
1

DOA Estimation of Mixed Coherent and

Uncorrelated Targets Exploiting Coprime

MIMO Radar

Si Qin, Yimin D. Zhang, and Moeness G. Amin

Abstract

We propose a new scheme to estimate the directions-of-arrival (DOAs) of mixed coherent and uncor-

related targets exploiting a collocated multiple-input multiple-output (MIMO) radar with transmit/receive

coprime arrays. In the proposed scheme, the DOAs of the uncorrelated targets are first estimated using

subspace-based methods, whereas those of the coherent targets are resolved using Bayesian compressive

sensing. Compared with the previous works, the proposed approach achieves improved DOA estimation

accuracy with a flexible coprime array configuration and may resolve more targets than the number of

coarray elements. Theoretical analysis and simulation results validate the effectiveness of the proposed

technique.

Index Terms

Coprime array, sum coarray, direction-of-arrival estimation, coherent targets, Bayesian compressive

sensing.

I. INTRODUCTION

By determining the spatial spectra of the impinging targets, direction-of-arrival (DOA) es-

timation on multi-antenna receivers plays an important role in broad applications of wireless

communications, radar, and biomedical systems. Among the many existing DOA estimation

methods, subspace-based approaches, such as MUSIC [2] and ESPRIT [3], are commonly used
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to resolve uncorrelated targets because of their low complexity and superior performance. How-

ever, a major drawback with subspace-based DOA estimation methods lies in their incapability

of reliably estimating DOAs for coherent targets. Coherent signal arrivals may frequently be

encountered in practice due to, for example, multipath propagation caused by various reflective

surfaces or closely located targets. Multiple smart jamming signals can also be designed to use

coherent waveforms. The problem of DOA estimation becomes even more challenging when a

mixture of coherent and uncorrelated targets is present.

In order to decorrelate the coherent targets, a number of effective approaches have been

proposed, most notably is spatial smoothing technique [4, 5]. This technique is applied prior

to performing DOA estimation and divides the entire array into multiple overlapping subarrays.

Averaging the output subarray covariance matrices is then performed to construct the spatially

smoothed covariance matrix. Despite its effectiveness, major drawbacks of the spatial smoothing

method lie in its reduction of the array aperture and the requirement of uniformly spaced sensor

positions. Significant efforts have been made to develop techniques for the detection of a large

number targets impinging on the array. In particular, several methods have been proposed to

estimate DOAs for a mixture of both uncorrelated and coherent targets in the field of view.

In [6], a uniform linear array (ULA) is considered, and the DOAs of the uncorrelated targets

are first estimated by directly applying the MUSIC algorithm. The uncorrelated targets are then

removed from the received data by exploiting the symmetry property of the ULA. A Toeplitz

matrix is subsequently constructed to estimate the DOAs of the remaining coherent targets. In

so doing, this technique enables the DOA estimation of more sources than sensors. Eliminations

of uncorrelated targets can also be achieved using oblique projection as proposed [7, 8].

The aforementioned schemes employ passive or receive-only ULA for DOA estimation. Re-

cently, multiple-input multiple-output (MIMO) has emerged to be the preferred system config-

uration due to, primarily, its associated long virtual array, which arises under the sum coarray

equivalence in active sensing of targets [9–11]. To achieve a high number of degrees of freedom

(DOFs) and improved resolution, it is desirable to have sparse transmit and receive arrays. As

such, the resulting sum coarray may not have a ULA structure. This disallows spatial smoothing

and, as such, renders subspace-based approaches, including the MUSIC algorithm, inapplicable.

In this paper, we consider DOA estimation exploiting a coprime MIMO radar in the presence

of both uncorrelated and coherent targets. The coprime array configuration is originally proposed

in [12] for passive signal reception and consists of two ULAs, where the number of antennas and
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the interelement spacing are constrained by a coprime relationship. Under the difference coarray

equivalence, a coprime array of O(M +N) total physical sensors achieves O(MN) DOFs. The

coprime array concept is generalized in [13] through the compression of the interelement spacing

of one constituting subarray, allowing flexible array configuration design with a higher number

of DOFs. It was shown that the nested array structure [14] is a special case of the generalized

coprime array structure.

