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ABSTRACT
In this paper, we develop a new algorithm for motion parame-

ter estimation of moving targets in a multistatic passive radar.

Existing methods for motion parameter estimation rely on the

estimated Doppler signatures of the observed signals corre-

sponding to each transmitter. These techniques may fail for

weak signals where the individual Doppler signature cannot

be properly estimated. The focus of this paper is on motion

parameter estimation from weak signals observed using mul-

tiple illuminators. Utilizing the sparsity of the motion param-

eters, the proposed technique obtains robust motion parame-

ter estimates through the fusion of the data corresponding to

all available illuminators, achieving signal enhancement and

multistatic diversity. To reduce the computational cost, the

acceleration and velocity parameters are decoupled and se-

quentially estimated.

Index Terms— multistatic passive radar, target tracking,

motion parameter estimation, compressive sensing

1. INTRODUCTION

Multistatic passive radar (MPR) systems use existing broad-

cast or communication infrastructures, such as FM radio, dig-

ital television (e.g., DVB-T), digital radio (e.g., DAB), and

cellular telephony, as the illuminators of opportunity [1, 2].

These sources form a non-cooperative group of transmitters

that illuminate targets under contention. Detection and track-

ing of moving targets, based on the echo signals received at

single or multiple receiver locations, has emerged as an area

of interest (e.g., [3, 4]). The increasing interests towards pas-

sive radars can be attributed to the fact that they offer distinct

advantages over conventional active radar systems, primarily

in terms of their low cost and covertness. Passive radars also

prevent exacerbating the problem of spectral congestion be-

cause they do not emit any radio signals.

Motion parameter estimation of ground targets has been

extensively studied, particularly for conventional radar plat-

forms. Extensive literature is available in the field of signal
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processing for motion parameter estimation, including time-

frequency analysis, motion compensation, and range migra-

tion compensation (e.g., [5, 6]). On the other hand, MPR

is less studied and there are several open challenges, specifi-

cally for motion parameter estimation. Unlike conventional

radar systems which operate in a monostatic mode with a

wide bandwidth and a high power, MPR systems are charac-

terized by an extremely narrow signal bandwidth, low signal

power, bistatic operation, and the availability of multiple il-

luminators. In the context of target detection and tracking,

including motion parameter estimation, MPR systems offer a

unique platform to effectively fuse the observed data corre-

sponding to different illuminators so that robustness can be

achieved in weak signal environments [7].

Because of the narrow signal bandwidth, MPR systems

generally have a poor bistatic range resolution. As such, a

longer coherent processing time (CPI) should be exploited in

MPR as compared to the conventional radar systems. Moder-

ate CPI can be achieved even when no compensation to range

migration is applied [8]. This allows motion parameter esti-

mation for both target velocity and acceleration.

In [8], motion parameter estimation is considered for

ground moving targets, where the receiver is a moving aerial

vehicle. Parameter estimation is achieved by exploiting the

Doppler signatures, which are characterized as chirp wave-

forms, estimated in each bistatic link. The target motion

parameters are estimated through a mapping of the chirp pa-

rameters, which are estimated using time-frequency analyses,

corresponding to multiple illuminators. This method is ef-

fective when the signal power is sufficiently high to allow

individual chirp parameter estimation of each bistatic path.

However, when the signals are very noisy, the chirp param-

eters cannot be reliably estimated, rendering this approach

ineffective.

In this paper, we focus on weak signal conditions. The

received signals corresponding to all available illuminators

are used to determine the motion parameters. Because of

the sparsity of the motion parameters, this problem can be

solved using sparsity-based signal reconstructions (i.e., maxi-

mum likelihood search or the l1-norm signal reconstructions).

