN ), and a Gamma prior
on αl to acquire an analytical posterior distribution, i.e.,
αl ∼ Gamma(cl, dl), l ∈ [1, · · · , L], where cl and dl are
respectively the lth entries of the hyper-parameter vectors
c = [c1, · · · , cl, · · · , cL]T and d = [d1, · · · , dl, · · · , dL]T .

B. Logistic Gaussian kernel model

To encourage the continuous structure of target scatterers,
a logistic Gaussian kernel model is proposed [46]. Unlike the
methods described in [39–42, 53], which manually categorize
a small number of predefined patterns and assign correspond-
ing hyper-parameters for each pattern to encourage the clus-
tered structure, the proposed algorithm achieves this objective
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through a kernel method that exploits the physical location of
pixels within the region of interest. Therefore, the proposed
algorithm has the capability to model the relationship among
all pixels and acquire enhanced reconstruction performance.

In Section III-A, the variable zi follows a Bernoulli distribu-
tion with weight πi. We employ a logistic function to express
πi in term of γi as

πi =
1

1 + e−ργi
, (20)

where ρ is a scale parameter. Denote γ = [γ1, · · · , γM ]T . To
model the continuous structure of the pixels’ support in the
discretized target scene, a Gaussian kernel is introduced to γ
and is expressed as,

γ ∼ N (0,Σ), (21)

in which the (i, j)th element of Σ is given as

Σij = exp

(
−‖xi − xj‖2

2σ0

)
(22)

for i, j ∈ (1, · · · ,M), where xi and xj are physical locations
of the ith and jth pixels within the image, and σ0 > 0 is a
scale parameter.

Notice in Eq. (21) that the kernel matrix is real, symmetric,
and, in the one-dimensional case, Toeplitz. All entries take
values between 0 and 1. The diagonal entries take the value
of unity because ‖xi − xj‖2 = 0 for i = j, and the values
decrease for off-diagonal elements, depending on the distance
between xi and xj . When all other pixels are involved in
deciding the prior probability of a pixel under consideration,
those pixels that are closer to the underlying pixel have
stronger influence. As such, the use of the logistic model
amounts to employing soft-thresholding weights rather than
hard-thresholding ones as used in the existing methods [39–
42, 53].

It should be pointed out that σ0 is an important parameter
that determines the shape of Gaussian function and, thereby,
the locality scale of the signal structure. When σ0 approaches
infinity, all entries in matrix Σ would approach 1. It represents
that the supports of all the pixels in the discretized target scene
are highly correlated. When σ0 approaches 0, on the other
hand, Σ is an identity matrix and the model will reduce to a
typical sparse regression without consideration of the location
dependence. Following the tradition, σ0 is assigned to be an
exponent of 2. In practice, the value of σ0 can be learned from
the measurement data by utilizing the maximum a posterior
(MAP) or maximum likelihood (ML) estimation [55]. In
the simulation and experimental studies, it is found that an
empirical σ0 is easily acquired. We also demonstrate the effect
of the choice of σ0 on the reconstruction performance.

IV. POSTERIOR INFERENCE

In this section, we adopt a Gibbs sampler to perform
Bayesian inference. For convenience, we define the collection
of hyper-parameters as Ξ

M
= {a,b, c,d, σ0} and the collection

of random variables as Θ
M
=
{

[θl]
L
l=1, z,π,α,β, ρ,γ

}
. We

also denote Y = {y1, · · · ,yL} and Φ = {Φ1, · · · ,ΦL}.

According to the generative model described in Section III,
we acquire the explicit form of the joint pdf as

p (Y,Φ,Θ |Ξ ) =

L∏
l=1

CN (yl|Φl(θl ◦ z), α−1l I)

×
L∏
l=1

M∏
i=1

[CN (θil|0, β−1l )]ziπzii (1− πi)1−zi

×
M∏
i=1

Bern
[

1

1 + e−ργi

]
N (γ|0,Σ)

×
L∏
l=1

Gamma(βl|al, bl)Gamma(αl|cl, dl).

(23)

In the following, we perform Gibbs sampling to obtain the
posterior distributions for each latent variable based on the
above joint pdf.

A. Updating paired variables
{

[θl]
L
l=1, z

}
Similar to [41], the paired MCMC sampler iteratively

samples from the following conditional pdf

p(zi, θil|θ\il, z\i,yl)=p(θil|zi,θ\il, z\i,yl)p(zi|θ\il, z\i,yl),
(24)

where θ\il and z\i respectively denote θl except the variable
θil and z except the variable zi.

The probability p(zi = 1|θ\il, z\i,yl) is acquired analyti-
cally by utilizing the logistic function, expressed as,

p(zi = 1|θ\il, z\i,yl) =
1

1 + e−ui
, (25)

where ui is derived as

ui =
1

2

L∑
l=1

(
log βl + log σil + σilα

2
l y

H
\ilφilφ

H
il y\il

)
+ ργi,

(26)

σil =
1

αlφ
H
il φil + βl

, (27)

with y\il = yl −
∑
k 6=i φklzkθkl, and φil is the ith column

in the measurement matrix Φl. When zi = 1, the conditional
distribution of p(θil|zi = 1,θ\il, z\i,yl) can be expressed as,

p(θil|zi = 1,θ\il, z\i,yl) = N (θil|σilαlφHil y\il, σil). (28)

For zi = 0, because the value of θil does not affect the result
of wil, we conveniently draw the value of variable θil from
its prior.

