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Abstract—In this paper, we develop a novel pre-processing
algorithm to achieve effective signal denoising for improved
recognition of noisy radar signals. The algorithm is considered in
the instantaneous autocorrelation function domain in which time
or lag slices are converted to a Hankel matrix, and an atomic
norm-based method is applied to mitigate the impacts of noise.
Cross-terms are suppressed by using a time-frequency kernel,
such as the Choi-Williams distribution, and a sparsity-based
reconstruction technique is utilized to obtain a high-resolution
time-frequency distribution of the radar waveforms. Simulation
results verify the effectiveness of the proposed method. The
proposed denoising algorithm for radar waveform recognition
enables a substantial increase of the overall successful recognition
rate from 90.24% to 97.76%.

Index Terms—Radar waveform recognition, non-stationary
signal, time-frequency analysis, sparse reconstruction, atomic
norm.

I. INTRODUCTION

Automatic radar waveform recognition plays an important
role in electronic warfare, such as radar emitter identification
and threat detection. This becomes even more critical when
radars adopt low probability of intercept (LPI) radar wave-
forms that differ to the traditional linear frequency modulated
(LFM) waveforms for pulse compression [1]. Commonly
used LPI radar waveforms include those based on nonlinear
frequency modulation (FM) and polyphase code modulation
[2]. Examples of polyphase codes include the Frank, P1, P2,
P3, and P4 codes [3], [4]. The objective of radar waveform
recognition is to detect and classify the received radar signals
based on the pulse compression waveform [5].

A number of methods have been proposed to recognize
radar signals with different kinds of modulations. Feature
extraction and classifier design are two key procedures for
radar waveform recognition [6]. Selection of an effective
feature extraction algorithm is important to achieve a desirable
waveform classification performance. Because of the sparsity
of many non-stationary signals, including the above mentioned
LPI radar waveform signals, in the time-frequency (TF) do-
main, this domain is effective for signal characterization and
feature extraction. The objective of this paper is to provide an
enhanced TF representation (TFR) of noisy LPI radar signals
to enable improved feature extraction.

The ability to recognize the time-varying frequency vari-
ations enables classification of different modulations [6]. In
order to achieve this, bilinear TF analysis is widely adopted
for radar waveform recognition due to its high energy con-

centration. The Wigner-Ville distribution (WVD) is commonly
referred to as the prototype bilinear TF distribution. However,
the bilinear nature of the WVD renders cross-terms to appear
midway between true signal components in the case of non-
linear or multi-component signals. Such cross-terms prohibit
accurate analysis and interpretation of the signal instantaneous
frequency (IF) signatures [7]–[10]. In this case, TF kernels
are used to mitigate the effects of cross-terms so as to readily
determine the modulation type and estimate the modulation
parameters. Among the many available TF kernels, the Choi-
Williams distribution (CWD), which is based on exponential
weighting in both time and lag domains, is considered as a
favorable choice because of its simplicity and robustness to
different signal parameters [5], [6], [11].

Existing methods reported in the open literature, however,
do not provide a high-resolution TFR and render poor TFR
when the LPI radar signals are noisy. There are limited
works reporting signal denoising. In [6], the authors applied
a designed filter to smooth the TFR, where each point on the
TFR is updated by averaging the points within the coverage of
a square. In [12], image morphology algorithm was utilized for
noise removing after converting the TFR into a binary image.
In [3], signal denoising was achieved by a nonlinear wavelet
transformation technique. However, the denoising capability
of these methods are limited.

In this paper, we propose a novel pre-processing algo-
rithm for feature enhancement of noisy radar waveforms. The
algorithm is considered in the instantaneous autocorrelation
function (IAF) domain, which is related to the TFR by a one-
dimensional (1-D) Fourier transform with respect to lag for
each time slice or the ambiguity function (AF) with respect
to time for each lag slice. In the IAF domain, each time- or
lag-domain slice is converted to a Hankel matrix to denoise
the IAF entries via the atomic norm-based approach. Then,
CWD is utilized to mitigate the cross-terms and further reduce
the residual effect of noise. Finally, sparse TFR reconstruction
techniques are used to further improve the sparsity of the
yielding TF estimate. To our best knowledge, the sparsity of
the FM and polyphase code LPI radar signals in the TF domain
has not been considered for radar waveform recognition. The
proposed method can be easily of joint use with any other
pre-processing techniques.