However, the four dimensions of the velocity and acceleration



may cast this approach as prohibitively complex. As such, we

propose an alternative technique that estimates the accelera-

tion and velocity sequentially. First, we estimate target accel-

eration by fusing all the signal observations mapped into the

ambiguity function of the respective Doppler signatures and

then detect the combined peaks. The estimate of the accelera-

tion is then utilized to determine the target velocity. With the

reduced dimensions from four (two acceleration components

and two velocity components) to two (two velocity compo-

nents only), the parameter estimation problem becomes much

more feasible to solve. As an example, we use a sparse signal

recovery technique by constructing a dictionary matrix whose

columns represent received signal vectors for a range of target

velocities with the estimated target acceleration.

The following notations are used in this paper. A lower

(upper) case bold letter denotes a vector (matrix). (.)∗ and

(.)T respectively denote complex conjugation and transpose

operations. ‖ · ‖1 and ‖ · ‖2 respectively denote the l1 and l2
norm of a vector.

2. SIGNAL MODEL

We consider a standard MPR system with N broadcast sta-

tions located at t(i), i = 1, ..., N . The locations of these

stations are stationary and precisely known. It is assumed

that the broadcast stations use orthogonal waveforms, e.g., by

the virtue of having nonoverlapping frequency spectra, which

are respectively centered at f (i), i = 1, ..., N . An airborne re-

ceiver is assumed to be moving at a constant velocity vr along

the x-axis. As such, the trajectory of the receiver at time t is

expressed as

r(t) = r0 + vrt, (1)

where r0 is the initial position of the receiver. On the other

hand, the trajectory of the moving target is defined as

p(t) = p0 + vt+
1

2
at2, (2)

where p0, v, and a are, respectively, the initial target position,

initial velocity, and acceleration vectors. All these parameters

are defined in three-dimensional (3-D) cartesian coordinate

system. Because only ground targets are considered, the z-

axis components of p0, v, and a are assumed to be 0.

The direct range between the ith illuminator and the re-

ceiver, corresponding to the reference channel, is defined as

r(i)(t) = ‖r(t)− t(i)‖, (3)

whereas the bistatic range between the ith transmitter, the tar-

get, and the receiver is expressed as

ρ(i)(t) = ‖p(t)− t(i)‖+ ‖p(t)− r(t)‖. (4)

Therefore, the direct path signal received from the ith trans-

mitter is defined as

s(i)r (t) = u(i)[t−r(i)(t)/c] exp [−j2πf (i)r(i)(t)/c]+n(i)
r (t),

(5)

where the subscript “r” represents the reference channel,

u(i)(t) is the baseband representation of the signal trans-

mitted from the ith illuminator, c is the velocity of wave

propagation. Since passive radars use broadcast signals, it

can be assumed that the transmitted signal is perfectly re-

constructed at the receiver after demodulation and forward

error correction [9]. The reference signal can, therefore, be

expressed as

s(i)r (t) = u(i)(t− r(i)(t)/c) exp (−j2πf (i)r(i)(t)/c). (6)

The surveillance signal reflected from the target, on the

other hand, is given for the ith illuminator by,

s
(i)
s (t) = σ(i)u(i)(t− ρ(i)(t)/c) exp (−j2πf (i)ρ(i)(t)/c)

+n
(i)
s (t),

(7)

where the subscript “s” denotes the surveillance channel, σ(i)

is the target reflection coefficient, and ns(t) is the additive

noise.

Because the passive radar receiver does not know the ex-

act timing of the signal transmission, it finds the range dif-

ference between the bistatic transmitter-target-receiver range

and the direct transmitter-receiver range by correlating the

surveillance signal and the reference signal. Denote Δt as

the azimuthal sampling interval time used in the matched fil-

tering, and tm = mΔt be the azimuthal sampling instants,

m = 1, ...,M . Then, the range difference at the M azimuthal

sampling instants can be expressed as

R(i)(tm) = ρ(i)(tm)− r(i)(tm)
= ‖p0 + vtm + at2m/2− t(i)‖
+‖p0 + vtm + at2m/2− r0 − vrtm‖
−‖r0 + vrtm − t(i)‖.

