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ABSTRACT

Automatic detection of pavement cracks is an important task
in transportation maintenance for driving safety assurance.
However, it remains a challenging task due to the intensity
inhomogeneity of cracks and complexity of the background,
e.g., the low contrast with surrounding pavement and possi-
ble shadows with similar intensity. Inspired by recent success
on applying deep learning to computer vision and medical
problems, a deep-learning based method for crack detection
is proposed in this paper. A supervised deep convolutional
neural network is trained to classify each image patch in the
collected images. Quantitative evaluation conducted on a data
set of 500 images of size 3264 × 2448, collected by a low-
cost smart phone, demonstrates that the learned deep features
with the proposed deep learning framework provide superi-
or crack detection performance when compared with features
extracted with existing hand-craft methods.

Index Terms— Deep learning, convolution neural net-
works, road crack detection, road survey

1. INTRODUCTION

Keeping roads in a good condition is vital to safe driving
and is an important task of both state and local transportation
maintenance departments. One important component of this
task is to monitor the degradation of road conditions, which
is labor intensive and requires domain expertise. Recently,
computer vision and machine learning techniques have been
successfully applied to automate road surface survey [1–5].
In this work, we focus on detecting cracks on the pavemen-
t surface, because they represent the most prevalent type of
road damage and exhibit strong texture cues. A large number
of recent literature in crack detection and characterization of
pavement surface distresses clearly demonstrates an increas-
ing interest in this research area [3, 4, 6, 7].

The traditional framework for crack detection designs a
variety of gradient features for each image pixel, which are
followed by a binary classifier to determine whether an im-
age pixel contains a crack or not. A local binary pattern-
s (LBP) based algorithm for crack detection is developed in
[8], whereas a crack detection method using the Gabor filter
is proposed in [3]. In [4], an automatic crack detection based
on the tree structure, referred to as CrackTree, is introduced.

A fully integrated system for crack detection and characteri-
zation is proposed in [9] and a comprehensive set of image
processing algorithms for detection and characterization of
road pavement surface crack distresses is introduced in [5].
Although hand-crafted features are widely used and support
top-ranking algorithms on the well acquired data set [4, 5, 10],
it is important to note that they are not discriminative enough
to differentiate the crack and complex background in low lev-
el image cues.

On the other hand, the impressive performances for many
medical imaging and computer vision tasks have evidently
showcased the effectiveness of deep features learned by deep
neural networks [11–16] which are likely to replace the con-
ventional hand-crafted features [17]. Restricted Boltzmann
machine (RBM), autoencoder and their variants are popular
for unsupervised deep learning when the number of labelled
examples is small, while deep convolutional neural network-
s (ConvNets) are popular for feature learning and supervised
classification [17]. Such promising results motivate the ap-
plication of deep learning techniques into the crack detection
problems.

Successful application of deep learning techniques for
crack detection rely on discriminative and representative
deep features. In this paper, we develop a novel crack detec-
tion method in which the discriminative features are learned
directly from raw image patches using the ConvNets. To
the best of our knowledge, this work is the first attempt to
bridge the gap between deep convolution neural networks
and transportation research. The proposed approach differs
from recent works on crack detection in the following four
important aspects: 1) The proposed approach leverages deep
learning based detectors instead of filter-based detectors as in
[3]; 2) It does not make any assumption of the geometry of
the pavement as required in [10]; 3) We use discriminative
features, which are automatically learned from images, rather
than hand-crafted features [8, 10]; 4) Unlike existing meth-
ods that require specific optical devices [5, 9], the proposed
approach is successfully applied to images that are collected
using a low-cost smart phone with complex background.

2. PROPOSED METHOD

Given a pavement image, the objective of a crack detection
problem is to determine whether a specific pixel is a part of a



Fig. 1: Illustration of the architecture of the proposed ConvNet.

crack. To solve this problem, the proposed solution is based
on a ConvNet, which is trained on square image patches with
given ground truth information, for the classification of patch-
es with and without cracks. For notational convenience, crack
and non-crack patches are also referred to as positive and neg-
ative patches, respectively. In this paper, a patch whose center
is itself a crack pixel, or is within the close vicinity of a crack
pixel, is considered as a positive patch. Otherwise, this patch
is considered as a negative patch.

2.1. Data preparation

Data set with more than 500 pavement pictures of size 3264
× 2448 are collected at the Temple University campus by us-
ing a smart phone as the data sensor. Each image is anno-
tated by multiple annotators. In this study, to achieve a good
compromise between computational cost and accuracy of the
detection results [12, 13], each sample is a 3-channel (RGB)
99×99 pixel image patch generated by the sampling strategy
described in the following steps:

1. A patch whose center is within f = 5 pixels of the
crack centroid is regards as a positive patch; otherwise
it is considered as a negative patch.

