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Abstract—In this paper, we propose a robust strategy to local-
ize multiple ground sources exploiting a distributed unmanned
aerial vehicle (UAV) network in the presence of impulse noise.
We achieve robust source localization by using `1-principal
component analysis (`1-PCA) based signal subspace estimation
at each individual UAV. This approach significantly reduces the
signal subspace perturbation compared to the conventional `2-
PCA based counterpart. The obtained robust signal subspace
estimate is exploited to provide an improved estimate of the noise
subspace, which is in turn utilized by the MUSIC algorithm to
render coarse source localization at each individual UAV. The
source localization information obtained at multiple UAVs is
then fused by exploiting group sparsity using the re-weighted `1
minimization. Simulation results demonstrate the effectiveness of
the proposed approach.

Index Terms—source localization, UAV network, impulse noise,
`1-norm principal component analysis, group sparsity, informa-
tion fusion.

I. INTRODUCTION

Autonomous unmanned aerial vehicles (UAVs) receive in-
creasing attention in various civil, military, and homeland
security applications, such as border surveillance, disaster
monitoring, and relay communications [1]–[4]. A multi-UAV
network is commonly adopted since a single UAV may not
execute time-critical tasks or large-area missions due to its
limited energy and payload. Multi-UAV networks also enjoy
spatial diversity by sensing an area of interest from different
angles, thereby significantly increasing the reliability of source
localization [5]–[7].

A UAV network can perfrom real-time multi-source local-
ization by exploiting passive sensing, localization (imaging),
information transmission, and fusion. One important strategy
for source localization is to utilize the angular information,
which can be obtained through beamforming [8]–[12] or
direction-of-arrival (DOA) estimation [13]–[22]. In particular,
subspace-based DOA estimation methods have enjoyed great
popularity because they achieve a high angular resolution with
low computational complexity.

Conventional subspace-based DOA estimation techniques,
e.g., multiple signal classification (MUSIC), achieve superior
performance under the assumption of additive white Gaussian
noise [15]. However, the noise often exhibits non-Gaussian
properties in practice, such as low-frequency atmospheric
noise and many types of man-made noise. The performance
of subspace-based DOA estimation methods degrades sub-
stantially in the presence of impulsive noise, resulting in
compromised source localization performance.
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One common approach to mitigate the impacts of the
impulse noise is to utilize the lower-order statistics to replace
the second-order covariance as considered in the methods
based on, e.g., the fractional lower-order moment (FLOM)
[24] and the phased fractional lower-order moment (PFLOM)
[25]. However, the fractional lower-order statistics based algo-
rithms are suboptimal [23], [26]. It is noted that conventional
subspace based DOA estimators rely on the `2-norm based
singular value decomposition (SVD) of the data matrix and
thus is highly sensitive to the outliers. Recently, an `1-
norm principal component analysis (`1-PCA) based method
is developed in [27]. The motivation for using the `1-norm
principal components is that `1-PCA is robust to the outliers
introduced by the impulsive noise [28]–[31].

Apart from the localization performance at individual UAVs,
information fusion of the data obtained at multiple UAV nodes
is another challenging task. One of the natural choices is to
fuse the information by taking the arithmetic mean of the
obtained localization images from different UAVs. However,
this method does not combine the information effectively,
especially when some UAVs have false positives or false
negatives in the localization images. In [7] and [32], image
fusion is achieved via pixel-wise multiplication. This method
can suppress the sidelobes well. However, when false negatives
occur at any UAV, the corresponding sources will not appear
in the final fused result.

In this paper, we propose a robust source localization
algorithm in the presence of impulse noise. We first exploit
the `1-PCA based DOA estimation method at each UAV to
obtain the coarse localization images. In this case, the effects
of impulse noise are effectively mitigated by the utilization
of `1-PCA MUSIC algorithm. Since the sources are sparsely
located and the UAVs at different locations observe the same
area of interest, the resulting localization images obtained at
different UAVs are group sparse. We fuse these images by
exploiting a group sparsity based approach, which utilizes re-
weighted `1 minimization. It is noted that only the compressed
images are transmitted among the UAV network to maintain
low data traffic and network scalability.