(8)

In the above expression, the motion of the receiver plat-

form is the dominant source of range migration. When a spe-

cific ground region is of interest, we can compensate for the

range migration due to movement of the radar platform by

focusing on that specific region utilizing the known motion

parameters of the receiver [8]. For this purpose, a ground ref-

erence position, referred to as the scene origin, is chosen to

be within a close vicinity of the actual target. Considering a

scene origin at q, the bistatic range can be calculated as

ζ(i)(tm) = ‖q− t(i)‖+ ‖q− r(tm)‖. (9)

The corresponding delay, ζ(i)(tm), is used in the matched fil-

tering to replace r(i)(tm) in (8), as such the range difference

can be expressed as

R̃(i)(tm) ≈ ρ(i)(tm)− ζ(i)(tm)
= ‖p0 + vtm + at2m/2− t(i)‖
+‖p0 + vtm + at2m/2− r0 − vrtm‖
−‖q− t(i)‖ − ‖q− r0 − vrtm‖.

(10)



3. MOTION PARAMETER ESTIMATION

The output of the receiver matched filter at azimuthal time tm
corresponding to the ith illuminator, after range compensation

due to the motion of the receiver platform at the scene origin,

is expressed as

s(i)(tm) = ξ(i) exp (−j2πf (i)R̃(i)(tm)/c)+n(i)(tm), (11)

where ξ(i) is the magnitude of the matched filter output,

n(i)(tm) is the noise output. The phase term is determined

by the range difference, depicted in (10). For a moderate

CPI time considered in the underlying problem, the Doppler

signature can be considered as a chirp, i.e., the phase term of

s(i)(tm), denoted as φ(i)(tm), follows the following quadratic

relationship,

φ(i)(tm) = φ
(i)
0 + 2πf

(i)
0 tm + πβ(i)t2m, (12)

where φ
(i)
0 is the initial phase, f

(i)
0 is the initial Doppler fre-

quency, and β(i) is the chirp rate.

3.1. Existing Technique

In [8], a motion parameter estimation technique is developed

based on the time-frequency analysis for the Doppler signa-

tures of the received signals. From the phase information re-

vealed from (10) – (12), we can establish the following re-

lationship between the motion parameters (acceleration vec-

tor a and initial velocity vector v0) and the chirp parameters

(chirp rate β(i) and initial frequency f
(i)
0 , i = 1, ..., N ) of the

Doppler signatures corresponding to all N illuminators:

[
f
(i)
0

β(i)

]
= A(i)

[
v
a

]
, (13)

where

A(i)=− 1

λ(i)

⎡
⎣ (q−t(i))T

‖q−t(i)‖ + (q−r0)
T

‖q−r0‖ 0
2vT

r

‖q−r0‖
(q−t(i))T

‖q−t(i)‖ + (q−r0)
T

‖q−r0‖

⎤
⎦,

(14)

and λ(i) is the wavelength of the signal transmitted from ith
illuminator.

It is clear in (13) that there are four unknown motion pa-

rameters of the target, i.e., both velocity and acceleration in

the x and y directions. As the time-frequency analysis of az-

imuthal samples of the received signal corresponding to each

transmitter yields two quantities, the chirp rate and the initial

Doppler frequency, we can estimate the four motion parame-

ters using two illuminators. The use of more transmitters will

yield an overdetermined problem for improved accuracy of

estimation.

3.2. Proposed Technique

In the following, we focus on the low signal-to-noise ratio

(SNR) situation where reliable chirp parameter estimation for

each bistatic link is not possible. As such, the existing tech-

nique summarized in the previous subsection becomes inap-

plicable. An MPR system, utilizing signals transmitted from

multiple illuminators, may nevertheless accumulate sufficient

signal power to warrant robust motion parameter estimations.

Towards this end, parameter estimation should proceed only

after all signals are properly fused. Because each illumina-

tor yields a different Doppler signature, however, parameter

fusion in the time-frequency domain is rather difficult.

