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Abstract—Time-frequency distributions (TFDs) are tradition-
ally applied to a single antenna receiver with a single polarization.
Recently, spatial time-frequency distributions (STFDs) have been
developed for receivers with multiple single-polarized antennas
and successfully applied for direction-of-arrival (DOA) estimation
of nonstationary signals. In this paper, we consider dual-polar-
ized antenna arrays and extend the STFD to utilize the source
polarization properties. The spatial polarimetric time-frequency
distributions (SPTFDs) are introduced as a platform for pro-
cessing polarized nonstationary signals, which are received by an
array of dual-polarized double-feed antennas. This paper deals
with narrow-band far-field point sources that lie in the plane of
the receiver array. The source signals are decomposed into two
orthogonal polarization components, such as vertical and hori-
zontal. The ability to incorporate signal polarization empowers
the STFDs with an additional degree of freedom, leading to im-
proved signal and noise subspace estimates for direction finding.
The polarimetric time-frequency MUSIC (PTF-MUSIC) method
for DOA estimation based on the SPTFD platform is developed
and shown to outperform the time-frequency, polarimetric, and
conventional MUSIC techniques, when applied separately.

Index Terms—Array signal processing, direction-of-arrival
(DOA) estimation, MUSIC, polarization, smart antennas, time-fre-
quency distributions (TFDs).

I. INTRODUCTION

T IME-FREQUENCY distributions (TFDs) have been used
for nonstationary signal analysis and synthesis in various

areas, including speech, biomedicine, automotive industry, and
machine monitoring [1], [2]. Over the past few years, the spa-
tial dimension has been incorporated, along with the time and
frequency variables, into quadratic and higher-order TFDs and
led to the introduction of spatial time-frequency distributions
(STFDs) for nonstationary array signal processing [3], [4]. The
relationship between the TFDs of the sensor data and the TFDs
of the individual source waveforms is defined by the steering,
or the mixing, matrix, and was found to be similar to that en-
countered in the traditional covariance matrix approach to array
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processing. This similarity has allowed subspace-based estima-
tion methods to utilize the source instantaneous frequency for
direction-finding. It has been shown that the MUSIC [5] and
ESPRIT [6] techniques based on STFDs outperform their coun-
terparts based on data covariance matrices, when applied for di-
rection-of-arrival (DOA) estimation of sources of nonstationary
temporal characteristics [4], [7]–[9].

Polarization and polarization diversities, on the other hand,
are commonly used in wireless and satellite communications
as well as various types of radar systems [10], [11]. Antenna
and target polarization properties are widely employed in re-
mote sensing and synthetic aperture radar (SAR) applications
[12]–[14]. Airborne and spaceborne platforms as well as mete-
orological radars include polarization information [15], [16]. In
addition, polarization plays an effective role for target identifi-
cation in the presence of clutter [17], [18], and has also been
incorporated in antenna arrays to improve signal parameter es-
timation, including DOA and time-of-arrival (TOA) [19]–[24].

The two important areas of time-frequency (t-f) signal repre-
sentations and polarimetric signal processing have not been in-
tegrated or considered within the same platform, despite the ex-
tensive research work separately performed under each area. In
this paper, we introduce the spatial polarimetric time-frequency
distributions (SPTFDs) for double-feed dual-polarized arrays,
where the source time-frequency and polarization signatures are
concurrently utilized. The advantages of the proposed SPTFD
platform are demonstrated using narrow-band farfield point-like
emitters that lie in the plane of the receiver array. The signal po-
larization information empowers the STFDs with an additional
degree of freedom, leading to improved spatial resolution and
source discrimination.

The SPTFD is used to define the polarimetric time-fre-
quency MUSIC (PTF-MUSIC) algorithm, which is formulated
based on the source combined t-f and polarization properties
and applied for DOA estimation of polarized nonstationary
signals. The PTF-MUSIC technique is shown to outperform
the MUSIC techniques that only incorporate either the t-f or
the polarimetric source characteristics. The application to an
ESPRIT-like method is introduced separately in [25].