We employ a pair of coprime ULAs within the MIMO framework in which the generalized

coprime array is examined in a sum coarray context rather than a difference coarray. That is,

one ULA is used for signal emission, whereas the other acts as a receiver. We use this scheme

to provide new insights into the generalized coprime array for effective DOA estimations. Given

a specific number of physical sensors, the resulting coprime MIMO array structure achieves a

large virtual array aperture and offers a high flexibility in trading off spatial resolution and false

spectrum peaks. In this paper, in order to overcome the false peak problem, which is more likely

to occur in non-uniform sum coarrays, reliable DOA estimation of coherent targets is sought out

based on compressive sensing (CS) [15] techniques. These techniques do not require the Toelitz

matrix structure, thereby facilitating the use of general symmetric sum coarray structures, instead

of the much more strict ULA requirement of the existing methods.

A number of effective CS algorithm are available (e.g., [16–18]). As a preferred approach, we

consider the problem in the Bayesian compressive sensing (BCS) or sparse Bayesian learning

[19–23] as they achieve superior performance and are insensitive to the coherence of dictionary

entries. To handle the complex-valued observations and entries in the underlying problem, the

complex multitask Bayesian compressive sensing (CMT-BCS) [24] is used in this paper. The

CMT-BCS achieves improved sparse signal reconstruction because it utilizes the group sparsity

of the real and imaginary components of a complex variable. The superiority of the CMT-BCS

has been successfully demonstrated in various applications, including DOA estimation, radar

imaging, target localization, and time-frequency analysis [25–28].

The contribution of this paper is threefold: (1) We utilize a coprime MIMO structure as an

effective platform to achieve high-resolution DOA estimation where the number of resolvable

targets is significantly higher than conventional array and MIMO structures; (2) We examine

the performance of different generalized coprime array structures in the context of sum coarray,

and address the different features of the sum coarrays as compared to the situation when the

generalized coprime array is used in the passive sense to yield difference coarrays; (3) Based on
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the symmetry of the sum coarray, we extract coherent target signals, whose DOA estimation is

reformulated as a group sparse reconstruction problem. Because of its capability of utilizing all

the DOFs of the coarray provided by both contiguous and discontinuous coarray sensor positions,

the proposed approach achieves a higher number of resolvable coherent targets and improved

performance as compared to subspace-based counterparts.

In summary, the proposed technique solves DOA estimation of mixed coherent and uncor-

related targets, and offers a much higher number of DOFs as compared to existing methods.

The effectiveness and the robustness of the proposed methods are evidently demonstrated using

extensive simulation results.

The remainder of the paper is organized as follows. In Section II, we describe the signal

model of DOA estimation in the presence of mixed coherent and uncorrelated targets exploiting

a generalized coprime MIMO radar. Then, the proposed method to solve this problem is presented

in Section III, and an analytical expression of the number of DOFs is provided. Simulation results

are provided in Section IV to demonstrate the effectiveness of the proposed method. Section V

concludes this paper.

Notations: We use lower-case (upper-case) bold characters to denote vectors (matrices). In

particular, IN denotes the N×N identity matrix. (.)∗ implies complex conjugation, whereas (.)T

and (.)H , respectively, denote transpose and conjugate transpose. ‖ · ‖2 represents the Euclidean

(l2) norm, and E(·) stands for the statistical expectation operator. δ(i,k) is a delta function which

takes value of 1 if i = k and 0 otherwise. ⊗ denotes the Kronecker product. Pr(·) denotes

the probability density function (pdf), and N (x|a, b) denotes that random variable x follows a

Gaussian distribution with mean a and variance b. Re(x) and Im(x) denote the real and imaginary

parts of complex element x, respectively. Tr(A) and and |A| respectively returns the trace and

determinant of matrix A. In addition, b·c denotes the floor function that returns the largest integer

not exceeding the argument. spark(A) denotes the spark of A, returning the smallest integer r

such that every column of A are linearly independent.

II. SIGNAL MODEL

We consider an MIMO radar with N transmit and M receive antennas. As illustrated in Fig. 1,

the transmit and receive arrays are collocated and they adopt the generalized coprime array con-

figuration, where the two integers M and N are chosen to be coprime, i.e., their greatest common

divisor is one. The unit interelement spacing d is set to λ/2, where λ denotes the wavelength.
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Compared with the original coprime array configuration, the generalized configuration introduces

an integer compression factor p to compress the interelement spacing of one constituting array.