We consider the acceleration and the velocity as the com-

mon sparse support shared by the Doppler signatures corre-

sponding to different illuminators. This concept has been ap-

plied in distributed compressive sensing (e.g., [10, 11]). In

the underlying problem, however, we need four dimensions

of unknown variables (two dimensions of the acceleration and

two dimensions of the velocity) to perform a commonly used

l1-norm based sparse signal reconstruction. While such ap-

proach can handle the motion parameter estimation for multi-

ple targets, the high-dimensional operation renders such pro-

cessing very complicated, if not impractical. Therefore, we

deploy a two-step estimation process, one for the acceleration

and the other for the velocity, to estimate the motion parame-

ters of a single target. These steps are detailed in the remain-

der of this subsection.

A. Estimation of Target Acceleration
To decouple the target acceleration vector a from the ve-

locity vector v0, and the Doppler chirp rate β(i) from the ini-

tial frequency f
(i)
0 , we notice the following two properties:

(1) The effect of the off-diagonal term in matrix A(i), i.e.,

the term
2vT

r

‖q−r0‖ , is insignificant. By ignoring this term, ma-

trix A(i) becomes block diagonal. That is, the Doppler chirp

rate β(i) only depends on the target acceleration vector a, and

the initial frequency f
(i)
0 only depends on the velocity vector

v0. (2) When a chirp signal is considered in the ambiguity

domain, its signature is not affected by its initial frequency.

With these two properties, the acceleration vector a is fully

decoupled from v0 as well as f
(i)
0 . In this case, the chirp rate

is solely a function of target acceleration and is expressed as

β(i) = − 1

λ(i)

(
q− t(i)

‖q− t(i)‖ +
q− r0
‖q− r0‖

)T

a. (15)

The ambiguity function of signal s(i)(tm) is defined in the

discrete-time representation as [12]

χ(i)(θ, τ)=
M∑

m=1

s(i)(tm − τ)
[
s(i)(tm + τ)

]∗
exp(−j2πθtm).

(16)

For a waveform that is characterized by its chirp Doppler

signature, the ambiguity function is a straight line passing



through the origin, irrespective of the initial Doppler fre-

quency, where the slope of the straight line is determined by

the chirp rate β(i).

By varying ax and ay within the maximum possible

range, we can obtain the chirp rate β
(i)
ax,ay corresponding to

each illuminator according to (15). The contribution of each

illuminator can be coherently combined along their respec-

tive ambiguity function signature determined. As such, the

estimated target acceleration, [âx, ây]
T , is determined as

[âx, ây] = arg max
ax,ay

∑
τ

∣∣∣χ(i)(θ(i)(τ), τ)[χ(i)
ax,ay

(θ(i)(τ), τ)]∗
∣∣∣ ,

(17)

where

θ(i)(τ) = β(i)τ = − τ

λ(i)

(
q− t(i)

‖q− t(i)‖ +
q− r0
‖q− r0‖

)T
⎡
⎣ ax
ay
0

⎤
⎦ ,

(18)

and χ
(i)
ax,ay (θ, τ) is the ambiguity function of hypothesis

waveform s̃(t) = exp(jπβax,ay t
2).

B. Estimation of Target Velocity
Once the acceleration vector is estimated, the problem be-

comes the estimation of the velocity vector, which contains

vx and vy . One approach to solve the velocity vector is to

formulate a standard sparse signal reconstruction problem.

Define y as the NM -element complex vector which stacks

the matched filter output corresponding to the N illumina-

tors. The output corresponding to each illuminator contains

M azimuthal samples. An NxNy × 1 vector u with unknown

and sparse entries, which vectorizes the discretized 2-D ve-

locity indexes, is to be estimated, where Nx×Ny denotes the

search grid of the 2-D velocity. Let the kth entry of u be as-

sociated with v
[k]
x and v

[k]
y , and the initial Doppler frequency

corresponding to the ith illuminator be f
(i),[k]
0 . Then, the kth

column of the NM×NxNy dictionary matrix G is expressed

as

gk =
[w(1) exp (−jφ̃(1),[k](t1)), ..., w

(1) exp (−jφ̃(1),[k](tM )),
w(2) exp (−jφ̃(2),[k](t1)), ..., w

(2) exp (−jφ̃(2),[k](tM )),
...