B. Updating variables γ

It is generally difficult to perform inference for variable
γ, due to the analytically inconvenient form of the model’s
likelihood function [56]. Some strategies, such as analytic ap-
proximations, numerical integration, and Metropolis-Hastings,
can be used to perform the approximation of complex pdf
[55]. In the proposed model, however, we acquire an analytical
posterior inference for γ by following the auto-augmentation
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technique for the logistic model, which introduces a PG
random variable vector. In [57], a fundamental integral identity
is used as,

(ex)a0

(1 + ex)
b0

= 2−b0e(a0−
b0
2 )x

∫ ∞
0

e−qx
2/2f(q)dq, (29)

where f(q) = PG(q|b0, 0). The function PG(q|c0, d0) can be
expressed by,

PG(q |c0, d0 ) =

∞∑
n=0

(−1)n
Γ(n+ c0)Γ(2n+ c0)

Γ(n+ 1)
√

2πq3

× coshc0(d0/2)2c0−1

Γ(c0)
e−

(2n+c0)2

8q − d
2
0q

2 , (30)

where Γ(·) is a Gamma function. By introducing the latent PG
variable q, the logistic model in Eq. (29) can be achieved by
a hierarchical sampling structure, where the main parameter x
follows the Gaussian distribution with parameters in term of
q, whereas q in a lower layer follows the PG distribution.

Using the integral identity in Eq. (29), the weight in the
logistic model can be expressed by

(eργi)zi

(1 + eργi)zi
= 2−zie

zi
2 ργi

∫ ∞
0

e
−qiρ

2γ2i
2 p(qi)dqi. (31)

In a similar manner, we acquire,

(e−ργi)1−zi

(1 + e−ργi)1−zi
= 2(zi−1)e

zi−1

2 ργi

∫ ∞
0

e
−qiρ

2γ2i
2 p(qi)dqi.

(32)

According to Eq. (31) and Eq. (32), we acquire the analyt-
ical posterior distribution of q as

p(γ|q, z,Σ) ∝ N (γ|ν,Λ)N (x,0,Σ)

= N (γ|µ,Γ), (33)

with

µ = Γ−1Λν, (34)

Γ =
[
Λ + Σ−1

]−1
, (35)

where Λ = diag(2q1ρ
2, · · · , 2q1ρ2) and ν =

[(z1 − 1/2)/(2q1ρ), · · · , (zM − 1/2)/(2qMρ)]T . The
derivation of (33) is provided in Appendix A. In addition, the
augmented variable qi is updated as,

p(qi|γi) = PG(qi|1, γi). (36)

C. Updating the scale parameter ρ
It is difficult to perform inference for the scale parameter

ρ, due to the inconvenient form. The following ML estimator
is used,

ρ = arg max
ρ

[log p(y,Θ)]

= arg max
ρ

M∑
i=1

[
log Bern

(
1

1 + e−ργi

)]
. (37)

We take gradient descent for Eq. (37) and acquire the updated
expression of ρ as,

ρ = −
M∑
i=1

1

γi
log

1− E(zi)

E(zi)
. (38)

D. Updating signal precision βl
By utilizing the conjugate property of the Gaussian and

Gamma distributions, we analytically acquire the posterior
distribution of the precision variable βl as

p(βl|al, bl,θ) = Gamma(ãl, b̃l), (39)

where ãl = al + (M/2) and b̃l = bl + (1/2)
∑
i θ

2
il for l ∈

[1, · · · , L].

E. Updating noise precision αl
In a similar manner as βl, we also obtain the posterior

distribution of noise precision αl as

p(αl|cl, dl,yl,Φl,θl, z) = Gamma(c̃l, d̃l), (40)

where c̃l = cl+(BD/2) and d̃l = dl+(‖yl −Φl(θl ◦ z)‖2/2)
for l ∈ [1, · · · , L].

F. Computation Complexity

The proposed algorithm is summarized in Table I. Since the
inference of model parameters is implemented by the MCMC
sampler, which inherently requires sequential sampling, it is
straightforward to show from the procedure of the proposed
algorithm, depicted in Table I, that the computational cost of
the proposed algorithm is mainly due to the matrix inversion
in Eq. (35). While it involves two M ×M matrix inversions,
this can be simplified by using the matrix inversion lemma,
yielding

Γ = Λ−1
(
Λ−1 + Σ

)−1
Σ. (41)

The above expression involves a single matrix inversion.
The inversion of an M×M matrix generally requires O(M3)
operations, which is the main computation cost in the proposed
method. Note that, for one-dimensional problems, the compu-
tation complexity of the above matrix inversion would reduce
toO(M2) operations because Σ, and subsequently (Λ−1+Σ),
is Toeplitz [58, 59]. On the other hand, compared to those
Bayesian based greedy algorithms [24, 28], the proposed
method based on the Gibbs sampling scheme requires more
time due to going through all elements in each MCMC
iteration. In general, the proposed method has acquired the
improved reconstruction performance, while it has a relatively
high computation burden.

