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ABSTRACT

In this paper, we propose a Bayesian compressive sensing

algorithm for effective reconstruction of sparse signals that

demonstrate sparsity as continuous but irregular narrow strips

in a multi-dimensional space. Among many applications of

this class of representations are the two-dimensional time-

frequency distributions (TFDs) of radar signals, which are of-

ten modeled as frequency modulated (FM) signals character-

ized by their sparse and continuous instantaneous frequencies.

A spike-and-slab prior is introduced to statistically encourage

sparsity of the time-frequency representations (TFRs) across

each segmented time-frequency region, and a patterned prior

is imposed to enforce the continuous structure of the TFR.

Compared with the existing sparse signal reconstruction tech-

niques, the proposed technique achieves improved interpre-

tation of the TFD, particularly when the signals are noisy or

with missing samples.

Index Terms— Time-frequency analysis, Bayesian com-

pressive sensing, missing data sample, continuous structure,

sparse reconstruction

1. INTRODUCTION

Nonstationary signals, particularly those consisting of a

single- or multi-component waveforms with instantaneously

narrowband characterizations, arise in a wide class of active

and passive sensing modalities, such as radar, sonar, speech,

and electromyographic recording. Time-frequency represen-

tations (TFRs) enable separation of nonstationary signals that

are mixed in both time and frequency domains [1–6]. The

simplest and fastest quadratic TFR is the single and multiple-

window spectrograms which can be applied to a large class of

multi-component nonstationary signals, whereas the most ap-

propriate representation for linear FM signals is the Wigner-

Ville distribution (WVD). Due to the power concentrations

of nonstationary signals over the joint time-frequency (TF)

variables, the signatures of such signals, for most commonly

used TFRs, usually occupy sparse but continuous regions in

the TF domain [7–10]. For example, frequency-modulated

(FM) signals are characterized by continuous instantaneous

frequencies and, therefore, have a sparse presence in the TF

domain. As such, the recent compressive sensing (CS) and

sparse signal reconstruction techniques [11, 12] can be used

for effective TFRs. These reconstructions techniques are not

Fourier based and, as such, the resolution obtained does not

explicitly depend on the employed data segment length and

is not bounded by the Rayleigh limit. Attempts to enhance

resolution in the time-frequency domain have so far applied

the parametric approach in lieu of Fourier transform [13, 14].

In many real-world applications, nonstationary signals

are often observed with missing samples due to fading, ob-

struction, and/or impulsive noise [10]. Missing data samples

would yield spreading artifacts that are distributed in the

entire TF domain [8]. Unlike conventional sparse TFR recon-

struction techniques that are built upon the two-dimensional

(2-D) Fourier relationship between the TF domain and the

ambiguity function domain representations [15], the approach

proposed in [8] exploits the one-dimensional (1-D) Fourier

relationship between the TF domain and the instantaneous

auto-correlation function (IAF) domain and, as such, offers

two important advantages: (a) It significantly reduces the di-

mension of the dictionary matrix and, thereby, the complexity

of CS reconstructions; (b) It allows the flexible selection of

the CS reconstruction over specific time-domain entry and,

when using the orthogonal matching pursuit (OMP) [16] or

related algorithms, enables specification of the sparsity, i.e.,

the number of nonzero entries, in each time instant. By

separately processing the TFR reconstruction in each time

instant, however, this method does not utilize an important

information relevant to the continued structure of TF sig-

natures. As such, the approach may generate isolated or

sporadic entries in the reconstructed TFR in the presence of

missing data and/or measurement noise.

In this paper, inspired by the structure exploitation in the

CS techniques [17,18], a novel Bayesian CS (BCS) approach

is proposed for sparse nonstationary signal reconstruction

with missing data samples by exploiting the continuous struc-

ture of the TF signatures. As such, while it shares similarities

with the existing structure exploiting CS techniques, different

patterned priors are used in the proposed work. To facilitate

the 2-D continuous structures defined in the joint 2-D TF

domain, the IAF domain is divided into sections, each con-

sisting of multiple time-domain entries, so that the continuity

with neighboring pixels can be utilized to perform sparse TFR

reconstruction. The proposed approach not only preserves



the continuous structure of TF signatures, but also effectively

suppresses anomalies and isolated signature.