w(N) exp (−jφ̃(N),[k](t1)), ..., w
(N) exp (−jφ̃(N),[k](tM ))]T ,

(19)

where w(i) is a weight coefficient,

φ̃(i),[k](tm) = φ
(i)
0 + 2πf

(i),[k]
0 tm + πβ̂(i)t2m, (20)

and

β̂(i) = − 1

λ(i)

(
q− t(i)

‖q− t(i)‖ +
q− r0
‖q− r0‖

)T
⎡
⎣ âx
ây
0

⎤
⎦ (21)

is the chirp rate estimated corresponding the estimated accel-

eration parameters âx and ây .

The problem of velocity estimation can, thus, be formu-

lated as the following l1-norm problem,

min ||u||1 subject to y = Gu, (22)

which can be solved by a number of methods being avail-

able for sparse signal reconstruction. We use the Compres-

sive Sampling Matching Pursuit (CoSaMP) [13] algorithm,

and the number of iterations is chosen to be one. The only

non-zero element in the solution corresponds to the index of

the estimated target velocity.

4. SIMULATION RESULTS

We consider a geolocation scenario, as illustrated in Fig.

1, where five DAB transmitters are respectively located at

[−12, 10, 0.1]T km, [15,−15, 0.1]T km, [12, 20, 0.1]T km,

[−15,−10, 0.1]T km, and [20, 5, 0.1]T km. The respec-

tive carrier frequencies of these five illuminators are 220,

222, 224, 226, and 228 MHz. The initial receiver posi-

tion is [0, 0, 5]T km, and it moves with a constant veloc-

ity of [150, 0, 0]T m/s. The initial position of the target is

at [0, 14, 0]T km and it moves with an initial velocity of

[10, 10, 0]T m/s and an acceleration of [3, 4, 0]T m/s2. The

scene origin is chosen to coincide with the initial target posi-

tion, i.e., [0, 14, 0]T km.

The receiver data is sampled at 2.048 MHz, and the

matched filter output yields a 200 Hz azimuthal sampling

frequency. The overall CPI time is assumed to be 1 second,

which generates 200 azimuthal samples per illuminator. The

input SNR is assumed to be −52 dB for all the illuminators.

Note that situations with a lower SNR can be handled when

more illuminators are available.

Fig. 2 depicts the spectrogram of the azimuthal samples

corresponding to the first illuminator, where a Hamming win-

dow of length 51 is used. It is clear from this figure that, at

the low SNR level of −52 dB, the Doppler signature cannot

be clearly identified for reliable chirp parameter estimation.

Reliable chirp parameter estimation cannot be achieved with

other approaches, such as the Radon-Wigner transform or the

Fractional Fourier transform.

In Fig. 3, we demonstrate that accurate motion parame-

ter estimates are obtained using the proposed method. The

white dot indicates the estimated result in each picture. The

estimated acceleration and velocity vectors in this realiza-

tion are respectively [3.6, 4.0, 0]T m/s2 and [9.6, 10.2, 0]T

m/s. Through 50 independent trials, we obtain the root-

mean-square error (RMSE) of [0.71, 0.26, 0]T m/s2 for the

acceleration and [0.35, 0.26, 0]T m/s for the velocity.

5. CONCLUSIONS

In this paper, we have developed a method for the estima-

tion of motion parameters of moving target in a multistatic



passive radar platform. We consider weak signal scenarios

where a number of illuminators are available but the signal-

to-noise ratio (SNR) of each individual bistatic link is low. As

such, existing techniques that are based on the Doppler signa-

ture parameter estimation are not applicable. In the proposed

method, robust motion parameter estimation is achieved by

fusing the observations corresponding to all available illu-

minators. A two step algorithm is proposed to sequentially

estimate the target acceleration and the velocity with a very

low computational cost. Simulation results were presented to

demonstrate the effectiveness and robustness of the proposed

method in low SNR situations.
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