2. To reduce the similarity between training samples, the
overlap of two positive patches P1 and P2, expressed
as O = area(P1 ∩ P2)/area(P1 ∪ P2), should be kept
at a low level. In this study, we choose the distance
between the centers of two adjacent patches to be
d=0.75w, where w is the width of a patch. For the
negative patches, two adjacent patches should have no
overlap.

3. Given a patch center c, each candidate patch is rotat-
ed around c by a random angle α ∈ [0◦, 360◦]. This
plays an important role to increase the number of crack
samples because crack patches only consist of a small
proportion of the collected images.

Out of the generated samples from the above steps,
640,000 samples are used as the training set, 160,000 sam-
ples are used as the validation set for cross-validation when
training the ConvNets, and 200,000 samples are used as the
testing samples. The numbers of crack and non-crack patches
are set to equal in all three data sets.

2.2. ConvNet Architecture

The architecture of the ConvNet is illustrated in Fig. 1, where
conv, mp, and fc represent convolutional, max-pooling and
fully-connected layers, respectively. In general, the ConvNet
is considered as a hierarchical feature extractor, which ex-
tracts features of different abstract levels and maps raw pixel
intensities of the crack patch into a feature vector by several
fully connected layers. All parameters are jointly optimized
through minimization of the misclassification error over the
training set via the back propagation method [18].

All convolutional filter kernel elements are trained from
the data in a supervised fashion by learning from the labeled
set of examples introduced in Section 2.1. In each convolu-
tional layer, the ConvNet performs max-pooling operations in
order to summarize feature responses across neighboring pix-
els. Such operations allow the ConvNet to learn features that
are spatially invariant, i.e., they do not change with respect to
the location of objects in the images. Finally, fully-connected
layers are used for classification. Due to the mutually ex-
clusive property of the underlying crack detection problem
(crack or non-crack), a softmax layer is used as the last lay-
er of the ConvNets to compute the probability of each class
given an input patch.

Given a training set S = {x(i), y(i)} which contains m
image patches, where x(i) is the i-th image patch and y(i) ∈
{0, 1} is the corresponding class label. If y(i) = 1, then x(i)

is a positive patch, otherwise x(i) is a negative patch. Let z(i)j

be the output of unit j in the last layer for x(i). Then, the
probability that the label y(i) of x(i) is j can be calculated by
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where k = 2, m is the total number of the patches, and 1{·}
stands for the indicator function.



2.3. ConvNet Training

The goal of training a ConvNet is to increase the variation
of the training data and to avoid overfitting analogous to the
training data set. The dropout method is used between t-
wo fully connected layers to reduce overfitting by preventing
complex co-adaptations on training data [19]. The output of
each neuron is set to zero with a probability of 0.5.

The training of the ConvNet is accelerated by graphic-
s processing units (GPUs). Further speed-ups are achieved
by using rectified linear units (ReLU) as the activation func-
tion [14], which is more effective than the hyperbolic tangent
functions tanh(x) and the sigmoid function (1+e−x)−1 used
in traditional neuron models, in both training and evaluation
phases. The ConvNets are trained using the stochastic gradi-
ent descent (SGD) method with a batch size of 48 examples,
momentum of 0.9, and weight decay of 0.0005. Less than 20
epochs are needed to reach a minimum on validation set.

2.4. Processing a Testing Image

To process a testing image, the ConvNet can provide each
point centered within the image a probability of being a crack
or non-crack. This procedure yields a probability map. In-
spired by the method proposed in [11], the probability of a
point can be calculated by averaging probability {P1, ..., PN}
of each patch generated by randomly rotating it around its
center pixel c, i.e.,

p(c|{P1(c), ..., PN (c)}) = 1

N

N∑
i=1

Pi(c), (3)

where Pi(c) is the classification probability of the ConvNet
computed for the i-th individual patch, and N is set to 5 for
a computing efficiency. The ConvNet has a higher number
degrees of freedom and thus tends to exhibit a large variance
and a small bias [13]. As such, the number of crack patch-
es are far less than that of background patches in an image.
This fact makes the ConvNet to be likely to overestimate the
crack probability. Therefore, an appropriate threshold has to
be used. Define the precision and recall as

P =
true positive

true positive + false positive
, (4)

R =
true positive

true positive + false negative
. (5)

Then, the F1 score is expressed as

F1 =
2PR

P +R
. (6)

The threshold used to re-estimate the final probability is deter-
mined such that it yields the largest F1 score on the validation
data set [13]. In this study, the threshold t is set to 0.64, at
which the F1 score is maximized.

Table 1: Hand-crafted features of image patches

Feature Descriptions Number
Mean RGB 3

HSV for mean RGB 3
Hue histogram 5

Saturation histogram 3
LBP 59

Texton histogram 20

Fig. 2: ROC curves.