Notations. We use lower-case (upper-case) bold charac-

ters to denote vectors (matrices). Fx and F−1
x respectively

represent the discrete Fourier Transform (DFT) and inverse

DFT (IDFT) with respect to x. In particular, IN denotes

the N × N identity matrix. (·)T and (·)∗ respectively

denote the transpose and complex conjugates of a matrix or

vector, p(·) denotes the probability density function (pdf),

and CN (x|a, b) implies that random variable x follows a

complex Gaussian distribution with mean a and variance b.
Furthermore, δ(x) is the Dirac delta function of x, and ‘◦’

denotes element-wise (Hadamard) multiplication.

2. TIME-FREQUENCY REPRESENTATION WITH
MISSING DATA

2.1. Signal Model

Consider a discrete-time signal, x(t) with t ∈ [1, · · · , T ],
which may consist of a single or multiple components of FM

signals. Denote y(t) as its observation data with N missing

samples, where 0 ≤ N < T . The missing sample positions

are assumed to be randomly distributed over time. As such,

y(t) can be regarded as the product of x(t) and an observation

mask b(t), i.e.,

y(t) = x(t) · b(t), (1)

where

b(t) =

{
1, if t ∈ S,
0, if t /∈ S, (2)

with S ⊂ {1, · · · , T} is the set of observed time instants and

its cardinality is |S| = T −N .

2.2. Time-Frequency Representation

The discrete IAF of x(t) is defined as

Cxx(t, τ) = x(t+ τ)x∗(t− τ), (3)

with τ denoting the time-lag [1, 2, 8]. The IAF of observed

data y(t) can be expressed as

Cyy(t, τ) = Cxx(t, τ)Cbb(t, τ), (4)

where Cbb(t, τ) is the IAF of the observation mask b(t) [8].

The DFT of the IAF with respect to τ is the WVD, which

denotes the TF characteristics of the signal [1,2,8], expressed

as

Wxx(t, f) = Fτ [Cxx(t, τ)] =
∑
τ

Cxx(t, τ)e
−j4πfτ . (5)

Note that 4π is used in the DFT instead of 2π because the

actual time-lag in (3) is 2τ . Similarly, the WVD of the

observed data y(t) can be represented as,

Wyy(t, f) =
∑

τ∈Sτ (t)

Cyy(t, τ)e
−j4πfτ , (6)

where Sτ (t) is the set of nonzero τ entries for a specific t.
The missing data samples lead to spreading artifacts that are

randomly distributed in the entire TF domain [8]. According

to the analysis in [8], such effect can be mitigated through

a proper filter or kernel. One of the best choices for this

purpose is the adaptive optimal kernel (AOK) [19]. Sparsity-

aware adaptive kernels are also recently developed to better

deal with data including missing samples [20].

When the signals, such as FM signals, are sparsely

represented in the entire TF domain, their TFR can be recon-

structed using the CS technique. For notation convenience,

we denote c[t] as a vector that consists of all IAF entries along

the τ dimension corresponding to time t, and w[t] as a vector

contains all the TFR entries with respect to the frequency

for the same time t. According to the Fourier relationship

between the IAF and the TFR as in Eq. (6), we obtain

c[t] = Φw[t] + ε[t], t ∈ [1, . . . , T ], (7)

where Φ is a matrix for the IDFT operation with respect to f .

It should be noted that w[t] is a smoothed version of the IAF

when a proper kernel is applied.

3. CONTINUOUS STRUCTURE BAYESIAN
COMPRESSIVE SENSING

A number of inversion algorithms, such as the orthogonal

matching pursuit (OMP) [16], basis pursuit [21], and sparse

Bayesian learning [22–25], can be used to perform TFR

reconstruction. In [8], the OMP algorithm is used to effec-

tively recover the sparse TFR by specifying the number of

nonzero entries in each time instant. To exploit the continuous

structure of the TFR, however, the BCS-based approaches

are considered most capable and convenient due to their

flexibility of employing proper priors for this purpose. In

the following, we develop a new BCS-based approach for

the reconstruction of sparse TFR signatures by exploiting the

continuous TFR structure based on a block of IAF results

occupying multiple neighboring time instants.

To encourage sparsity of the TF signatures, we place a

spike-and-slab prior to w [26], i.e.,

p
(
w

[t]
l

∣∣∣π[t]
l , β

[t]
0

)
=
(
1− π

[t]
l

)
δ
(
w

[t]
l

)
+ π

[t]
l CN

(
w

[t]
l

∣∣∣0, [β[t]
0 ]−1

)
, (8)

where l ∈ [1, . . . , T ] is the frequency domain index. In

addition, π
[t]
l is the prior probability of a nonzero element, and

β
[t]
0 is the precision (reciprocal of variance) of the complex

Gaussian distribution.