Without loss of generality, we consider that the interelement spacing compression occurs in the

transmit array. Alternatively, depending on the particular applications and geometric concerns,

the spacing compression can be placed in the receive array. Let

M = pM̆, (1)

for some integers p and M̆ , where 2 ≤ p ≤ M . Note that M̆ and N are also coprime since

M and N do not have common factors other than unity. As such, the M -element receive array

uses an interelement spacing of Nd, whereas the interelement spacing of the N -element transmit

array is compressed to M̆d = Md/p.

In this paper, we focus on the DOA estimation problem using coprime MIMO radar, and no

clutter is considered. Assume that the N transmit antennas emit N orthogonal waveforms with

unit energy. These signals are reflected at Q far-field targets, which are unresolvable through

range discrimination. Their reflectivities, described as sq(t), t = 1, ..., T , for q = 1, ..., Q,

are assumed to be mixed coherent and uncorrelated targets, which are common in multipath

propagation environments due to the reflection in practical situation. The angles of the Q target

returns are respectively denoted as Θ = [θ1, ..., θQ]T . Then, the matched filter at the output of

the mth receive antenna, corresponding to the nth transmit waveform, generates

xm,n(t) =

Q∑
q=1

atn(θq)arm(θq)sq(t) + nm,n(t), (2)

where

atn(θq) = e
−j2πM̆nd

λ
sin(θq),

arm(θq) = e
−j2πNmd

λ
sin(θq),

and nm,n(t) is assumed to be an independent and identically distributed (i.i.d.) random variable

following the complex Gaussian distribution CN (0, σ2
n), where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤

N − 1.
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Stacking the output signals into a vector received at sum coarray

x(t) =[x1,1(t), x2,1(t), . . . , xM,1(t), x1,2(t), x2,2(t), . . . ,

xM,2(t), . . . , x1,N(t), x2,N(t), . . . , xM,N(t)]T

=

Q∑
q=1

at(θq)⊗ ar(θq)sq(t) + n(t), (3)

where

at(θq) = [at1(θq), at2(θq), . . . , atN (θq)]
T ,

ar(θq) = [ar1(θq), ar2(θq), . . . , arM (θq)]
T

are the transmit and receive steering vectors corresponding to θq, respectively, and n(t) =

[n1,1(t), n2,1(t), ..., nM,N(t)]T is the noise vector. As a result, a sum coarray is formed at the

output of the receiver matched filters, and their positions are expressed as

Ps = {(M̆n+Nm)d| 0 ≤ n ≤ N − 1, 0 ≤ m ≤M − 1}. (4)

Because M and N are coprime, there are MN unique virtual sensor positions and, therefore, the

number of the available DOFs is always MN − 1. This is different from the difference coarray

case, where the number of DOFs may become smaller than MN−1 because of overlapped virtual

sensor positions. On the other hand, the aperture of the coarray is M̆(N−1)+N(M−1), which,

for a specific pair M and N , increases with M̆ . In other words, a smaller value of compression

factor p results in a larger aperture. In addition, it could be inferred that the sum coarray is

symmetric because both transmit and receive arrays are uniform linear and, thereby, symmetric.

An example is illustrated in Fig. 2, where M = 4, N = 3 and different values of the

compression factor p are considered. It is noted that all the resulting sum coarrays have MN=12

distinct elements. In addition, the sum coarrays are symmetric, but generally have missing

positions (indicated by × in the figure) except for the nested case (p = 4). As p decreases,

the aperture of the sum coarray increases, and the number of missing positions increases as

well. In this case, when dealing with coherent targets, subspace-based methods suffer from

reduced DOFs because only contiguous coarray sensor positions can be utilized. On the other

hand, the proposed CS-based approach can utilize all the DOFs provided by both contiguous

and discontinuous coarray sensor positions.
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III. PROPOSED APPROACH

A. Formulation of the Problem

The coherent reflection signal arrivals are grouped into V groups, svc(t), v = 1, . . . , V , where

the signal arrivals within each group are coherent to each other but are uncorrelated to signals in

other groups. In the vth group, there are Lv coherent arrivals and the DOA corresponding to the

lth arrival is denoted as θvlc , l = 1, . . . , Lv. The total number of coherent arrivals is L = ΣV
v=1Lv

and the remaining D = Q−L targets, sdu(t), d = 1, . . . , D, are uncorrelated to each other and to

the coherent ones. For the convenience of presentation, we assume MN to be odd and express

it as MN = 2K + 1. This occurs when both M and N are odd integers. However, MN can

take an even value and the problem can be similarly formulated.