Notations : Lower-case (upper-case) bold characters are
used to denote vectors (matrices). (·)∗, (·)T and (·)H denote
the complex conjugation, transpose and the Hermitian trans-



pose, respectively. Fx(·) and F−1x (·) represent the discrete
Fourier transform (DFT) and inverse DFT (IDFT) with respect
to x, respectively. Y = H(x, p) converts vector x to Hankel
matrix Y with pencil parameter p, whereas x = }(Y ) defines
the inverse operation of Hankel matrix conversion. d·e denotes
the ceiling function.

II. SIGNAL MODEL AND TIME-FREQUENCY
REPRESENTATION

A. Signal Model

Consider a discrete-time signal, x(t), t = 1, ..., T ,

x(t) = s(t) + n(t) = a(t)eψ(t) + n(t), (1)

where  =
√

(−1) is the imaginary unit, s(t) is the transmitted
signal with the phase law ψ(t), and n(t) is the additive white
Gaussian noise.

The instantaneous frequency of x(t) is expressed as:

f(t) =
1

2π

dψ(t)

dt
. (2)

B. Instantaneous Auto-correlation Function

The IAF of the transmitted signal s(t) and the received
signal x(t) are respectively defined as

Rss(t, τ) = s
(
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τ

2

)
s∗
(
t− τ

2

)
, (3)

and
Rxx(t, τ) = x

(
t+

τ

2

)
x∗
(
t− τ

2

)
, (4)

where τ is the time lag. Denote vector yt as an IAF slice of
the transmitted signal s(t) that contains all IAF entries along
the τ dimension corresponding to time t. The IAF slice yt is
Hermitian symmetric about τI = 0, where I is the index of
the center element in τ . In other words, yt has the following
property:[

ytI−1, · · · , yt2, yt1
]H

=
[
ytI+1, · · · , ytQ−1, ytQ

]T
, (5)

where τ = [τ1, · · · , τQ]T denotes the lag vector, and Q is the
cardinality of τ .

We similarly define zt as the IAF slice of the received
signal x(t) along the τ dimension. Then, zt is also Hermitian
symmetric, i.e.,[

ztI−1, · · · , zt2, zt1
]H

=
[
ztI+1, · · · , ztQ−1, ztQ

]T
. (6)

C. Wigner-Ville Distribution

The DFT of the IAF Rxx(t, τ) with respect to τ is the well-
known WVD, i.e.,

Wxx(t, f) = Fτ [Rxx(t, τ)] =

∫
τ

Rxx(t, τ)e−2πfτdτ. (7)

Because Rxx(t, τ) is Hermitian symmetric, the WVD of the
observed data is real-valued.

D. Ambiguity Function

The AF is obtained by applying 1-D DFT to the IAF
Rxx(t, τ) with respect to t, expressed as

Axx(θ, τ) = Ft[Rxx(t, τ)] =

∫
t

Rxx(t, τ)e−2πθtdt, (8)

where θ is the frequency shift, also known as Doppler. Note
that, unlike WVD, the AF entries are in general complex since
the IAF is Hermitian symmetric only with respect to τ but not
with respect to t.

