
Multistatic Radar Imaging via Decentralized and 
Collaborative Subspace Pursuit 

Gang Li 
EE Department  

Tsinghua University 
Beijing, China 

gangli79.ee@gmail.com   

Pramod K. Varshney 
EECS Department  

Syracuse University 
Syracuse, NY, United States 

varshney@syr.edu  

Yimin D. Zhang 
Center for Advanced Communications  

Villanova University 
Villanova, PA, United States 
yimin.zhang@villanova.edu  

Abstract— The task of multistatic radar imaging can be 
converted to the problem of jointly sparse signal recovery. In this 
paper, the algorithm named decentralized and collaborative 
subspace pursuit (DCSP) is utilized in multistatic radar systems 
to obtain a high-resolution image. By embedding collaboration 
among radar nodes and fusion strategy into each iteration of the 
standard subspace pursuit (SP) algorithm, DCSP is capable of 
providing satisfactory image even if some radar nodes suffer 
from relatively low signal-to-noise ratios (SNRs). Compared to 
the existing algorithms based on linear programming, DCSP has 
much lower computational complexity at the cost of increased 
communication overhead in the radar network.  

Keywords—Multistatic radar imaging; compressive sensing; 
subspace pursuit.  

I. INTRODUCTION 

A multistatic radar with spatially dispersed transmitters and 
receivers contains multiple diverse monostatic radar and 
bistatic radar components with a common area of coverage. 
Compared to conventional monostatic radar with a co-located 
pair of transmitter and receiver, multistatic radars offer 
advantages in terms of spatial diversity and robustness to 
jamming. Examples of practical multistatic radar systems 
include the TechSAT 21 constellation [1], the Interferometric 
Cartwheel [2], and the multistatic ground-penetrating radar [3].  

In this paper, we consider the task of multistatic radar 
imaging. The traditional algorithms of multistatic radar 
imaging are based on coherent processing of all receiver 
outputs [4][5]. The spatial diversity of multistatic radar 
increases the equivalent aperture and, therefore, the coherent 
processing of data acquired by a multistatic radar yields high 
imaging resolution and improves the signal-to-noise ratio 
(SNR). However, the multistatic configuration leads to 
different range-Doppler histories of the same target for each 
transmitter-receiver pair [6]. This causes the difficulty of 
coherent processing of multistatic radar data. In addition, 
coherent processing also requires a stable phase between the 
oscillators within the observation period [6]. Furthermore, 
when the aspect angles of the multiple radar nodes are 

significantly different, the data acquired at all the receivers 
cannot be coherently accumulated due to the angle-dependent 
scattering characteristics of the targets.  

Recently, compressive sensing (CS) theory has been  
applied to radar imaging [7][8], since many radar imaging tasks 
can be posed as finding sparse solutions to underdetermined 
linear problems. In particular, the applications of CS in 
multistatic radar are introduced in [9]-[11]. The most attractive 
characteristic of CS in multistatic radar imaging applications is 
that a high-resolution image can be obtained without the 
requirement of coherent processing. Moreover, the benefits 
provided by CS-based imaging are more pronounced in some 
scenarios where the number of measurements is limited due to 
practical constraints. Most of the existing algorithms of 
multistatic radar imaging are based on linear programming (LP) 
and iterative Bayesian inference [9]-[11] and, therefore, 
computationally expensive.  

In this paper, we utilize a greedy algorithm, decentralized
and collaborative subspace pursuit (DCSP), to achieve high-
resolution imaging with a multistatic radar. In [12], DCSP was 
proposed for joint sparsity pattern recovery with Gaussian 
random dictionary matrices. In this paper, we evaluate the 
performance of DCSP with space-time Fourier dictionary 
matrices and applied it to multistatic radar imaging. One 
strength of DCSP is that the collaboration among radar nodes 
at each iteration ensures the consistency of the sparse structures 
of all local images. This is useful to remove artifacts from the 
fusion result of all the local images. Experimental evaluations 
show that, compared to the LP-based algorithm and the 
standard subspace pursuit (SP) algorithm with no collaboration 
[13], our approach can improve the image quality with much 
lower computational complexity. This benefit comes at the cost 
of increased communication overhead in the radar network.  