Let the index of the central element of the array to be 0. The signal vector in Eqn. (3) can

be reformulated as

x(t) =[x−K(t), . . . , x0(t), . . . , xK(t)]T

=
V∑
v=1

Lv∑
l=1

a(θvlc )ρvls
v
c(t) +

D∑
d=1

a(θdu)s
d
u(t) + n(t)

=ACsC(t) + AUsU(t) + n(t), (5)

where a(θ) = at(θ) ⊗ ar(θ) is the steering vector of the sum coarray corresponding to θ,

and ρvl is the complex coefficient of the lth arrival in the vth group for l = 1, . . . , Lv with

v = 1, . . . , V . In addition, the manifolds of the coherent and uncorrelated targets are grouped

as AC = [A1ρ1, . . . ,AV ρV ], AU = [a(θ1u), . . . , a(θDu )], where ρv = [ρv1 , . . . , ρvLv ]T , Av =

[a(θv1
c ), . . . , a(θ

vLv
c )], and the corresponding signal vectors are denoted as sC = [s1c(t), . . . , s

V
c (t)]T ,

sU = [s1u(t), . . . , s
D
u (t)]T .

As a consequence, the covariance matrix of the coarray output can be expressed as

Rxx = E{x(t)xH(t)} = ACRCAH
C + AURUAH

U + σ2
nI2K+1, (6)

where RC and RU are the covariance matrix of sC(t) and sU(t), respectively. Note that RU is

a diagonal matrix, whereas RC is block diagonal with V blocks, whose rank is V .

B. DOA Estimation

DOA estimation is separately performed for coherent and uncorrelated targets in two steps.

The first step is similar to [6–8, 29], in which the uncorrelated targets are estimated by directly
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applying a subspace based method, e.g., the MUSIC algorithm. After eliminating the contribution

of uncorrelated targets by exploiting the property of a symmetric array that the received signal

vector is conjugate symmetric, the DOAs of the coherent targets are estimated using a CS

technique. The CS-based approach enables the proposed use of coprime arrays with a non-

uniform sum coarray as it only requires a symmetric, instead of uniform linear, sum coarray

structure.

All arrivals corresponding to the same coherent targets yield a rank-1 component. Therefore,

the covariance matrix Rxx can be written as

Rxx = UsΛsU
H
s + UnΛnU

H
n , (7)

where Us represents the signal subspace consisting of the D+V dominant eigenvectors of Rxx

and Un represents the noise subspace with the remaining 2K+ 1−D−V eigenvectors. Λs and

Λn are diagonal matrices containing the corresponding eigenvalues. The uncorrelated targets can

be estimated by exploiting the MUSIC algorithm directly. Because the combined array steering

vector from multiple coherent arrivals, denoted as av =
∑Lv

l=1 a(θvlc )ρvl, v = 1, . . . , V , does not

represent a valid array manifold, the coherent targets generally do not demonstrate a strong

presence in the estimated MUSIC spectra. In other words, the effect of coherent targets in each

group cannot be equivalently represented as a virtual signal that would be confused with the

uncorrelated targets.

Next, uncorrelated targets are eliminated by utilizing the symmetric configuration of the sum

coarray. The (i, k)th element of matrix Rxx in (7) is expressed as

ri,k =
V∑
v=1

Lv∑
l=1

cvli e
jπk sin(θ

vl
c ) +

D∑
d=1

udi e
jπk sin(θdu) + σ2

nδ(i,k), (8)

for i, k = −K, . . . ,K, where cvli = σ2
vρ

∗
vl

∑Lv
p=1 ρvpe

−jπi sin(θvpc ) and udi = σ2
de

−jπi sin(θdu). It is

noted that the uncorrelated components in ri,k are conjugate symmetric with respect to i and k,

while the coherent components are not because of the complex coefficient ρ.

Since the sum coarray configuration of the coprime array is symmetric, we can define

zi,k = ri,k − r∗−i,−k =
V∑
v=1

Lv∑
l=1

qvli e
jπk sin(θ

vl
c ) + εi,k, (9)

where qvli = σ2
v

∑Lv
p=1(ρ

∗
vlρvp − ρvlρ

∗
vp)e

−jπi sin(θvpc ). In addition, an error term εi,k is included

in Eqn.(9) to account for the discrepancies between the statistical expectation and the sample

average in computing the covariance matrix. The discrepancies are modelled as i.i.d. complex
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Gaussian as a result of a sufficiently large number of samples employed in the averaging.