To make the inference analytical, we introduce the prod-

uct of two latent variable w
[t]
l = z

[t]
l θ

[t]
l to follow the pdf in

Eq. (8), where θ
[t]
l follows a complex Gaussian distribution

CN
(
θ
[t]
l

∣∣∣0, [β[t]
0 ]−1

)
and z

[t]
l follows the Bernoulli distri-

bution Bern(π
[t]
l ). z

[t]
l is a binary variable with z

[t]
l = 0

corresponding to zero value for the lth entry in the time t.

To acquire the tractable posterior of β
[t]
0 , we place a Gamma

prior, which is conjugate to the Gaussian distribution, on

β
[t]
0 , i.e., β

[t]
0 ∼ Gamma(a, b). Without loss of generality,

a complex Gaussian prior is placed on the additive noise as

ε
[t]
k ∼ CN (0, α−1) with k ∈ 1, . . . ,K. In the similar way, we

place a Gamma prior on α to acquire an analytical posterior

distribution, i.e., α ∼ Gamma(a0, b0).

To encourage continuity in the joint TF domain, we utilize

data in the neighborhood time instants between t − D and

t + D, when the TF signatures in the time instant t are

estimated. For simplicity, D = 1 is assumed throughout

this paper. Based on the idea of continuity, we categorize the

relationship into three different patterns, termed as Pattern
1 (“strong rejection”), Pattern 2 (“strong acceptance”), and

Pattern 3 (“weak rejection”), respectively. As shown in Fig. 1,

we define two variables κ
[t]
l =

∑
z̃tl with z̃tl = [z̃1, · · · , z̃6]

and η
[t]
l =

∑3
i=1 z̃iz̃7−i, which respectively represent the

number of nonzero neighboring entries and the number of

nonzero diagonal pairs.

The three patterns are detailed below. Note that the

patterns we used herein differs from those used in [17, 18] in

two aspects. First, only the number of nonzero neighboring

entries is used in [17, 18] in determining the prior, whereas

the diagonal pair is considered more important in this paper.

Second, a large prior is placed in [17, 18] when the number

of the nonzero neighboring entries is high, whereas in our

approach the case with only one pair of the nonzero diagonal

entries is most favorable. Note that the vertical pixel pair

is excluded in Fig. 1 because these pixels tend to broad

the signal bandwidth whereas the underlying FM signals are

instantaneously narrowband.

Pattern 1 includes two cases of κ
[t]
l = 0 or η

[t]
l = 3,

as shown in Fig. 1(a). In κ
[t]
l = 0 case, all of neighbors

are zero valued, and thus the lth entry would be zero valued

with a high probability. By placing a low value of prior in

this case, isolated signatures can be effectively suppress. In

η
[t]
l = 3 case, all the neighbors are nonzero valued. This

was the favorable situation in [17, 18] when an extended

target is considered, but we consider the lth entry to take

a zero valued with a high probability because the TFR is

instantaneously narrowband. Therefore, this strong rejection

pattern not only suppresses those isolated signatures, but

also effectively prevents the nonzero entries to be broadly

extended in frequency domain. In these cases, e0 < f0 is

assumed in prior Beta(e0,f0) to encourage a small value of
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Fig. 1. Three pattern for 2-D image. White squares denote

entries with zeros amplitudes, blue shaded squares denote the

entry with nonzero amplitudes, and red shaded squares denote

the entry under test. (a) Pattern 1: strong rejection; (b) Pattern

2: examples for weak rejection with κ
[t]
l = 1 case; (c) Pattern

3: examples for strong acceptance with η
[t]
l = 1 case.

π
[t]
l so as to reject this entry.

Pattern 2 includes those cases of κ
[t]
l > 0 or η

[t]
l �= 1.

Fig. 1(b) shows one of the examples with a single nonzero

neighboring entry. In these cases, the probability that the lth
entry takes zero values is fair, and e1 = f1 is used in the prior

Beta(e1,f1) to exert non-informative prior on π
[t]
l .

Pattern 3 consists of those cases with η
[t]
l = 1. Fig.

1(c) show two examples of such cases. We confidently

believe that the lth entry would take a nonzero value with a

high probability when nonzero neighboring entries have such

continuous and symmetric structure in the 2-D TF domain

as instantaneously narrowband FM signals are concerned. In

this case, e2 > f2 in the prior Beta(e2,f2) is assumed to

encourage a large value of π
[t]
i to accept this entry.