This paper is organized as follows. Section II discusses the
signal model and briefly reviews TFDs and STFDs. Section III
considers dual-polarized antenna arrays and introduces the con-
cept of SPTFDs. The PTF-MUSIC algorithm is proposed in Sec-
tion IV. Sections V and VI, respectively, consider the issues of
spatio-polarimetric correlations and DOA estimations of signals
with time-varying polarization characteristics. Spatial and po-
larization averaging methods for coherent signal decorrelation
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are investigated in Section VII. Computer simulations, demon-
strating the effectiveness of the proposed methods, are provided
in Section VIII.

Throughout this paper, lower case bold and capital bold let-
ters (e.g., and ) are used to represent vectors and matrices,
respectively. Moreover, denotes expectation operation,
denotes complex conjugate, denotes transpose, and
denotes conjugate transpose (Hermitian). We use to denote
polarization , to denote the th subarray. In addition,
denotes the vector norm, denotes Kronecker product operator,
and denotes Hadamard product operator.

II. SIGNAL MODEL

A. Time-Frequency Distributions

The Cohen’s class of TFDs of a signal is defined as [1]

(1)

where and represent the time and frequency indexes, respec-
tively and . The kernel uniquely defines the
TFD and is a function of the time and lag variables. In this paper,
all the integrals are from to .

The cross-term TFD of two signals and is defined
by

(2)

B. Spatial Time-Frequency Distributions

The STFDs have already been developed for single-polar-
ized antenna arrays [4], [7]. Consider a narrow-band direction-
finding problem where the signal bandwidth is small relative
to its carrier frequency. We note that the wide-band array pro-
cessing for nonstationary signals, which has been examined in
[26] and [27], is outside the scope of the proposed approach.
The following linear data model is assumed:

(3)

where the matrix is the mixing
matrix that holds the spatial information. The number of array
elements is , whereas represents the number of signals in-
cident on the array. In the above equation,

, where and
is the spatial signature for source . Each element of the
vector is a monocom-

ponent signal. Due to the mixing at each sensor, the elements
of the sensor data vector become multicomponent
signals. is an additive noise vector, which consists
of independent zero-mean, white, and Gaussian distributed pro-
cesses.

The STFD of a data vector is expressed as [3]

(4)

where the th element of is given by (2) for
. The noise-free STFD is obtained by substituting (3)

in (4)

(5)

where is the TFD matrix of which consists of
auto- and cross-source TFDs. With the presence of the noise,
which is uncorrelated with the signals, the expected value

yields

(6)

In the above equation, is the noise power, is the identity
matrix, and denotes the statistical expectation operator.

Equation (6) is similar to the commonly used formula in
narrow-band array processing problems, relating the source
covariance matrix to the sensor spatial covariance matrix. Here,
the covariance matrices are replaced by the source and sensor
TFD matrices. The two subspaces spanned by the principle
eigenvectors of and the columns of are, there-
fore, identical. The STFD matrix can be constructed from the
t-f points with highly localized signal energy, thus allowing the
corresponding signal and noise subspace estimates to be more
robust to noise than their counterparts obtained using the data
covariance matrix, [4], [8], [9]. Further,
the source discriminations, provided through the flexibility
of selecting t-f points or regions, permit DOA estimations to
be performed for only individual or subgroup of sources. In
this respect, the number of impinging sources can exceed the
number of array sensors. The above attractive properties allow
key problems in various array processing applications to be
addressed and solved using a new formulation (6), which is
more tuned to nonstationary signal environments.

III. SPATIAL POLARIMETRIC TIME-FREQUENCY DISTRIBUTIONS

A. Polarimetric Modeling

For a transverse electromagnetic (TEM) wave incident on the
array, shown in Fig. 1, the electric field can be described as

(7)

where and are, respectively, the spherical unit vectors along
the azimuth and elevation angles and , viewed from the
source. The unit vectors , and are defined along the ,

, and directions, respectively. For simplicity and without
loss of generality, it is assumed that the source signal is in the
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Fig. 1. Dual-polarized array.

plane, whereas the array is located in the plane.
Accordingly, , , and

(8)

We denote as the source magnitude measured at the re-
ceiver reference sensor, with polarization angle ,
and polarization phase difference . The source hor-
izontal and vertical polarization components, and ,
can then be expressed in terms of the respective spherical fields,

and , as

(9)

(10)

A signal is referred to as linearly polarized if or
degrees. Substituting (9) and (10) in (8) results in