Note that only the coherent part remains in zi,k, as the uncorrelated components are completely

eliminated.

Stacking zi,k for all k results in zi, denoted as

zi = Aqi + εi, (10)

where the (2K+1)×L manifold matrix is given as A =
[
a(θ11

c ), . . . , a(θ
1L1
c ), . . . . . . , a(θV1

c ), . . . , a(θ
VLV
c )

]
and the corresponding L × 1 signal vector qi =

[
q11
i , . . . , q

1L1
i , . . . . . . , qV1

i , . . . , q
VLV
i

]T
, for

−K ≤ i ≤ K. In addition, εi is the error vector. It is noted that the (2K + 1) × 1 vector

zi can be sparsely represented in the spatial domain over the entire angular grids as

zi = Ãq̃i + εi, −K ≤ i ≤ K, (11)

where Ã is defined as a collection of steering vectors a(θg) over the entire possible grids θg

for g = 1, . . . , G, with G � L. It is important to note that the angle positions of the coherent

targets θvlc , l = 1, . . . , Lv, v = 1, . . . , V , are indicated by the non-zero entries in vector q̃i, whose

values describe the corresponding coefficients associated with target reflections. Generally, the

non-zero entries take different values with respect to the different rows of matrix Rxx (i.e.,

different values of i) but share the same positions because they correspond to the DOAs of the

same L targets. Therefore, q̃i exhibits a group sparsity and, as such, the DOA estimation of

coherent signal problem can be solved in the context of group sparse reconstruction.

To solve the complex-valued group sparse reconstruction problem in Eqn. (11), a number of

effective algorithms are available under the convex optimization [30, 31] and Bayesian sparse

learning [21, 24] frameworks. In this paper, we exploit the CMT-BCS algorithm [24] due to its

superior performance and robustness to dictionary coherence.

C. CMT-BCS algorithm

In this subsection, we briefly review the CMT-BCS approach based on [24] for completeness.

Because it is difficult to provide a comprehensive description of the CMT-BCS within the limited

space, interested readers are referred to reference [24] for CMT-BCS and references [19–23] for

the general BCS framework.

Assume that the entries in the sparse vectors q̃i are drawn from the product of the following

zero-mean Gaussian distributions:

q̃gi ∼ N (q̃gi |0, αgI2), g ∈ [1, . . . , G], (12)
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where q̃gi is a vector consisting of the real part coefficient, q̃gRi , and the imagery part coefficient,

q̃gIi , with respect to the gth grid in q̃i. In addition, α = [α1, . . . , αG]T is a vector that contains

variance of q̃gi g = 1, . . . , G. Note that α is shared by all groups to enforce the group sparsity.

It is easy to confirm that q̃gi trends to be zero when αg is set to zero [20].

To encourage the sparsity of q̃i, a Gamma prior is placed on α−1
g , which is conjugate to the

Gaussian distribution, i.e.,

α−1
g ∼ Gamma(α−1

g |a, b), g ∈ [1, . . . , G], (13)

where Gamma(x−1|a, b) = Γ(a)−1bax−(a−1)e−
b
x , with Γ(·) denoting the Gamma function, and

a and b are hyper-parameters.

As the covariance matrix is estimated from the received data samples, a Gaussian prior

N (0, β0I2) is also placed on the error vector εi. Similarly, the Gamma prior is placed on β−1
0

with hyper-parameters c and d.

The CMT-BCS algorithm carries out Bayesian inference by the Gibbs samplers [32]. Once

the hyper-parameters α and β0 are estimated by maximizing the marginal likelihood, the joint

posterior density function of q̃RI
i can be obtained analytically using Bayes’ rule.