V. SIMULATION AND EXPERIMENTAL RESULTS

In the following simulations, two metrics are used to
evaluate the imaging performance. The first one is the nor-
malized mean square error (NMSE) ‖ŵ − wgen‖22/‖wgen‖22,
where ŵ is the estimate of the true signal vector wgen.
We consider that an exact reconstruction is achieved when
NMSE < 10−5. The second metric is the earth mover’s
distance (EMD), which is based on the minimum cost that
must be paid to transform one distribution to the other. Let
wi and ŵk, respectively, be the ith element of wgen and
the kth element of ŵ. Then, the EMD metric is defined as
EMD(wgen, ŵ) = (

∑
i

∑
k dikfik)/(

∑
i

∑
k fik), where dik

is the ground distance between wi and ŵk, and fik is the
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Table I. Proposed BCS algorithm

Initialize the hyper-parameters Ξ and random variables Θ;
Assign Nmaxiter;
for n = 1, · · · , Nmaxiter, do
a. for i = 1, · · · ,M , do

update zi ∼ p(zi|θ\il, z\i,yl) [Eq. (25)];
for l = 1, · · · , L, do

update θil ∼ p(θil|zi,θ\il, z\i,yl) [Eq. (28)];
end for
update qi ∼ p(qi|1,γ) [Eq. (36)];

end for
update γ ∼ p(γ|µ,Γ) [Eq. (33)];
update ρ [Eq. (38)];

b. for l = 1, · · · , L, do
update βl ∼ p(βl|al, bl,θl) [Eq. (39)];
update αl ∼ p(αl|cl, dl,yl,Φl,θl, z) [Eq. (40)];

end for
end for

flow between wi and ŵk [60]. The EMD metric allows us
to evaluate the similarity between the true and the estimated
results, with the displaced distance of the pixels taken into
account. The maximum number of iterations in the Gibbs
sampling is 600, and the sample with the maximum marginal
likelihood in the last 100 samples is chosen as the estimate of
the scattering coefficients.

A. High-resolution imaging in the wide-angle SAR system

We first demonstrate the resolution enhancement in a wide-
angle observations system using the proposed approach. The
DVB-T signals use OFDM modulation with 8192 subcarriers.
The OFDM symbol has a duration of 1024 µs for active
subcarriers [61]. A center carrier frequency of 850 MHz and
a bandwidth of 7.8 MHz are used, and the received data is
sampled at a sampling rate of 10 MHz in the simulations.
The speed of the moving receiver is 150 m/s along the y-
axis. The conventional range and azimuth resolutions are
about 20 m and 2 m in each sub-apertures, respectively. The
resolutions, especially that in range, are greatly improved as
a result of sparse reconstruction. As shown in Fig. 2(a), a
15◦ observation aperture is considered and is divided into 3
sub-apertures, where the resulting observation angle in each
sub-aperture is 5◦. 64 synthetic aperture positions are acquired
by uniformly dividing each sub-aperture width. The complex
scattering coefficients of the sparse targets are assumed to vary
with the sub-aperture, but remain unchanged within the same
sub-aperture. Unless otherwise specified, the raw-data input
SNR is set to −30 dB, and σ0 is chosen to be 16.

The sparse scene being considered, as depicted in Fig. 3(a),
consists of 32 × 32 pixels. With the consideration of the
sparsity measure [62] that most signals can be recovered by
the l1-norm minimization, we consider two continuous targets
(q = 2), whose shapes are cross and square, respectively.
Each target consists of 9 non-zero pixels, yielding a combined
sparsity of Q = 18. The inter-pixel spacing is 1 m in both
range and azimuth directions.

According to the conventional SAR imaging principle,
a high image resolution is achieved by exploiting a wide
coherent synthetic aperture. However, we cannot coherently
accumulate the data acquired over the entire aperture width

x
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8km
50

50

50

(a)

x

y
z
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8km

50

450

-450

(b)

Fig. 2. (a) Geometry of passive wide-angle SAR system, and (b)
Geometry of passive multi-angle SAR system.

because the target scattering coefficients vary with the aspect
angle. As such, without considering the group sparsity, we
have to form individual images separately for the three sub-
apertures. The resulting images by individually applying the
proposed method to each of the three sub-apertures are
respectively shown in Figs. 3(d)–3(f). The result of incoherent
fusion of these three images is shown in Fig. 3(c). It is clear
from the fused image that the targets within one conventional
range cell (20 m) are resolved, but the resulting image shows
missing target entries as well as spurious target entries.

By considering the group sparsity between sub-aperture
images and the underlying continuous structures of the targets,
the reconstructed result exploiting the proposed method with
L = 3 sub-apertures is depicted in Fig. 3(b) in terms of the
Frobenius norm of the complex scattering coefficients across
the three sub-apertures. It is evident that the performance
in Fig. 3(b) is superior to that in Fig. 3(c). The proposed
algorithm with joint learning clearly recovers the sparse targets
where the range and azimuth resolutions of the targets are as
high as 1 m. As discussed earlier, the consideration of group
sparsity across the three sub-apertures allows the exploitation
of the information observed from other sub-apertures to
achieve improved performance. As such, the reconstructed
result of the joint learning of 3 groups, as shown in Fig. 3(b),
outperforms any single learning model depicted in Figs. 3(d)–
3(f), as well as the fused results depicted in Fig. 3(c).