III. PROPOSED METHOD

A. Signal Denoising via Atomic Norm

At time instant t, we assume P frequency components
are present, i.e., there exist P nonzero entries in the TFR
corressponding to the specific value of t. From (7), we know
that the IAF is the 1-D IDFT of the WVD with respect to
frequency f . Therefore, the IAF slice yt at time instant t can
be expressed as

yt = F−1f (wt) =

P∑
p=1

cpe
2πfpτ , (9)

where cp denotes the complex amplitude of the p-th signal
component, fp is the corresponding signal frequency, and wt

denotes the TF slice along the f dimension at time instant t.
We solve this signal denoising problem in the context of

Hankel matrix completion [13], [14] by forming the following
Hankel matrix from yt:

Ht
y = H(yt, q1) =


yt1 yt2 · · · ytq2
yt2 yt3 · · · ytq2+1
...

...
. . .

...
ytq1 ytq1+1 · · · ytQ

 , (10)

where q1 is the pencil parameter, which is usually set to
dQ/2e, and q2 = Q− q1 + 1.

The same P frequency components are shared among all
the columns in Ht

y . The atom set for Ht
y can be expressed

as
A = {A(f,φ)|f ∈ [0, 1), ‖φ‖2 = 1} , (11)

where A(f,φ) is an atom representing Ht
y and is formulated

as
A(f,φ) = a(f)φH, (12)

a(f) = e2πfτ ∈ Cq1 , f ∈ [0, 1), φ ∈ Cq2 with ‖φ‖2 = 1.
Note that atomic norm approach avoids the off-grid issue by
exploiting the continuity of the frequency set.

The atomic norm of Ht
y can be obtained by solving the

following problem [15]–[17]:

‖Ht
y‖A = inf

{
β > 0 : Ht

y ∈ βconv(A)
}

= inf

{∑
p

|cp| : Ht
y =

∑
p

|cp|a(fp,φp)

}
,

(13)

where conv(A) is the convex hull of A.
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Fig. 1. The noisy IAF for atomic norm-based processing.

Define Ht
z = H(zt, q1) as the Hankle matrix obtained from

the noisy IAF slice at time instant t, the signal denoising
problem can be expressed as

Ĥ
t

y = arg min
Ht

y

1

2
‖Ht

z −H
t
y‖2F + η‖Ht

y‖A, (14)

where η is a regularization parameter trading off between the
fidelity of the Hankel matrix fitting and the atomic norm.
Problem (14) can be reformulated as

min
Ht

y,u,W

1

2
‖Ht

z −H
t
y‖2F +

η

2
(Tr(T (u)) + Tr(W ))

s.t.
[
T (u) Ht

y

(Ht
y)H W

]
� 0,

(15)

where Tr(·) denotes the trace operator and T (u) denotes a
Hermitian Toeplitz matrix with u as its first column. Problem
(15) can be effectively solved via the alternating direction
method of multipliers (ADMM) approach [18] as outlined in
[19]. Based on the obtained Ĥ

t

y , we can estimate the denoised
IAF slice as

ŷt = }(Ĥ
t

y). (16)

For the underlying problem, the Hermitian symmetry prop-
erty of the IAF can be used to reduce the computational
complexity. For each time instant t, ŷt have a Hermitian
symmetric structure, given as

ŷt =
[
ŷt1, · · · , ŷtI−1, ŷtI ,

(
ŷtI−1

)∗
, · · · ,

(
ŷt1
)∗]T

. (17)

In practice, x(t) is of a finite length, which leads to a diamond
shape with a time-varying width of Q = T − |T + 1− 2t| in
the IAF due to zero-padding.

When the signals are processing in batch, the denoising
procedure becomes unreliable when Q is small because of
zero-padding. To avoid this issue, we denoise the entries of
zt by utilizing both time and lag slices as proposed in [14].
As shown in Fig. 1, the area for 0.25T ≤ t ≤ 0.75T are first
recovered by utilizing the time slice along the lag domain as
depicted above. The similar 1-D DFT relationship between the
IAF and the AF as well as the sparsity of the AF are exploited
to denoise the entries for 0 ≤ τ ≤ 0.25T by utilizing the lag
slices.