II. SIGNAL MODEL 

The two-dimensional geometry of a multistatic radar 
system is demonstrated in Fig. 1(a). Assume that the multistatic 
radar system is composed of Q monostatic radar nodes that 
work at different frequency bands. Bistatic components are not 
considered here. The common area of coverage is discretized to 
M N cells (pixels), and all the monostatic radar nodes follow 
the same rule of discretization. The center of the observed area 
is taken as the coordinate origin. There are K cells with 
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Fig. 1 Geometry of multistatic radar: (a) the radar network; 
(b) the q-th radar node. 

dominant reflectivity in the observed region, where K MN. It 
should be pointed out that, K may be slightly larger than the 
number of actual targets, because some targets may occupy 
multiple discretized cells of the observed area. Each radar node 
is equipped with an antenna array composed of L elements 
along cross-range direction. Arrange the array elements at each 
radar node so that the center of the observed region is located 
along the normal of the array 1 . The antenna array can be 
replaced with a synthetic aperture generated by motion of the 
radar platform along the cross-range direction, which refers to 
the concept of multistatic synthetic aperture radar (SAR) 
[6][9][11]. All the radar nodes collaborate to obtain the high-
quality image by sharing the local processing results with each 
other.   

Assume that the step-frequency waveform is used at every 
radar node. At the q-th radar node, the baseband echo reflected 
from the cell  (xm, yn) can be expressed as  

, , , , , , , , ,
4( , ) exp ( ) sinq q m n c q q m n c q q l q m ny p l j f p f r f d
c

,(1) 

where p ( 1 p P ) and l ( 1 l L ) denote the temporal 
sample index and spatial sample index, respectively, q,m,n is 
the complex reflectivity of the cell (xm, yn),  fc,q is the carrier 
frequency of the q-th radar, c is the wave propagation speed, 
dq,l is the spacing between the transmitter antenna and the l-th
receiver, f is the frequency step size, rq,m,n=[(xq–xm)2+(yq–
yn)2]1/2 is the distance between the q-th radar node and the cell  
(xm, yn), - q,m,n is steering angle of the cell (xm, yn)
with respect to the normal of the array. 

The received signal at the q-th radar node can be considered 
as the sum of echoes reflected from all the cells. In the 
presence of the receiver noise, (1) can be rewritten as  

q q q qy A x e ,                                  (2) 

where 1PL
qe  is the additive Gaussian white noise ,  
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qA  is the space-time Fourier dictionary matrix and  

its element can be expressed as  
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When the sampling scheme and the discretization rule are 
given, the dictionary matrix Aq can be pre-established. The 
following observations are in order: 1) xq has only K nonzero 
entries, since there are K cells with dominant reflectivity in the 
observed region; 2) {xq, q=1, 2, , Q} have the same sparsity 
pattern, since all the radar nodes follow the same strategy of 

                                                           
1 It is noted that enforcing the center of the observed region to be located 
along the normal of each array is not a necessary requirement. This 
assumption is made in this paper solely for the convenience of formulation.  

discretization of the observed area, and 3) the nonzero 
scattering coefficients xq vary with the radar node index q due 
to the variety of aspect angles and radar carrier frequencies. 
Thus, the task of multistatic radar imaging is converted to the 
problem of jointly sparse signal recovery. Define the common 
support set as T ={i: xq(i) 0, i =1, 2, , MN}. Once the 
support set T is determined, the reflectivity {xq, q=1, 2, , Q}
can be easily obtained by least squares estimation.  

III. DCSP FOR MULTISTATIC RADAR IMAGING 

In this section, we utilize the DCSP algorithm to achieve 
multistatic radar imaging. The DCSP algorithm is summarized 
in Algorithm 1. Some notations in Algorithm 1 are defined as 
follows.   

1proj( , ) [ ]H Hy A A A A y calculates the projection coef-
ficients of a vector y onto the column space of matrix A.
Conjugate transpose is denoted by (·)H.

1resid( , ) [ ]H Hy A y A A A A y  outputs the projection 
residual vector.  

max_ind(y, K)={K indices corresponding to the largest 
magnitude entries in vector y}.  

A(T) denotes a sub-matrix composed of the columns of A
indexed by the set T. 

y(T) denotes a sub-vector composed of the entries of y
indexed by the set T. 