Notations : Lower-case (upper-case) bold characters are
used to denote vectors (matrices). IN denotes the N × N
identity matrix. (·)T and (·)H denote the transpose and the
Hermitian transpose, respectively. Moreover, diag(·) denotes a
diagonal matrix with the elements of a vector as the diagonal
entries. R{X} and ={X} denote the real and imaginary parts
of X , respectively. E[·] denotes expectation. In addition, ‖·‖1
and ‖·‖2 express the `1 and `2 norms of a vector, respectively.



II. PROBLEM STATEMENT

A. Signal Model

Consider a UAV network in which each UAV is equipped
with P sensors, and there are D uncorrelated far-field ground
sources (D < P ) impinging on them with respective elevation
angle θd and azimuth angle φd, d = 1, · · · , D. A spherical
coordinate system is shown in Fig. 1, which describes the
DOAs of the incoming plane waves. The received baseband
signal vector at a UAV is modeled as:

x(t) =

D∑
d=1

a(θd, φd)sd(t) + n(t) = As(t) + n(t), (1)

where A = [a(θ1, φ1),a(θ2, φ2), · · · ,a(θD, φD)] ∈ CP×D
is the manifold matrix of the corresponding UAV, s(t) =
[s1(t), s2(t), · · · , sD(t)]T ∈ CD is the corresponding signal
vector with t denoting the discrete-time index, and n(t) is the
noise vector.

In this paper, each UAV is equipped with a uniform circular
array (UCA) with one element placed in the center. Compared
to a uniform linear array (ULA), a UCA provides a 360◦

azimuthal coverage and the elevation information. The dth
column of the manifold matrix A represents the steering vector
of the dth source signal and is expressed as:

a(θd, φd) =


e−ζ sin(θd) cos(φd−β0)

e−ζ sin(θd) cos(φd−β1)

...
e−ζ sin(θd) cos(φd−βP−2)

1

 , (2)

where ζ = 2πr/λ, and βn = 2πn/(P−1) for n = 0, · · ·P−2,
with r and λ respectively denoting the radius of the UCA and
the wavelength of the impinging wave. Note that the central
element of the UCA acts as the reference sensor.

The covariance matrix of x(t) is expressed as:

Rxx = E
[
x(t)xH(t)

]
= ABAH +Rnn, (3)

where B = diag [b1, · · · , bD] is a diagonal matrix representing
the power of all D sources, and Rnn is the noise covariance
matrix.

B. Alpha-stable Noise
If the noise follows independent and identically distributed

(i.i.d.) additive white Gaussian distribution, then Rnn =
σ2
nIP , where σ2

n denotes the noise power. On the other hand,
alpha-stable distribution is commonly used to describe the
impulse noise. The characteristic function of an alpha-stable
random process is expressed as [33], [34]:

ϕ(t) = exp {jµt− δ|t|α[1 + jβ sgn(t)ν(t, α)]} , (4)

where

ν(t, α) =

{
tan απ2 , α 6= 1,
2
π log |t|, α = 1,

(5)

−∞ < µ <∞, δ > 0, 0 < α 6 2, and −1 6 β 6 1. Here, µ
is the location parameter, δ is the dispersion parameter, α is
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Fig. 1. The coordinate system.

the characteristic exponent, and β is the symmetry parameter.
If β = 0, the distribution is symmetric and the observation is
referred to as symmetry α-stable (SαS) distribution, which is
considered in this paper.
C. `2-PCA Based MUSIC

In practice, the actual covariance matrix Rxx is usually
unavailable and is estimated from the data samples as:

R̂xx =
1

K

K∑
t=1

x(t)xH(t) =
1

K
XXH, (6)

where X = [x(1), · · · ,x(K)] ∈ CP×K is the received data
matrix consisting of K snapshots.