Next, we compare the performance of the proposed method
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Fig. 3. (a) Normalized magnitude of the scattering coefficients of
the original scene. (b) Reconstructed result acquired by incoherently
fusing images individually obtained from the three sub-aperture
groups (L = 3) using the proposed method. (c) Fused image based
on three sub-images, respectively depicted in Figs. 3(d)–3(f). (d)
Reconstructed result acquired by the proposed method using the first
sub-aperture data. (e) Reconstructed result acquired by the proposed
method using the second sub-aperture data. (f) Reconstructed result
acquired by the proposed method using the third sub-aperture data.

to selected existing CS techniques in the sparse Bayesian
learning framework, including the clustered BCS in [41],
mt-CS [27] and conventional FBP. As shown in Fig. 4(a),
the FBP fails to achieve a desirable resolution, yielding
very poor image quality, because the FBP imaging algorithm
does not have high-solution imaging capability and all the
targets in the same range resolution cell cannot be resolved.
The mt-CS algorithm, as one of sparse Bayesian learning
methods, achieves a better performance than that in the FBP
algorithm. As shown in Fig. 4(c), the clustered BCS, by
exploiting the target structure via manually assigned patterns,
improves the imaging performance as it effectively preserves
the underlying continuous structure and suppresses the isolated
noise components. However, the clustered BCS algorithm,
which uses assigned patterns in the first-order neighboring
region, is inferior when compared to the proposed method,
which takes correlation between all scatterers into account.

Finally, we compare the computational complexity among
these aforementioned algorithms in terms of the computer run-
ning time using Matlab 2010a with a Dell S2340L computer
(Intel Core i7-4790 CPU and 16 GB RAM). Fig. 5(a) shows
the running time with respect to the number of image pixels
corresponding to scene sizes of 16 × 16, 32 × 32, 64 × 64,
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Fig. 4. (a) Reconstructed result based on FBP. (b) Reconstructed
result based on mt-CS. (c) Reconstructed result based on clustered
BCS.
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Fig. 5. (a) Running time versus scene size. (b) Running time versus
sparsity (number of non-zero entries). (c) NMSE versus the maximum
number of iteration.

128×128, and 256×256. It is expected that the running time of
all the algorithms increases with the number of pixels. Among
the three methods, the complexity of the greedy based mt-CS
algorithm is much smaller. In Fig. 5(b), we show the running
time with respect to the sparsity for a scene of size 32× 32.
It is observed that the running time slowly increases with
the number of non-zero entries, which are 18, 72, 162, 288,
and 450, respectively. To further compare the performance of
these algorithms, we show in Fig. 5(c) the output NMSE with
respect to the maximum number of iterations for a 32 × 32
scene with sparsity 18. It is clear that the proposed method
acquires the lowest NMSE of less than 0.1 when the maximum
number of iterations is larger than 600. The mt-CS algorithm
converges after 300 iterations, but the output NMSE remains
a high level of 0.35.
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Fig. 6. Reconstruction results of the multi-angle SAR system. (a)
proposed method, (b) clustered BCS, and (c) mt-CS.

B. High-resolution imaging in the multi-angle SAR system

An attractive feature of the passive radar system is its
capability to exploit multiple spatially separated illuminators
available in the scene to achieve a multi-static SAR configura-
tion. Such a capability can be further enhanced when multiple
distributed receivers are used. In this subsection, we consider
a multiple-transmitter single-receiver model as an example of
such a multi-angle SAR system. Considering the fact that
different carrier frequencies are used in transmitted stations,
we are able to separate these transmitted waveforms in the
frequency spectrum. The simulation scene is illustrated in Fig.
2(b), which is similar to the wide-angle scenario considered
earlier, except that we are now using three illuminators.
The azimuth angle width of the receiver corresponding to
each illuminator is 5◦. The three illuminators are located 10
km away from the scene center, and their respective aspect
angles are −45◦, 0◦, and 45◦. These illuminators emit their
individual DVB-T waveforms to the scene with different
carrier frequencies. The complex scattering coefficients are
assumed to be invariant with the 5◦ angular span for each
bistatic pair, but vary with different illuminators due to the
distinct aspect angles.

The imaging results of the proposed method are compared
with those obtained from the clustered BCS, mt-CS in Fig. 6.
It is evident that the proposed algorithm accurately recovers
all continuous targets with NMSE<0.1, as shown in Fig.
6(a), and outperforms the other algorithms being compared.
The clustered BCS method showing in Fig. 6(b) acquires a
moderate reconstruction result with NMSE=0.24. The mt-CS
algorithm, as shown in Figs. 6(c), generally recovers inaccurate
target profiles together with isolated noise components.