The basic idea of DCSP is to embed collaboration among 
radar nodes into each iteration of the standard SP algorithm. 
There are two major steps in DCSP: local estimation and fusion. 
In the local estimation phase, each radar node finds the 
subspace that the local received signal most probably lies in, as 



done in Steps 1 and 4. The vectors { , 1,2, , }v
q q Q  record 

all the local estimates of the support set at the v-th iteration, 
and they are broadcast to the entire radar network. Fusion of all 
the local estimates of the support set is carried out by majority 
vote, as done in Steps 3 and 6. When the global recovery error 
reaches the minimum, iterations at all the radar nodes are 
terminated, and the fused image is obtained by averaging of all 
the local images, as done in Step 8.  

————————————————————— 
Algorithm 1 The DCSP algorithm  
Input: K, yq , Aq at the q-th radar node .
Initialization:  

1) Let 0
q =max_ind( H

q qA y , K). Define an MN 1

binary vector 0
q  as 

0
0 1,     if ,
( )

0,   otherwise.
q

q
i

i

2) Send 0
q  to and receive 0

j  from the j-th radar node, for 
all j {1,2, , Q}\{q}.

3) Let 0 0
1

Q
qq

. Find 0T = max_ind( 0 , K) Set the 

residual 0
qr = resid(yq, Aq( 0T )).

Iteration: at the v-th iteration (v 1)
4) Let 1v v
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( proj( , ( ))v
q q qTy A , K). Define an MN 1 binary  vector 

v
q  by 

1,     if ,
( )

0,   otherwise.

v
v q
q

i
i

5) Send v
q  to and receive v

j  from the j-th radar node, for 
all j {1,2, , Q}\{q}.   

6) Let
1

Qv v
qq

. Find vT = max_ind( v , K) Update 

the residual v
qr = resid(yq, Aq( vT )). 

7) Send
2

2

v
qr  to and receive 

2

2

v
jr  from the j-th radar node, 

for all j {1,2, , Q}\{q}.

8) If 
2 21

1 12 2

Q Qv v
q qq q

r r , let vT = 1vT  and stop the 

iteration. Define an MN 1 vector ˆ qx by  

ˆ ( ) | proj( , ( )) |,

ˆ ( ) 0  ( );
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q q q

v
q

T T

i i T
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x
Otherwise, let v=v+1 and return to Step 4.  

Output: The local imaging results ˆ{ , 1,2, , }q q Qx and the 

fused image 
1

ˆ ˆ /Q
qq

Qx x .
————————————————————— 

It should be pointed out that, the sparsity of the signal, K,
needs to be pre-estimated, since it is used as an input parameter 
of DCSP. One way to roughly estimate K is first employing 
Fourier-based imaging algorithms at a radar node and then 
broadcasting the estimated number of dominant targets to other 

radar nodes. An alternative approach is to set ˆ / 2K PL , i.e., 
half the number of measurements per radar node, which is 
large enough for DCSP to image all the dominant cells in most 
sparsity-driven imaging applications yet to ensure the image 
reconstructability.

IV. EXPERIMENTAL RESULTS 

In this section, we evaluate our approach via numerical 
experiments. The observed region is discretized as 30 30 
cells (i.e., M=N=30) with cell size of 1m. Assume that there 
are K=11 cells with dominant reflectivity in the observed 
region. The multistatic radar system is composed of 4 
monostatic radar nodes that have the same bandwidth 10MHz 
but different carrier frequencies 5GHz, 5.2GHz, 5.4GHz and 
5.6GHz. The SNRs at these radar nodes are 7dB, 3dB, 0dB and 
-3dB, respectively, where 

2 2

2
SNR / ( )q q q PLA x  and 2 is

the variance of the noise. The aspect angles of these radar 
nodes are –45°, 0°, 20° and 45°, respectively, leading to 
distinct entries of xq for q=1, 2, , Q. The fusion result of all 
the local scattering coefficients is considered as the ideal image, 
i.e.,

1
/Q

ideal qq
Qx x , which is shown in Fig. 2(a). With 81 

measurement samples (P=9 temporal samples and L=9 spatial 
samples) per radar node, the images provided by the LP 
algorithm, the standard SP algorithm with no collaboration, and 
the DCSP algorithm are shown in Figs. 2(b), 2(c), and 2(d), 
respectively. Images shown in Figs. 2(b), 2(c), and 2(d) are 
obtained by fusing all the local images and averaging over 10 
trials, i.e., 10