Define q̃RI
i =

[
(q̃R

i )T , (q̃I
i )
T
]T , with q̃R

i = [q̃1R
i , . . . , q̃

GR
i ]T and q̃I

i = [q̃1I
i , . . . , q̃

GI
i ]T , the

posterior for q̃RI
i can be expressed analytically as a multivariate Gaussian distribution with mean

µi and covariance Σi, i.e.,

Pr(q̃RI
i |zi, Ãi,α, β0) = N (q̃RI

i |µi,Σi),

where

µi = β−1
0 ΣiΨ

T
i zRIi , (14)

Σi =
[
β−1
0 ΨT

i Ψi + F−1
]−1

, (15)

with

zRIi =
[
Re(zTi ), Im(zTi )

]T
, (16)

Ψi =

Re(Ãi) −Im(Ãi)

Im(Ãi) Re(Ãi)

 , (17)

F = diag(α1, . . . , αG, α1, . . . , αG). (18)
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Note that the mean and variance of each scattering coefficients can be derived using Eqns. (14)

and (15) when α and β0 are given. On the other hand, the values of α and β0 are determined

by maximizing the logarithm of marginal likelihood, i.e.,

{α, β0} = arg max
α,β0

L(α, β0), (19)

where

L(α, β0) =
K∑

i=−K

log Pr(q̃RI
i |α, β0) = const− 1

2

K∑
i=−K

log |Ci|+ (zRIi )T C−1
i zRIi (20)

and Ci = β0I + ΨiFΨT
i . A type-II ML approximation [19] employs the point estimates for

α and β0 to maximize Eqn. (20), which can be implemented via the expectation maximization

(EM) algorithm to yield

α(new)
g =

1

2K + 1

K∑
i=−K

(
µ2
i,g + µ2

i,g+G + Σi,gg + Σi,(g+G)(g+G)

)
, g ∈ [1, . . . , G], (21)

β
(new)
0 =

1

2G(2K + 1)

K∑
i=−K

(
Tr[ΣiΨiΨ

T
i ] + ||zRIi −Ψiµi||22

)
, (22)

where µ2
i,g and µ2

i,g+G are the gth and (g+G)th elements in vector µi, and Σi,gg and Σi,(g+G)(g+G)

are the (g, g) and (g +G, g +G) entries in matrix Σi. Note that, because α(new) and β(new)
0 are

a function of µi and Σi, while µi and Σi are a function of α and β0, this suggests an iterative

algorithm that iterates between Eqns. (14)–(15) and Eqns. (21)–(22), until a convergence criterion

is satisfied or the maximum number of iterations is reached.

D. Identifiability

Since the DOA estimation is separately performed for uncorrelated and coherent targets in

two steps, two identifiability conditions are presented below to derive the maximum number of

DOFs.

Condition 1: To correctly estimate the DOAs of the uncorrelated targets, the number of

dominant eigenvectors in Us, D + V , must satisfy the requirement of D + V < 2K + 1,

or equivalently

D + V ≤ 2K = MN − 1. (23)

Condition 2: To correctly estimate the DOAs of the coherent targets, the total number of

coherent targets L =
∑V

v=1 Lv cannot exceed a half of the number of sum coarray sensors,

K + 1, i.e.,

L ≤ K =

⌊
MN − 1

2

⌋
. (24)
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Proof: In sparse reconstruction, the spark of Ã, i.e., spark(Ã), decides when such recovery

is possible. Therefore, following the results in [33, 34], the L–sparse vector can be uniquely

recovered if and only if

L <
spark(Ã)− 1 + rank(z)

2
=

2K + 1 + rank(z)

2
= K + 1, (25)

where spark(Ã) = 2K+2 and rank(z) = 1 with z = [z−K , . . . , zK ]. That is, L ≤ K =
⌊
MN−1

2

⌋
.

Proposition 1: When Conditions 1 and 2 hold, the maximum number of targets that can be

resolved by the proposed approach, Q = D + L, is b(3MN − 5)/2c.

Proof: Based on the Condition 1, we know that the maximum number of resolvable uncorre-

lated targets is achieved when the group number is V = 1. Thus, we can estimate a maximum

number of D = MN − 2 uncorrelated targets plus b(MN − 1)/2c coherent targets (Condition

2), yielding a total number of resolvable targets to be b(3MN − 5)/2c.

From Proposition 1, it is noted that we can resolve a much higher number of targets than

the number of physical sensors, M +N , and the number of sum coarray elements, MN , when

MN ≥ 6.