The signal subspace consists of the D-dimensional principal
subspace of R̂xx, which is spanned by the eigenvectors
associated with the D highest eigenvalues. In fact, the solution
of the following `2-PCA problem results in the eigenvectors
of R̂xx or the left singular vectors of X [27]:

U s
`2 = argmax

U∈CP×D,UHU=ID

‖UHX‖22. (7)

The noise subspace spanned by Un
`2 is orthogonal to the signal

subspace spanned by U s
`2 , i.e.,

Un
`2(U

n
`2)

H = IP −U s
`2(U

s
`2)

H. (8)

The conventional MUSIC algorithm is based on the `2-PCA
and computes the following spatial pseudo-spectrum:

p`2(θd, φd) =
1

aH(θd, φd)U
n
`2(U

n
`2)

Ha(θd, φd)
. (9)

MUSIC detects the D sources from the local peaks of Eq.
(9). Under SαS noise, however, the signal subspace obtained
from (7) is inaccurate, thus resulting in severe performance
degradation of the conventional MUSIC algorithm.

III. PROPOSED METHOD

In this section, we describe a collaborative robust source
localization algorithm for UAV networks. First, we apply an
`1-PCA based MUSIC technique on the sampled data acquired
at each UAV node to obtain the coarse images of the ground
sources in the presence of SαS noise. Subsequently, each UAV
compresses its estimated localization image by using singular
value decomposition (SVD) and then wirelessly transfers it
to the master UAV node. The master node, which acts as the
fusion center, fuses the localization images by exploiting group
sparse reconstruction based on re-weighted `1 minimization.



A. Image Formation via `1-PCA Based MUSIC
The `1-norm tends to maintain sturdy resistance against

outliers when the received data is corrupted. Instead of `2-
norm maximization, `1-norm maximization can be exploited
in problem (7), and the corresponding `1-PCA problem can
be expressed as:

U s
`1 = argmax

U∈CP×D,UHU=ID

‖UHX‖1. (10)

Given the fact that `1-PCA is developed originally for the
real-valued data, the complex-number realification is utilized
to recast our complex data into a real-data problem as [27]

X ,

[
R{X}, −={X}
={X}, <{X}

]
∈ R2P×2K , (11)

where (·) denotes the complex realification. In this case, (10)
can be reformulated as:

U
s

`1 = argmax
U∈R2P×2D,U

H
U=I2D

‖UH
X‖1. (12)

Denote R`1 = U
s

`1(U
s

`1)
T ∈ R2P×2P . The signal subspace

is expressed as:

Rs
`1= R`1 [1 : P, 1: P ] + R`1 [P + 1: 2P, 1: P ] ∈ CP×P ,

(13)
where A[h : i, j : k] represents a sub-matrix of A which
consists of the elements from the hth row and the jth column
to the ith row and the kth column. The noise subspace is
obtained as:

Rn
`1 = IP −Rs

`1 . (14)

Consider a two-dimensional L × L source scene in the
observation area, where M = L×L� D is the total number
of pixels. The value of the spatial pseudo-spectrum at the mth
pixel is the output from the `1-PCA based MUSIC estimator,
given by

p`1(θm, φm) =
1

aH(θm, φm)Rn
`1a(θm, φm)

, (15)

for m = 1, · · · ,M . Repeating Eq. (15) pixel by pixel, we
obtain the `1-PCA based MUSIC image Ig of the gth UAV
for g = 1, · · · , G.

B. Image Fusion via Enhanced Group-Sparsity

All images Ig, g = 1, · · · , G, obtained from the `1-PCA
based MUSIC technique are transmitted to the fusion center in
a compressed form [37]. Since the images obtained at different
UAVs correspond to the same sparse scene of the sources, they
exhibit group sparsity which helps obtain the correct sparsity
support and suppress undesired sporadic results [35].

Define ig = vec(Ig), where vec(·) denotes the matrix
vectorization. The group sparsity is employed as:

min
wg

G∑
g=1

‖ig −Φwg‖22

subject to
M∑
m=1

(
G∑
g=1

|wg,m|2
)1/2

≤ γtol,

(16)

where γtol is the acceptable tolerance, Φ ∈ RM×M is the
dictionary matrix which, in the underlying application, is an
identity matrix, and wg,m denotes the mth element of the
vector wg ∈ RM for the gth UAV which serves as the
vectorized form of the fused final estimates. The optimization
(16) can be reformulated as follows:

ŵg = min
wg

G∑
g=1

‖ig −Φwg‖22 + η

M∑
m=1

(
G∑
g=1

|wg,m|2
)1/2

, (17)

where η is the regularization parameter.
When the sources are observed with different strengths, the

group sparse reconstruction can be enhanced by utilizing the
following weighting function [36]:

v(n)m =



(
G∑
g=1

|ŵ(n−1)
g,m |2

)−1/2
, if

G∑
g=1

|ŵ(n−1)
g,m |2 > 0,

1/ε, if
G∑
g=1

|ŵ(n−1)
g,m |2 = 0,

(18)

where v(n)m denotes the weighting coefficient for the nth iter-
ation, and ε should ideally be slightly less than the minimum
non-zero value of wg . Large weights are used to discourage
nonzero entries, while small weights are used to encourage
nonzero entries. It results in the following re-weighted `1-
minimization group sparse reconstruction problem:

ŵ(n)
g = min

wg

G∑
g=1

‖ig −Φwg‖22 + η

M∑
m=1

v(n)m

(
G∑
g=1

|wg,m|2
)1/2
.

(19)
We solve (19) in an iterative fashion until convergence. The
final fused image can be computed as follows:

Ŵ = ivec (ŵ) = ivec

(
G∑
g=1

|ŵg|

)
, (20)

where ivec(·) denotes the inverse of vectorization operation.

IV. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate
the performance of the proposed robust source localization
method. Five UAVs are considered with their respective lo-
cations at (−80, 0, 120) m, (−40, 69, 120) m, (0, 5, 120) m,
(40, 69, 120) m, and (80, 0, 120) m. Each UAV is equipped
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Fig. 2. The UAV network configuration.
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Fig. 3. Comparison of conventional `2-PCA based MUSIC (first column)
and `1-PCA based MUSIC (second column) under SαS noise.

with a UCA consisting of 5 elements. The simulations focus on
a small search area with a size of 400m×400m on the ground.
As shown in Fig. 2, there are two ground sources located
at (−5,−30, 0) m and (70, 20, 0) m, respectively. The grid
interval is chosen to be 5 m. Moreover, the third UAV is chosen
as the fusion center. To reduce the traffic during information
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Fig. 4. Comparison of the fused images.

transmission, the localization images are compressed via SVD
[37] and are then decompressed at the fusion center.

We consider SαS impulsive noise and the generalized SNR
(GSNR), defined as 10 log(E[|s(t)|2]/γ), is set to 7 dB in
all simulations, where γ = 0.2 and α = 1.5. Matlab codes
available at [38] and [39] are used to compute SαS distribu-
tion noise and `1-PCA, respectively. For fair comparison, the
maximum values of all plots in Figs. 3 and 4 are normalized
to unity. The color bar is set to [0, 1] for all plots.

In Fig. 3, the first column presents the `2-PCA based
MUSIC images from each UAV whereas the second column
presents the counterparts using the `1-PCA based MUSIC.
Each row in Fig. 3 corresponds to a single UAV. It is observed
that, for the `2-PCA based MUSIC method, none of the UAVs
clearly resolves the two sources.

In comparison, the imaging results shown in the second
column of Fig. 3 are obtained by exploiting the `1-PCA based
MUSIC algorithm. It can be observed that the `1-PCA based
strategy effectively mitigates the effects of outliers caused by
the impulse noise and subsequently yields successful source
resolution and localization at each UAV.

It is noticed in Fig. 3 that the localization images obtained
at individual UAVs vary in their quality and shapes around
the true source positions, thus motivating effective fusion of
these images into an improved solution. The fused image
obtained by taking a simple arithmetic mean of the `2-PCA
based MUSIC images from the five UAVs as shown in the
first column of Fig. 3 is presented in Fig. 4(a). It is observed
that the two sources are resolved, but with noticeable bias and
incorrect signal levels. On the other hand, Fig. 4(b) shows the
result of the proposed method, which fuses the `1-PCA based
MUSIC images by exploiting group sparse reconstruction. The
proposed fusion method represents the two sources much more
clearly and accurately illustrates their signal levels.

V. CONCLUSION

In this paper, we proposed a robust source localization
technique in the presence of impulse noise. The `1-PCA
based MUSIC technique is individually performed at each
UAV to robustly obtain the initial localization images, whereas
the re-weighted group-sparsity based image fusion method
is performed to obtain the final localization image at the
fusion center. Simulation results verified the effectiveness of
the proposed strategy.
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