,trialtrial 1 1
ˆ ˆ / (10 )Q

qq
Qx x . In each trial, the 

temporal and spatial samples per radar node are randomly and 
independently generated, which means that Aq  varies with the 
radar index q and the trial index. For the LP algorithm, each 
radar node independently solves for the local image via L1
norm minimization, and then all the local images are fused to 
obtain the final imaging result. Such a framework is similar to 
that in [14]. For the standard SP algorithm, the local images are 
independently obtained via SP and then fused. In both 
algorithms, there is no collaboration among radar nodes before 
the solution processes at all the radar nodes are completed. 
Accordingly, errors of local images obtained at some nodes 
with low SNRs affect the quality of the fused image. As seen in 
Figs. 2(b) and 2(c), the images formed by these two algorithms 
suffer from some artifacts. Different from the above two 
algorithms, in DCSP we embed the collaboration among radar 
nodes into the iterative solution process. This corrects the local 
reconstruction errors of at each iteration and avoids error 
accumulation in subsequent iterations. As shown in Fig. 2(d), 
the DCSP well retrieves the scattering coefficients of the 
observed region without artifacts.  

Next, we compare different algorithms in terms of the 
computational complexity per radar node. The complexity of 
the LP algorithm based on interior point method is 
O[(PL)2(MN)1.5] [13]. The standard SP algorithm requires O(K)
iterations, and the complexity of each iteration is 
O[PL(MN+K2)]. Thus, the complexity of the standard SP 
algorithm is O[KPL(MN+K2)]. As stated in [12], thanks to the 
collaboration among nodes per iteration, the number of 
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Fig. 2 Fused images. (a) True scattering coefficients, (b) Image obtained by linear programming, (c) Image obtained by the 
standard SP algorithm, (d) Image obtained by DCSP.  

iterations of DCSP is O(K). Moreover, the procedure at each 
iteration of DCSP is similar to that of SP. Therefore, the 
computational complexity of DCSP is also O[KPL(MN+K2)]. 
The running times of the above three algorithms are estimated 
by averaging over 50 trials and listed in Table 1, which shows 
the computational efficiency of DCSP. All the results in Table 
1 are obtained by using MATLAB R2011b with 64-bit 
operating system on a laptop with an Intel(R) Core(TM) i7-
4600U CPU@2.10 GHz.  

Table 1 Running times of different algorithms 

Algorithm LP SP DCSP

Running time (sec) 2.39 0.04 0.06

The above experiments show that, compared to the LP-
based algorithm and the standard SP algorithm with no 
collaboration, the approach proposed in this paper can improve 
image quality with much lower computational complexity. It 
should be emphasized that this benefit comes at the cost of 
increased communication overhead in the radar network. The 

communication overhead can be considered proportional to the 
number of messages to be transmitted from all the radar nodes. 
For the LP-based algorithm and the standard SP algorithm with 
no collaboration, each one of the Q radar nodes independently 
solves for the local MN 1 image and then broadcasts to the 
entire radar network. Thus, the communication overhead of 
these two algorithms is MNQ. At each iteration of DCSP, each 
radar node needs to share the MN 1 vector v

q and the local 

recovery error 
2

2

v
qr  with others in the network, as described in 

Steps 1, 4 and 8 in Algorithm 1. As stated above, the number of 
iterations of DCSP is O(K). Thus, the communication overhead 
of DCSP is O(K)(MN+1)Q, which is O(K) times of that of  the 
LP-based algorithm and the standard SP algorithm with no 
collaboration.   

V. CONCLUSION 

The task of multistatic radar imaging can be converted to 
the problem of jointly sparse signal recovery. From this 



observation, in this paper we modified an algorithm named 
DCSP for multistatic radar imaging. The basic idea of DCSP is 
to embed collaboration among radar nodes and fusion strategy 
into each iteration of the standard SP algorithm. The 
collaboration among radar nodes at each iteration of DCSP 
ensures the consistency of all the local estimates of the support 
set and, therefore, corrects the local image errors at those nodes 
with low SNRs. Compared to the LP-based algorithm and the 
standard SP algorithm with no collaboration, DCSP avoids the 
occurrence of artifacts and, therefore, improves the image 
quality. The computational complexity of DCSP is comparable 
with that of SP and much lower than that of LP-based 
algorithm. The improvement of the performance of DCSP 
comes from the cost of increased communication overhead in 
the radar network. Future work includes convergence analysis 
and extension to the case of extended targets.  
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