C. Minimum grid interval analysis

In the above examples, the proposed technique recovers
high-fidelity target images with a 1-m resolution in both range
and azimuth dimensions. In this subsection, we examine the

minimum grid interval, which is considered as the passive
radar imaging resolution, from the perspective of measurement
matrix coherence. By the term minimum grid interval, we
imply that exact sparse scene reconstruction is achieved when
the entire scene, depicted in Fig. 3(a), is proportionally scaled,
and the same grid interval is used for both range and azimuth
dimensions.

For conventional CS algorithms, an exact reconstruction
requires the measurement matrix Φ(l) for the lth task, l ∈
[1, · · · , L] to satisfy the restricted isometry property (RIP)
condition which, in turn, implies the columns extracted from
Φ(l) to be approximately orthogonal or at least to have
a low coherence. However, this situation does not hold in
the underlying high-resolution passive imaging system. The
mutual coherence of the measurement matrix Φ(l) is defined
as

ρ(l) = ρ(Φ(l)) = max
m 6=m′

∣∣∣ρ(l)mm′ ∣∣∣ , (42)

where

ρ
(l)
mm′ =

(φ(l)
m )Hφ

(l)
m′

‖φ(l)
m ‖‖φ

(l)
m′‖

, (43)

and φ(l)
m denotes the mth column of Φ(l).

In the passive SAR system, ρ(l)mm′ can be expressed as

ρ
(l)
mm′ =

1

D

D∑
i=1

exp

[
jω0

R(si,xm)−R(si,xm′)

c

]
. (44)

Using the triangle inequality, we obtain

ρ
(l)
mm′ ≤ exp

[
j
ω0

c
‖xm − xm′‖

]
. (45)

It is clear from this expression that both the grid interval and
the carrier frequency affect the coherence of Φ(l). That is,
a smaller distance between two adjacent grid pixels and a
lower carrier frequency correspond to a higher coherence of
Φ(l). This phenomenon is prominent in passive radar systems
because their operating frequencies are generally low.

Consider two neighboring grids in azimuth, ρ(l)mm′ can be
written as [63],

ρ
(l)
mm′ ≤ sinc

(
2ω0

c
∆Xa tan

θeff

2

)
, (46)

where sinc(x) = sin(x)/x, ∆Xa is the azimuth spacing
between two neighboring grid pixels, and θeff is the effective
observation aperture width. Because the envelop of sinc(x)
decreases with x for x > 0, reduction in the grid interval,
carrier frequency, and the observation aperture will, in general,
result in increased coherence and, subsequently, degraded
sparse signal reconstruction performance.

Based on this discussion, we show in Fig. 7 the relationship
between the observation aperture width and the minimum
resolvable grid interval for the different algorithms being
compared. It is evident that the proposed algorithm achieves
the smallest resolvable grid interval, which is followed by the
clustered BCS and the mt-CS. This means that the proposed
algorithm offers a better sparse signal reconstruction capabil-
ity. In other words, the proposed algorithm can reconstruct
SAR images with a higher resolution.
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Fig. 8. Minimum grid interval with respect to carrier frequency
based on different methods. (a) Proposed method, (b) clustered BCS,
and (c) mt-CS.

Fig. 8 shows the relationship between the minimum grid
interval and the carrier frequency for different sub-aperture
widths. It is clear that the proposed algorithm achieves the
smallest grid interval, i.e., the highest imaging resolution.

D. Performance versus the number of azimuth samples

In the simulations above, a 5◦-width sub-aperture is uni-
formly divided into 64 aperture positions. In the following,
we analyze the reconstruction performance with respect to
the number of azimuth sample positions. To enable the
comparison, we use a coarse grid interval of 20 m so that
all the algorithms are able to reconstruct the sparse signals
and their performance can be compared. All parameters are
kept the same as those used in Section V-A and noiseless data
observations are assumed. It is observed in Fig. 9(a) that the
target scene can be exactly recovered by both the proposed
algorithm and the clustered BCS when the number of azimuth
samples is larger than 20. The number required to achieve
exact recovery is 30 for the mt-CS. The superiority of the
proposed technique is also confirmed in Fig. 9(b) that depicts
the EMD versus the number of azimuth samples being used.

E. Performance versus the support similarity

All simulations above are performed under the assumption
that the support of the sparse targets is identical across all
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Fig. 9. (a) NMSE versus the number of azimuth samples, and (b)
EMD versus the number of azimuth samples.
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Fig. 10. (a) NMSE versus support similarity, and (b) EMD versus
support similarity.

observation angles. In practice, the observed support of the
sparse targets may vary with the observation angle. In this
case, the proposed algorithm is still able to recover the sparse
targets as long as the correlation of the sparse target supports
for different observation angles is moderately high. Fig. 10(a)
shows the relationship between the reconstruction NMSE
performance and the support similarity, which is defined as
the ratio between the number of common non-zero positions
across different groups and the total number of nonzero
positions. It is clear that the NMSE obtained from the proposed
algorithm is very low as long as the support similarity is
higher than 60%. Similar results are observed in Fig. 10(b)
that depicts the EMD performance as a function of the support
similarity.