3. EXPERIMENTAL EVALUATION

All experiments are performed using an Intel(R) Xeon(R) E3-
1241 V3 @ 3.5GHz CPU with 8 GB RAM and NVidia Quadro
K220 GPU. The ConvNet was constructed via the Caffe [20]
framework and trained by using 5-fold cross-validation. The
proposed method is compared against the support vector ma-
chine (SVM) and the Boosting methods. The SVM is trained
with LIBSVM [21] and the Gaussian radial basis function
(RBF) kernel is used with C and γ determined using 5-fold
cross-validation. The Boosting method [22] composed of 100
weak classifiers with a maximum depth of 5 is trained via the
OpenCV toolkit. All parameters with the minimal test error of
5-fold cross-validation is used for comparison. The features
for training the SVM and the Boosting are based on color and
texture of each patch which are associated with a binary label
indicating the presence or absence of cracked pavement. The
feature vector is 93-dimensional, and is composed of color el-
ements, histograms of textons and LBP descriptor within the
patch. The detailed description of the feature vector is shown
in Table 1. Some of the features are adopted from [23] and
[10]. Different from [10], the geometry information is not
considered in this work, since we aim to provide a crack de-
tection method without specific geometry information. The
Receiver operating characteristic (ROC) curves are shown in
Fig. 2 and a summary of the statistics is given in Table 2. It
is clear from these results that the ConvNet outperforms the
other two detectors.

Figs. 3 and 4 show the images, together with the respec-
tive probability of correct classification, of selected patch-



Table 2: Performance comparison of different methods

Method Precision Recall F1 score
SVM 0.8112 0.6734 0.7359

Boosting 0.7360 0.7587 0.7472
ConvNets 0.8696 0.9251 0.8965

Fig. 3: Detection of crack: test probabilities of the ConvNet
for being crack. TP denotes true positive.

Fig. 4: Detection of non-crack: test probabilities of the Con-
vNet for being non-crack. TN denotes true negative.

es that are only correctly classified by the proposed method
based on ConvNet. These results evidently demonstrate that
the discriminative features learned from the ConvNet outper-
form the hand-crafted features in describing complex patch
context.

We further compare the proposed method with the SVM
and the Boosting methods using images of size 300×300.
Cracks are detected by the trained ConvNet, SVM and Boost-
ing method on a sliding window with step of 1 pixel. If a

Original Ground truth SVM Boosting Proposed
(a) Scene 1

Original Ground truth SVM Boosting Proposed
(b) Scene 2

Original Ground truth SVM Boosting Proposed
(c) Scene 3

Fig. 5: Probability maps.

window lies partly outside of the image boundary, the miss-
ing pixels are synthesized by mirroring. Fig. 5 shows the
crack detection results for three different scenes. For each
scene, each row shows the original image with crack, ground
truth, probability maps generated by the SVM and the Boost-
ing methods, and that by the ConvNet. The pixels in green
and in blue denote the crack and the non-crack, respectively,
and a higher brightness means a higher confidence. The SVM
cannot distinguish the crack from the background, and some
of the cracks have be misclassified. Compared to the SVM,
the Boosting method can detect the cracks with a higher ac-
curacy. However, some of the background patches are clas-
sified as cracks, resulting in isolated green parts in Fig. 5. In
contrast to these two methods, the proposed method provides
superior performance in correctly classify crack patches from
background ones.

4. CONCLUSIONS

We proposed an automatic detection method based on deep
convolutional neural networks in which the features are au-
tomatically learned from manually annotated image patches
acquired by a low-cost sensor, i.e., smart phone. To the best
of our knowledge, this is the first study that applies deep-
learning based method to road crack detection problem. In the
future, we will optimize the proposed detection method and
build an integrated low-cost system for real-time road crack
detection.
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[13] D. C Cireşan, A. Giusti, L. M. Gambardella, and
J. Schmidhuber, “Mitosis detection in breast cancer his-
tology images with deep neural networks,” in Medical
Image Computing and Computer-Assisted Intervention
(MICCAI), pp. 411–418. 2013.

[14] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Nnformation Processing Systems,
2012, pp. 1097–1105.

[15] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee, “Im-
proving object detection with deep convolutional net-
works via Bayesian optimization and structured predic-
tion,” in Proceedsing of IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 249–258.

[16] J.J. Kivinen, C. K. Williams, and N. Heess, “Visual
boundary prediction: A deep neural prediction network
and quality dissection,” in Proceedings of Internation-
al Conference on Artificial Intelligence and Statistics,
2014, pp. 512–521.

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: A simple way to pre-
vent neural networks from overfitting,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014.

[21] C. Chang and C. Lin, “Libsvm: A library for support
vector machines,” ACM Transactions on Intelligent Sys-
tems and Technology, vol. 2, no. 3, pp. 27, 2011.

[22] Y. Freund and R. Schapire, “A short introduction to
boosting,” Journal-Japanese Society For Artificial In-
telligence, vol. 14, no. 771-780, pp. 1612, 1999.

[23] D. Hoiem, A. Efros, and M Hebert, “Geometric context
from a single image,” in Proceedings of International
Conference on Computer Vision, 2005, vol. 1, pp. 654–
661.