B. Choli-Williams Distribution

The analysis and interpretation of the signal IF signatures
become cumbersome in the presence of cross-terms as a result
of the bilinear WVD. A number of TF kernels are developed
to suppress cross-terms while preserving auto-terms. In this
paper, we use the CWD, which is defined for a continuous-
time signal x(t) as [20]

WCW =

∫ ∞
−∞

∫ ∞
−∞

1√
4πτ2/σ

exp

(
− (t− µ)2

4τ2/σ

)
· x
(
t+

τ

2

)
x∗
(
t− τ

2

)
exp(−jωτ)dtdτ,

(18)

where σ > 0 is a scaling factor that controls the attenuation.
The CWD uses an exponential kernel function

Φ(θ, τ) = exp
(
−θ2τ2/σ

)
. (19)

C. Obtaining TF distribution Using Sparse Reconstruction

FM and polyphase code LPI radar signals are sparsely
presented in the TF domain. To perform sparsity-based TFR
reconstruction, we utilize the 1-D IDFT relationship between
the TF slice wt and the IAF slice yt at time instant t, i.e.,

yt = Gfw
t, ∀t, (20)

where Gf is a matrix performing the 1-D IDFT with respect
to f . As such, the sparse reconstruction problem for (20) is
described as

min ||wt||1 s.t. yt −Gfw
t = 0, ∀t. (21)

Many compressive sensing techniques can be used to solve
(21), such as the orthogonal matching pursuit (OMP) [21] and
Bayesian sparse learning techniques [22], [23]. In this paper,
OMP is applied at each time instant because OMP allows us
to specify the sparsity at each time instant.

IV. SIMULATION RESULTS

As an example of the LPI radar waveforms, we consider
the P2 code as an example. P2 code waveforms have a stair-
wise frequency signature and thus are difficult to be accurately
represented in the TF domain as compared to other waveforms
whose frequency changes straightly with the time, such as
the P3 and P4 code waveforms. Therefore, preserving the
stair-wise frequency signature is critical to distinguish the
underlying waveform from those whose frequency signature
varies linearly with time. The phase of P2 code signal is varied
according to [1]:

φi,j = − π

2M
[2i− 1−M ][2j − 1−M ], (22)

where i, j = 1, 2, · · · ,M and M is the order. In our simula-
tions, the carrier frequency is 1/4 of the sampling frequency.
The cycles per phase code is 1 and the number of phase M
is set as 6.

Fig. 2 shows the real-part of the P2 code radar waveform
and the corresponding IAF magnitude, WVD, and CWD. No
noise is considered in these results. For the single-component
signal with a constant amplitude, the IAF has a constant
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Fig. 2. P2 code signal without the noise. (a) Real-part waveform. (b) IAF.
(c) WVD. (d) CWD.
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Fig. 3. P2 code signal in the noisy environment (SNR = 0 dB). (a) Real-part
waveform. (b) IAF. (c) WVD. (d) CWD.

magnitude within the diamond-shaped region. We observe that
the WVD does not provide a clear signal TF signature due to
the cross-term effects even though no noise is present. The
CWD depicted in Fig. 2(d) shows a clear TF signature, while
the TF resolution is poor.

In Fig. 3, we show the results with added noise, where the
input signal-to-noise ratio (SNR) is 0 dB. As a result, the
waveform magnitude varies randomly, as shown in Fig. 3(a).
The IAF becomes noisy and the magnitude does not maintain a
constant value. Due to the existence of noise, aliases appear in
the WVD compared to Fig. 2(d). On the other hand, the CWD
in Fig. 3(c) is distorted heavily by the noise. It is difficult to
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Fig. 4. P2 code signal in the noisy environment (SNR = 0 dB). (a) IAF
denoised via atomic norm. (b) denoised CWD. (c) proposed TFR (atomic
norm + CWD + OMP).