F. Selection of the scale parameter σ0
To examine the effect of the scale parameter σ0 in the Gaus-

sian kernel on the reconstruction performance, we analyze the
NMSE and the EMD versus σ0 and provide a guidance for the
selection of σ0. The simulation parameters and grid interval
follow those in Section V-D. Following the common practice,
we take the value of σ0 to be a factor of 2 between 2−2

and 28. Figs. 11(a) and 11(b) respectively show the NMSE
and EMD, averaged over 100 repeated trials, with respect to
σ0. It is observed that, when the number of azimuth samples
is sufficiently high (the D = 32 case in both figures), the
target scene can be reconstructed very well, irrespective of the
value of σ0. On the other hand, a small number of azimuth
samples (the D = 16 case) yields high reconstruction errors.
In this case, increasing σ0 improve both NMSE and EMD,
but the impact is rather limited. It is interesting to observe
that, when a moderate number of azimuth samples (D = 20)
is used, the value of σ0 plays a much more significant role,
underscoring the importance of effectively incorporating the
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Fig. 11. Performance results versus the scale parameter σ0 (a) NMSE,
and (b) EMD.
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Fig. 12. (a) NMSE versus SNR, and (b) EMD versus SNR.

clustered structures. More specifically, both NMSE and EMD
are sharply reduced when σ0 is larger than 24 in this case.
In considering the size of the image, a value of σ0 above
28 is discouraged so as to avoid the singularity issue when
performing matrix inversion in Eq. (35).

G. Performance in noisy environments

We now compare the performance of proposed method
with the clustered BCS and the mt-CS, when the received
signals are contaminated by different levels of noise. Complex
Gaussian white noise is added to the observed signals so that
the SNR varies from −45 dB to −25 dB.

As seen in Fig. 12, both methods with the exploitation of the
continuous structures, i.e., the clustered BCS and the proposed
algorithm, exhibit significant performance gains against the
additive noise as compared to the mt-CS algorithms.

H. Experiment on ship dataset

In this section, the multi-angle synthetic datasets based on
the TerraSAR-X SAR oil tanker imagery with scene size
of 64 × 64, as shown in Fig. 13(a), are used to validate
the proposed algorithm [64, 65]. The range and azimuth
resolution of the original SAR image is 1.5 m ×2 m. It
is observed that the oil tanker ship body has considerately
strong reflectivities due to the metallic material and strong
corner reflections, compared to the weak reflections from
sea clutters. Therefore, it is reasonable to consider the ship
target as sparse within the image. In the experiment, two
transmitters, respectively located at −45◦ and 0◦, and one
moving receiver are considered. We generate another synthetic
observation dataset by randomly altering the phase and adding
random perturbation on the original SAR imagery. Other
radar system parameters follow those in Section V-B. To
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Fig. 13. Reconstructed results based on the oil tanker ship SAR
image. (a) Original oil tanker ship SAR image. (b) Reconstructed
result based on FBP with full dataset. (c) Reconstructed result based
on the proposed method. (d) Reconstructed result based on clustered
BCS. (e) Reconstructed result based on mt-CS.

quantitatively evaluate the quality of the recovered images,
the image correlation coefficient, defined as

Cor(Wr,We) =
‖vec(Wr) ◦ vec(We)‖
‖vec(Wr)‖ · ‖vec(We)‖

, (47)

is used as a as the metric, where Wr denotes the reference im-
age, as shown in Fig. 13(a), and We denotes the reconstructed
image based on the different CS techniques.

Fig. 13(b) shows the result based on the FBP with the full
dataset. It is observed that the reconstructed image has very
coarse range resolution. To demonstrate the performance of the
CS technique, only 64 azimuth measurements are used in the
sequel. As seen in Figs. 13(c)–13(e), all methods can properly
recover most of the strong scatterers. However, compared to
those obtained by mt-CS in Fig. 13(e) and gLasso in Fig.
13(e), the reconstructed images obtained from the proposed
algorithm and the clustered BCS, which exploit the target
structure, are much more concentrated. Since the correlation
between all scatterers within the region of interest is exploited,
the proposed method generally has an improved reconstruction
performance and the resulting image correlation coefficient is
0.83. For comparison, the image correlation coefficient is 0.79
for the clustered BCS, 0.71 for the mt-CS method.

VI. CONCLUSION

Passive synthetic aperture radar (SAR) systems suffer from
low range resolution due to their low carrier frequency and
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narrow signal bandwidth. A novel high-resolution imaging
technique based on structured Bayesian compressive sensing
(BCS) is proposed to achieve improved scene reconstruction
through exploitation of the underlying target scene structure
and group sparsity induced by wide-angle and/or multi-angle
passive radar systems. The proposed structured BCS algorithm
has the ability to acquire high-resolution images in wide-angle
and/or multi-angle observations, where the scattering coeffi-
cients are assumed to change with the observation angles. The
proposed technique requires a minimum number of azimuth
samples for sparse scene reconstruction, and demonstrates
its robustness to low sparse support similarity and additive
observation noise. Simulation and experiment results clearly
demonstrated the superiority of the proposed algorithm over
existing clustered BCS, and multitask compressive sensing
method.