4. BAYESIAN INFERENCE

We adopt a Gibbs sampler to carry out the Bayesian inference

of the proposed algorithm. The posterior distributions of each

random variable will be analytically obtained based on the

conjugate property.

4.1. Updating paired variables {θ[t], z[t]}
The paired Gibbs sampler iteratively samples from the fol-

lowing conditional pdf,

p
(
z
[t]
l , θ

[t]
l

∣∣∣θ[t]
\l , z

[t]
\l , c

[t]
)
=p
(
θ
[t]
l

∣∣∣z[t]l ,θ
[t]
\l , z

[t]
\l , c

[t]
)

×p
(
z
[t]
l

∣∣∣θ[t]
\l , z

[t]
\l , c

[t]
)
, (9)

where θ
[t]
\l and z

[t]
\l respectively denote θ

[t]
l except the variable

θ
[t]
l and z[t] except the variable z

[t]
l .



The probability p
(
z
[t]
l = 1

∣∣∣θ[t]
\l , z

[t]
\l , c

[t]
)

is acquired an-

alytically as [26]

p
(
z
[t]
l = 1

∣∣∣θ[t]
\l , z

[t]
\l , c

[t]
)
=

β
[t]
l

1− β
[t]
l

CN
(
0, [β

[t]
l ]−1

)
CN

(
u
[t]
l , σ

[t]
l

) ,

(10)

where u is derived as

u
[t]
l = [σ

[t]
l ]−1αφH

l c
[t]
\l , (11)

σ
[t]
l =

(
αφH

l φl + β
[t]
l

)−1

, (12)

c
[t]
\l = c[t]−∑k �=l φlz

[t]
k θ

[t]
k , and φl represents the lth column

of the measurement matrix Φ. The conditional distribution of

p(θ
[t]
l |z[t]l = 1,θ

[t]
\l , z

[t]
\l , c

[t]) can be expressed as

p
(
θ
[t]
l

∣∣∣z[t]l = 1,θ
[t]
\l , z

[t]
\l , c

[t]
)
= CN

(
θ
[t]
l

∣∣∣u[t]
l , σ

[t]
l

)
.

(13)

For z
[t]
l = 0, because the value of θ

[t]
l does not affect the result

of w
[t]
l , we conveniently draw the value of variable θ

[t]
l from

its prior.

4.2. Updating mixing weight π[t]

Each element π
[t]
l is chosen according to its corresponding

sparsity pattern, i.e., π
[t]
l is assigned as π

[t]
ql for sparsity pattern

q ∈ {0, 1, 2}. The Beta distribution on π
[t]
ql leads to an

analytical posterior distribution for a certain sparsity pattern

q as [17],

p
(
π
[t]
ql

∣∣∣e, f , z[t]) = Beta(ẽq, f̃q), (14)

where ẽq = eq + κl + z
[t]
l , f̃q = fq + νl + 1− κl − z

[t]
l with

l ∈ {1, · · · , T}, and νl is the length of z
[t]
ηl .

4.3. Updating signal precision β[t]

By utilizing the conjugate property of the Gaussian and

Gamma distributions, we analytically acquire the posterior

distribution of the precision variable β
[t]
l as

p(β
[t]
l |a, b,θ[t]) = Gamma

(
a+

1

2
, b+

‖θ[t]l ‖2
2

)
. (15)

4.4. Updating noise precision α

In the similar manner with βi, we also obtain the posterior

distribution of noise precision αl

p(α|c, d, c[t],Φ,θ[t], z[t])=Gamma(ã0, b̃0), (16)

where ã0 = a0 +K/2, and b̃0 = ‖c[t] −Φ(θ[t] ◦ z[t])‖2/2.

5. SIMULATION RESULTS

Two simulation examples are provided in this section. In

the first example, a two-component FM signal are used. The

instantaneous phases of the two components are respectively

expressed as,

φ1(t) = 0.05t1 + 0.1t21/T + 0.1t31/T
2, (17)

φ2(t) = 0.15t2 + 0.1t22/T + 0.1t32/T
2, (18)

where t1 ∈ [1, . . . , 3T/4], t2 ∈ [T/4 + 1, . . . , T ], and T is

chosen to be 128. The powers of these two FM components

are the same and the input signal-to-noise ratio (SNR) of each

component is 10 dB. Fig. 2(a) shows the real-part waveform

with 50% randomly missing samples, and their corresponding

WVD and IAF are shown in Figs. 2(b) and 2(c). We have

also included the ambiguity function (AF) in Fig. 2(d) for

reference. Consider the fact that the IAF is a product of the

original IAF and the IAF of the mask function that nullifies

its presence in a large amount of entries, as shown in Fig.