TABLE I
LIST OF THE PARAMETERS OF SIMULATED SIGNALS

Signal Waveforms Parameter Uniform Ranges

Sampling rate (fs) U(1)

P2
Carrier frequency (fc) U(1/8, 1/4)
Cycles per phase (cpp) [1, 5]

Frequency steps (m) [4, 8]

P3, P4
Carrier frequency (fc) U(1/8, 1/4)
Cycles per phase (cpp) [1, 5]

Frequency steps (m) [32, 70]

LFM Initial frequency (f0) U(1/16, 1/8)
Bandwidth (∆f ) U(1/16, 1/8)

Costas codes Number change [3, 6]
Fundamental frequency (fmin) U(1/24, 1/20)

recognize the auto-term TF distributions.
Fig. 4 depicts the performance of the proposed method in

the same noisy environment as in Fig. 3. Fig. 4(a) depicts the
recovered IAF via the atomic norm-based approach, which
performs denoising on the IAF entries. We notice that the
recovered IAF has a much smaller number of high values
than that in the noisy IAF depicted in Fig. 3(b) and is close
to the noise-free IAF as shown in Fig. 2(b). The CWD
obtained from the recovered IAF is shown in Fig. 4(b). In
comparison to Fig. 3(d), the denoised CWD provides a much
more smooth TF signature. Fig. 4(c) shows the final TFR
obtained through sparse reconstruction using OMP. It is clear
that the proposed method not only mitigates the effects of
the noise, but also provides a high-resolution TFR, thereby
significantly improving the feature representation of the radar
signals.

To verify the effectiveness of the proposed method in wave-
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Fig. 5. Normalized confusion matrix for classification performance compar-
ison. (a) CWD-based TFRs; (b) Proposed TFRs (atomic norm + CWD +
OMP)

TABLE II
LIST OF THE PARAMETERS OF THE CNN STRUCTURE

Layer (type) Parameter Setting

Batch normalization –
Convolution 1 7 kernels, size 5 × 5, stride 1

Maximum pooling 1 size 2 × 2, stride 2
Convolution 2 4 kernels, size 5 × 5, stride 1

Maximum pooling 2 size 2 × 2, stride 2
Convolution 3 4 kernels, size 5 × 5, stride 1

Maximum pooling 3 size 2 × 2, stride 2
Flatten layer –

Fully connected layer 1 100 neurons
Fully connected layer 2 5 neurons

form classification, we process the results using a convolution
neural network (CNN) [24], [25]. Five types of waveforms,
including Costas, LFM, P2, P3 and P4, are considered for
classification. The detailed parameter settings are shown in
Table I. U(·) denotes a uniform distribution of the frequency.
1, 000 samples are generated for each waveform class, from
which 75% of the samples are utilized for training and the
remaining 25% are utilized for testing. The input SNR is set

to 0 dB. The size of the input TFR images is 128× 128. Two
classifiers are trained, one using the traditional CWD results
and the other one using the proposed atomic norm-based pre-
processing method in the sparse reconstruction framework
(atomic norm + CWD + OMP). Both classifiers share the
same structure and hyper-parameters, which are depicted in
Table II. ReLU is chosen as the activation function for each
convolution layer. Keras with Tensorflow backend is adopted
for CNN implementation.

The classification results obtained using the two TFRs
are shown in Fig. 5. The average accuracy of the testing
classification is 90.24% for traditional CWD-based TFRs and
97.76% for the TFRs obtained from the proposed method. In
particular, the recognition rate between the challenging pair of
P3 and P4 has been greatly improved by the proposed atomic
norm-based pre-processed method.

V. CONCLUSION

In this paper, we proposed a novel pre-processing algorithm
for the recognition of noisy LPI radar waveforms. We exploit
the atomic norm-based denoising operation in instantaneous
autocorrelation function domain followed by cross-term sup-
pression using CWD. Sparsity-base reconstruction technique
is employed to obtain a high-resolution TF distribution. The
effectiveness of the proposed approaches is evidently demon-
strated using simulation results processed for the P2 coded
radar signal. Furthermore, the classification result using the
CNN demonstrates that the proposed method enables an
improvement of the overall recognition accuracy from 90.24%
to 97.76%.
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