APPENDIX
Derivation of Eq. (33)

According to the data-argumentation technique, we can
acquire the analytical posterior distribution for the latent
vector γ in a hierarchical sampling scheme instead of directly
sampling the vector γ in the logistic model. Based on the joint
likelihood in Eq. (23), we can acquire the posterior distribution
of γ as

p(γ|q, z,Σ) ∝
M∏
i=1

Bern
[
1/(1 + e−ργi)

]
N (γ|0,Σ). (48)

By utilizing Eqs. (31) and (32), we obtain,

p(γ|q, z,Σ) ∝
M∏
i=1

exp

(
ziργi

2
− qiρ

2γ2i
2

)
× exp

[
(zi − 1)ργi

2
− qiρ

2γ2i
2

]
× exp

(
−1

2
γTΣ−1γ

)
= N (γ|µ,Γ), (49)

where µ and Γ are respectively given in (34) and (35).

REFERENCES

[1] I. G. Cumming and F. H. Wong, Digital Processing of Synthetic
Aperture Radar Data: Algorithms and Implementation. Artech
House, 2005.

[2] H. Griffiths and N. Long, “Television-based bistatic radar,”
Proc. IEE-Radar Sonar Navig., vol. 133, no. 7, pp. 649–657,
1986.

[3] H. D. Griffths and C. J. Baker, “Passive coherent location
radar systems. part 1: Performance prediction,” Proc. IEE-Radar
Sonar Navig., vol. 152, no. 3, pp. 153–159, 2005.

[4] Y. D. Zhang and B. Himed, “Moving target parameter
estimation and SFN ghost rejection in multistatic passive radar,”
in Proc. IEEE Radar Conf., (Ottawa, Canada), pp. 1–5, April
2013.

[5] B. Rigling, “Bistatic synthetic aperture radar,” in N.J. Willis
and H. Griffiths, Eds., Advances in Bistatic Radar, Scitech
Publishing, pp. 320–431, 2007.

[6] M. Conti, F. Berizzi, M. Martorella, E. D. Mese, D. Petri, and
A. Capria, “High range resolution multichannel DVB-T passive

radar,” IEEE Aerospace and Electronic Systems Mag., vol. 27,
no. 10, pp. 37–42, 2012.

[7] X. Mao, Y. D. Zhang, and M. G. Amin, “Low-complexity
sparse reconstruction for high-resolution multi-static passive
SAR imaging,” EURASIP J. Adv. Signal Process., vol. 2014,
no. 104, pp. 1–12, 2014.

[8] S. Wacks and B. Yazici, “Passive synthetic aperture radar
imaging of ground moving targets,” in Proc. SPIE 8394,
Algorithms for Synthetic Aperture Radar Imagery XIX,
(Baltimore, MD), pp. 83940E–1–83940E–10, May 2012.

[9] Y. Wu and D. C. Munson, “Wide-angle ISAR passive imaging
using smoothed pseudo Wigner-Ville-distribution,” in Proc.
IEEE Radar Conf., (Atlanta, GA), pp. 363–368, Dec. 2001.

[10] A. Paulose, High Radar Range Resolution with the Step
Frequency Wwaveform. M.S. Thesis, Naval Postgraduate
School, Monterey, CA, 1994.

[11] Q. Wu, M. Xing, C. Qiu, Z. Bao, and T. Yeo, “Focusing
of tandem bistatic configuation data with range migration
algorithm,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1,
pp. 88–92, 2010.

[12] W. Jing, Q. Wu, M. Xing, and Z. Bao, “Image formation of
wide-swath high resolution MIMO-SAR,” J. System Simulation,
vol. 16, no. 3, pp. 38–44, 2008.

[13] T. G. Moore, B. W. Zuerndorfer, and E. C. Burt, “Enhanced
imagery using spectral-estimation-based techniques,” Lincoln
Lab. J., vol. 10, no. 2, pp. 171–186, 1997.

[14] K. E. Olsen and K. Woodbridge, “Multiband passive bistatic
DVB-T radar range resolution improvements and implications,”
in Proc. Int. Radar Symp., (Warsaw, Poland), pp. 28–30, Sept.
2012.

[15] L. Zhang, M. Xing, C. Qiu, J. Li, J. Sheng, Y. Li, and Z. Bao,
“Resolution enhancement for inversed synthetic aperture radar
imaging under low SNR via improved compressive sensing,”
IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3824–
3838, 2010.

[16] M. Cetin and W. C. Karl, “Feature-enhanced synthetic aperture
radar image formation based on nonquadratic regularization,”
IEEE Trans. Image Proc., vol. 10, no. 4, pp. 623–631, 2001.

[17] J. H. G. Ender, “On compressive sensing applied to radar,”
Signal Proc., vol. 90, no. 5, pp. 1402–1414, 2010.

[18] A. Budillon, A. Evangelista, and G. Schirinzi, “Three-
dimensional SAR focusing from multipass signals using
compressive sampling,” IEEE Trans. Geosci. Remote Sens.,
vol. 49, no. 1, pp. 488–499, 2011.

[19] J. A. Tropp and A. C. Gilbert, “Signal recovery from partial
information via orthogonal matching pursuit,” IEEE Trans. Info.
Theory, vol. 53, no. 12, pp. 4655–4666, 2007.