2(b), it would lead to spreading artifacts which are randomly

distributed in both the TF and AF domains, as shown in Figs.

2(c) and 2(d).
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Fig. 2. Waveform and transformed domain representations of a

two-component FM signal with 50% of missing samples (example

1).

The time-frequency distribution (TFD) obtained from the

AOK is shown in Fig. 3(a) for the missing samples. It is

evident that the AOK significantly mitigates the missing data

artifacts and cross-terms between the two components, while

preserving the auto-term characteristics. The resulting TFD

shows a clear auto-term characteristics, even with the 50%

of missing samples. Similar with the approach proposed
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Fig. 3. TFD results obtained from different methods (example 1).
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Fig. 4. TFD results obtained from different methods (example 2).

in [8], we acquire the TFD by individually performing the

OMP algorithm in each time instant assuming a sparsity of

2, and the results are shown in Fig. 3(c). The auto-term

signatures are generally reconstructed, but it is observed that

the reconstructed TF signatures are discontinuous, and there

are some noticeable spurious entries when t > 3T/4 for the

signal in Eq. (17) and t < T/4 for signal in Eq. (18), where

the true sparsity is 1. By utilizing the same strategy with [8]

that separately performs the CS technique in each time, but

utilizes the BCS algorithm [22] rather than the OMP, Fig.

3(d) shows the reconstructed result with a few isolated and

sporadic TF signatures. Unlike the strategy used in the previ-

ous two simulations that take advantage of the local sparsity

of TF signatures, we present the results of both OMP and

BCS algorithms that use the global sparsity in the entire TF

domain, and the results are respectively shown in Fig. 3(e) and

3(f). It is evident that the strategy with the local sparsity has

the potential of capturing the TF characteristics and has better

performance than that with the global sparsity, particularly

when the missing samples are present, because both OMP

and BCS would select those signatures with strong powers in

the entire TF domain. By enforcing the patterned prior for

the structure exploiting Bayesian framework, the proposed

algorithm acquires the reconstructed result, as shown in

Fig. 3(b). It is clear that the reconstructed TF signatures

depicts a continuous structure with isolated or sporadic entries

effectively suppressed. The proposed algorithm also has the

capability of automatically inferring the sparsity and correctly

recovering those signatures.

The second example considers two FM signals whose

instantaneous frequencies intersect in the TF domain. The in-

stantaneous phases of the two FM components are expressed

as

φ1(t) = 0.15t+ 0.05t2/T + 0.1t3/3T 2, (19)

φ2(t) = 0.3t− 0.1t2/T + 0.1t3/3T 2, (20)

for t ∈ [1, T ]. Similar to the first example, the input SNR is 10

dB, and 50% samples are missing. The observed waveform

is shown in Fig. 4(a), and the corresponding WVD is shown

in Fig. 4(b), which is cluttered by the cross-terms as well as

the artifacts due to missing data samples. The TFD obtained

from the AOK is shown in Fig. 4(c) with significant reduction

of the cross-terms and artifacts. The proposed algorithm is

used to achieve sparse reconstruction from the kerneled TFD,

and the result is shown in Fig. 4(d). It is observed that

reconstructed TFD is continuous along time domain through

placing the patterned prior to encourage horizontal continuity.

While there is some discontinuity around the intersection due

to the discouraged pattern, the results are much better than

the reconstructed results obtained from the OMP and BCS

algorithms, as respectively shown in Figs. 4(e) and 4(f). The

latter results show noticeable discontinuity and speckles in

other regions.



6. CONCLUSION

Compressive sensing (CS) based time-frequency (TF) sig-

nature reconstruction exploits the sparsity of nonstationary

signals when they are represented in the TF domain. Con-

ventional CS-based approaches, whether the respective linear

models involve the ambiguity function or the instantaneous

autocorrelation function, do not utilize the continuous struc-

ture of the TF signatures. In this paper, a novel approach

for sparse nonstationary signal reconstruction was introduced

by exploiting the continuous structure of the TF signatures.

A patterned prior was used to encourage the structure under-

lying continuity. It was shown that the proposed technique

yields improved performance in the presence of missing data

samples due to its capability of preserving the TF signature

continuity, discarding anomalies, and effectively suppressing

sporadic entries.
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