IV. SIMULATION RESULTS

For illustrative purpose, we consider a MIMO radar with a generalized coprime pair of ULAs,

where M = 4 and N = 3 are assumed and different values of the compression factor p = 1

and p = 4 are exploited. As such, all configurations consist of M + N = 7 physical antennas,

yielding MN = 12 elements in the sum coarray. The number of resolvable targets is upper

bounded by b(3MN − 5)/2c = 15.

Assume that Q mixed uncorrelated and coherent far-field targets are received at the sum

coarray, in which L =
∑V

v=1 Lv coherent targets are grouped into V groups in addition to D

uncorrelated targets. The covariance matrix are obtained by using 500 snapshots. The grid interval

of the spatial angle used in both MUSIC and CS-based approaches is 0.1◦. The DOA estimation

performance is examined in terms of resolution and accuracy. Particularly, the proposed method

is compared with the MUSIC with spatial smoothing (MUSIC-SS) [4] and the approach in [6]

(refer to as the Xu method hereafter).

A. Sum coarray without missing positions

We first consider the case where the sum coarray does not have missing positions. Such

coarrays can be obtained from a nested array structure (p = 4). The yielding sum coarray is
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shown in Fig. 2(c). In this case, the proposed method and the Xu method have the same DOFs

to resolve up to b(3MN − 5)/2c = 15 targets, whereas the MUSIC-SS method can only resolve

(MN/2−1) = 5 targets. The main difference between the proposed method and the Xu method

lies in the utilization of the CS method which offers higher resolution capability as compared

to the MUSIC counterpart [35].

In the first example, we consider V = 2 groups of Q = L = 4 coherent targets which

arrive from [42◦,−40◦] and [−12◦,−8◦] with coefficients ρ1 = [−0.0349 + j0.9994,−0.6490 +

j0.2622]T and ρ2 = [0.7092+j0.5541, 0.7999+j0.0140]T . The input signal-to-noise ratio (SNR)

of all impinging target signals is assumed to be 0 dB. The obtained spectra for the three methods

are compared in Fig. 3. It is evident that only the proposed method correctly identify the two

closely spaced targets.

Next, we compare the average root mean-square error (RMSE) performance of the estimated

DOAs obtained from 200 Monte Carlo trials, expressed as

RMSE =

√√√√ 1

200Q

200∑
n=1

Q∑
q=1

(θ̂q(n)− θq)2, (26)

where θ̂q(n) is the estimate of θq for the nth Monte Carlo trial, n = 1, . . . , 200.

To enable comparison of the RMSE performance among all the three methods, we consider

the same Q = L = 4 target scenario, but the DOAs of targets are changed to [42◦,−40◦] and

[−12◦, 9◦], i.e., the two targets in the second pair are now widely separated. Fig. 4 shows the

RMSE results with respect to the input SNR. It is clear that the proposed method outperforms

Xu method when the input SNR is higher than −7 dB, and is approximately the same as the

MUSIC-SS when the input SNR is above −2 dB. On the other hand, the proposed method yields

performance degradation when the input SNR is low, as CS-based technique are known to suffer

when the input signals are highly noisy.

In the next example, we add D = 9 uncorrelated targets to the current scenario with L = 4

coherent targets. The uncorrelated atrgets are uniformly distributed between [−60◦, 60◦]. In this

case, the total number of targets becomes Q = D + L = 13. Because the MUSIC-SS fails to

function as Q is larger than the number of its resolvable targets, we only compare the results of

the proposed method and the Xu method. Fig. 5 shows similar results that the proposed method

yields a lower RMSE when the input SNR is higher than −6 dB.
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B. Sum coarray with missing positions

Coprime arrays generally yield missing coarray positions in the sum coarray. In this case, the

proposed method can utilize all the coarray sensors whereas the Xu method can only exploit the

contiguous coarray sensor positions. As such, it is expected that the proposed method provide

higher number of DOFs and enhanced DOA estimation performance.

As an example, we consider the coprime array with p = 1. The resulting sum coarray is shown

in Fig. 2(a), which contains 6 contiguous coarray sensors and 6 discontiguous ones. As such,

the maximum number of coherent targets the proposed method can resolve is L = 5. For the Xu

method, we can obtain a rank-3 Toeplitz matrix, resulting in a maximum number of 2 resolvable

coherent targets. The performances of the proposed method and the Xu method are compared

under the same scenario of the targets as considered in Fig. 5, where D = 9 uncorrelated and

L = 4 coherent targets are present.