[20] R. Tibshirani, “Regression shrinkage and selection via the
Lasso,” J. Royal. Statist. Soc., vol. 58, no. 1, pp. 267–288, 1996.

[21] M. Skolnik, Radar Handbook, Third Edition. McGraw-Hill,
2008.

[22] M. Yuan and Y. Lin, “Model selection and estimation in
regression with grouped variables,” J. Royal Statist. Soc. Series
B, vol. 68, no. 1, pp. 49–67, 2006.

[23] L. Jacob, G. Obozinski, and J. Vert, “Group Lasso with overlap
and graph Lasso,” in Proc. Int. Conf. Machine Learning,
(Montreal, Canada), pp. 433–440, Jun. 2009.

[24] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”
IEEE Trans. Signal Proc., vol. 56, no. 6, pp. 2346–2356, 2008.

[25] M. E. Tipping, “Sparse Bayesian shrinkage and selection
learning and the relevance vector machine,” J. Machine
Learning Research, vol. 1, no. 9, pp. 211–244, 2001.

[26] Z. Zhang and B. D. Rao, “Sparse signal recovery with
temporally correlated source vector using sparse Bayesian
learning,” IEEE J. Sel. Topics in Signal Proc., vol. 5, no. 5,
pp. 912–926, 2011.

[27] S. Ji, D. Dunson, and L. Carin, “Multitask compressive
sampling,” IEEE Trans. Signal Proc., vol. 57, no. 1, pp. 92–
106, 2009.



13

[28] S. D. Babacan, S. Nakajima, and M. N. Do, “Bayesian group-
sparse modeling and variational inference,” IEEE Trans. Signal
Proc., vol. 62, no. 11, pp. 2906–2921, 2014.

[29] G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive
sampling-based inversion for imaging sparse scatterers,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3993–4006,
2013.

[30] M. Carlin, P. Rocca, G. Oliveri, F. Viani, and A. Massa,
“Directions-of-arrival estimation through Bayesian compressive
sensing strategies,” IEEE Trans. Antennas Propagat., vol. 61,
no. 7, pp. 3828–3838, 2013.

[31] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Space-
ctime adaptive processing and motion parameter estimation in
multistatic passive radar using sparse Bayesian learning,” IEEE
Trans. Geosci. Remote Sens., (in press).

[32] L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based
microwave imaging approach through minimum-norm current
expansion,” IEEE Trans. Antennas Propagat., vol. 61, no. 9,
pp. 4722–4732, Sept. 2013.

[33] G. Oliveri, E. T. Bekele, F. Robol, and A. Massa, “Sparsening
conformal arrays through a versatile BCS-based method,” IEEE
Trans. Antennas Propagat., vol. 62, no. 4, pp. 1681–1689, Apr.
2014.

[34] M. G. Amin, Y. D. Zhang, and B. Jokanovic, “Time-
frequency signature reconstruction from random observations
using multiple measurement vectors,” in Proc. IEEE ICASSP,
(Florence, Italy), pp. 345–349, May 2014.

[35] Q. Wu, Y. D. Zhang, and M. G. Amin, “Continuous structure
based Bayesian compressive sensing for sparse reconstruction of
time-frequency distribution,” in Proc. Int. Conf. Digital Signal
Proc., (Hong Kong, China), pp. 831–836, Aug. 2014.

[36] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Multi-static
passive radar SAR imaging based on Bayesian compressive
sensing,” in Proc. SPIE 9109, Compressive Sensing III,
(Baltimore, MD), pp. 910902–1–910902–9, May 2014.

[37] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Complex
multitask Bayesian compressive sensing,” in Proc. IEEE
ICASSP, (Florence, Italy), pp. 3375–3379, May 2014.

[38] S. Qin, Y. D. Zhang, Q. Wu, and M. G. Amin, “DOA estimation
of nonparametric spreading spatial spectrum based on Bayesian
compressive sensing exploiting intra-task dependency,” in Proc.
IEEE ICASSP, (Brisbane, Australia), pp. 2399–2403, April
2015.

[39] L. Wang, L. Zhao, G. Bi, C. Wan, and L. Yang, “Enhanced
ISAR imaging by exploiting the continuity of the target scene,”
IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5736–
5750, 2014.

[40] L. Wang, L. Zhao, G. Bi, C. Wan, and L. Yang, “Sparse
representation-based ISAR imaging using Markov random
field,” IEEE J. Sel. Topics in Appl. Earth Observ. Remote
Sensing, (in press).

[41] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed,
“Mutli-task Bayesian compressive sensing exploiting intra-task
dependency,” IEEE Signal Proc. Lett., vol. 22, no. 4, pp. 430–
434, 2015.

[42] Q. Wu, Y. D. Zhang, F. Ahmad, and M. G. Amin, “Compressive
sensing based high-resolution polarimetric through-the-wall
radar imaging exploiting target characteristics,” IEEE Antennas
and Wireless Propagat. Lett., vol. 14, pp. 1043–1047, 2015.

[43] T. Peleg, Y. C. Eldar, and M. Elad, “Exploiting statistical
dependencies in sparse representations for signal recovery,”
IEEE Trans. Signal Proc., vol. 60, no. 5, pp. 2286–2303, 2012.
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