For uncorrelated targets, both the proposed method and the Xu method use the MUSIC to

estimate the DOAs, and the corresponding MUSIC spectra are shown in Fig. 6(a). It is clear that

all Q = 9 uncorrelated targets are correctly identified. On the other hand, the DOA estimation

results of the coherent targets are compared in Fig. 6(b). It is clear that only the proposed method

resolves all L = 4 coherent targets, whereas the Xu method fails to provide their correct DOA

estimates because, as we discussed above, the number of coherent targets exceeds the maximum

number that the Xu method can resolve.

To compare the RMSE performance between the proposed method and the Xu method for the

sum coarray with missing positions, we choose L = 2 coherent targets with DOAs [42◦,−40◦]

so that both methods can resolve the targets. The results are compared in Fig. 7 with respect to

the input SNR. It is evident that, because of the higher number of DOFs utilized in the proposed

method, it achieves significant improvement over the Xu method for all the input SNR values

being evaluated.

C. Comparison between sum coarrays with and without missing positions

The last example is designed to compare the performance between different coprime MIMO

structures that respectively yield sum coarrays with and without missing coarray sensor positions.

We used the same MIMO array sensors with M = 4 and N = 3 as discussed in the previous

examples, where different values of interelement spacing compression factors, i.e., p = 1, p = 2,

and p = 4, are considered. As we can verify from Figs. 2(a)–2(b), all the three sum coarrays have
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12 coarray sensors, but the p = 1 case has a largest coarray aperture, whereas the p = 4 case

has uniform linear sum coarray. As such, when the proposed method is used, it can benefit from

the extended aperture for a small of value of p when estimating the DOAs of both uncorrelated

and coherent targets. On the other hand, the existence of missing coarray sensor positions may

result in high sidelobes and spurious spectrum estimates.

Assume that D = 2 uncorrelated targets are located at [0◦, 3◦], and L = 4 coherent targets are

located at [42◦,−40◦] and [−12◦,−10◦], respectively. In addition, the input SNR of all targets is

set to −3 dB. Fig. 8(a) compares the MUSIC spectra of the uncorrelated targets, where it is clear

that only the case of p = 1 can resolve the closely spaced uncorrelated targets. For the DOA

estimation of the coherent targets as shown in Fig. 8(b), the p = 4 case again fails to resolve the

two closely spaced targets at −12◦ and −10◦, whereas the p = 1 case shows spurious target at

−44◦. In this specific example, the p = 2 case resolves all the targets without spurious estimates.

V. CONCLUSIONS

We have examined the direction-of-arrival (DOA) estimation problem of both uncorrelated and

coherent targets in a multiple-input multiple-output (MIMO) platform by using a coprime pair of

uniform linear arrays, which yield a symmetric, but not necessarily uniform linear, sum coarray.

After applying the subspace-based approaches for uncorrelated targets, the DOA estimation for

coherent targets is achieved using the compressive sensing framework. In particular, the complex

multitask Bayesian compressive sensing approach is exploited due to its superior performance.

The use of compressive sensing methods eliminates the spatial smoothing procedure for signal

decorrelation and, subsequently, the requirement for uniform linear sum coarrays. Simulation

results verified that the proposed technique achieves superior performance with a flexible array

configuration.
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Fig. 1. A MIMO radar with a coprime pair ULA.
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Fig. 2. The coarrays of the MIMO radar with a generalized coprime pair of ULA for different values of compression factor p

(M = 4 and N = 3).
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Fig. 3. Estimated spatial spectrum using the MUSIC-SS, Xu and proposed techniques (p = 4 and Q = L = 4).
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Fig. 4. RMSE versus SNR using the MUSIC-SS, Xu and proposed techniques (p = 4 and Q = L = 4).
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Fig. 5. RMSE versus SNR using the Xu and proposed techniques (p = 4, Q = 13, D = 9, and L = 4).
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Fig. 6. Estimated spatial spectrum using the Xu and proposed techniques (p = 1, Q = 13, D = 9 and L = 4). (a) Uncorrelated

signals; (b) Coherent signals.
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Fig. 7. RMSE versus SNR using the Xu and proposed techniques (p = 1 and Q = L = 2).
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Fig. 8. Estimated spatial spectrum for the cases of p = 1, p = 2, and p = 4 (Q = 6, D = 2 and L = 4). (a) Uncorrelated

signals; (b) Coherent signals.