(11)
Now we consider that signals impinge on the array, con-

sisting of dual-polarized antennas. The vertical and hori-
zontal components of the th source are expressed as

(12)

where the parameters and
denote the vertical and horizontal polarization coefficients. The
corresponding signal received at the th dual-polarized antenna,
with vertical and horizontal antennas located in the and di-
rections, is expressed as

(13)

where “ ” represents the dot product, is the electric-field
vector corresponding to the th source, and and , re-
spectively, are the th elements of the vertically and horizontally
polarized array vectors, and . It is assumed that
the array has been calibrated and both and are
known and normalized such that

. It is noted that the term in the horizontally polarized
array manifold can be absorbed in the array calibration over the

region of interest and, therefore, removed from further consid-
eration. Then, the above equation is simplified as

(14)

where the vector
represents the polarization signature of the th source.

B. Polarimetric Time-Frequency Distributions

For a dual-polarized sensor, , we define the self- and cross-
polarized TFDs, respectively, as

(15)

and

(16)

where the superscripts and denote either or . The self-
and cross-polarized TFDs constitute the 2 2 polarimetric TFD
(PTFD) matrix

(17)

The diagonal entries of are the self-polarized
TFDs, , whereas the off-diagonal elements are the

cross-polarized terms , .

C. Spatial Polarimetric Time-Frequency Distributions

Equations (13)–(17) correspond to the case of a single dual-
polarization sensor. With an -sensor array, the data vector, for
each polarization , or , is expressed as

(18)

The generalization of single-sensor polarimetric time-fre-
quency distributions to a multi-sensor receiver is obtained using
(18). Instead of the scalar variable TFD of (15), we define the
self-polarized STFD matrix of vector for polarization
as

(19)

which, in the noise-free environment, can be expressed as

(20)
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In a similar manner, the cross-polarization STFD matrix be-
tween the data vectors with two different polarizations and
can be expressed as

(21)

which becomes

(22)

when the noise is ignored.
Based on (18), the following extended data vector can be con-

structed for both polarizations

(23)

where

(24)

is block-diagonal, and

(25)

is the polarization signature vector of the sources, where

(26)

(27)

Accordingly

(28)

The above matrix can be viewed as the extended mixing matrix,
with representing the joint spatial-polarimetric signature
of signal . The extended spatial polarization signature vector
for the th source is

(29)

It is clear that the dual-polarization array, compared to single-
polarization case, doubles the vector space dimensionality.

It is now possible to combine the polarimetric, spatial, and
t-f properties of the source signals incident on the receiver
array. The STFD of the dual-polarization data vector can
be written as

(30)

, formulated in (30), is referred to as the SPTFD ma-
trix. This distribution, or matrix, serves as a general framework
within which typical problems in array processing, including di-
rection-finding, can be addressed, as shown in the next section.

When the effect of noise is ignored, the SPTFD matrix is
related to the source TFD matrix by

(31)

IV. POLARIMETRIC TIME-FREQUENCY MUSIC

Time-frequency MUSIC (TF-MUSIC) has been recently in-
troduced to improve spatial resolution of sources with clear t-f
signatures [7]. The proposed PTF-MUSIC is an important gen-
eralization of the TF-MUSIC for dealing with polarized signals
and polarized arrays. It is based on the search for the minimum
values of the orthogonal projection of the array vector, defined
in the joint spatial and polarimetric domains, on the noise sub-
space obtained from the SPTFD matrix over selected t-f regions.

Consider the following spatial signature matrix:

(32)

corresponding to DOA . Since ,
is the 2 2 identity matrix.

To search in the joint spatial and polarimetric domains, we
define the following spatio-polarimetric search vector:

(33)

where the vector is a unit norm vector with un-
known polarization coefficients. In (33), we have used the fact
that .

The PTF-MUSIC spectrum is given by the following func-
tion:

(34)

where is the noise subspace obtained from the SPTFD ma-
trix in (30) using selected t-f points. For t-f-based DOA estima-
tion methods, t-f averaging and joint block-diagonalization are
two known techniques that can be used to integrate the different
STFD or SPTFD matrices constructed at multiple t-f points [4],
[7], [30]. The selection of those points from high energy concen-
tration regions pertaining to all or some of the sources enhances
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the SNR and allows the t-f based MUSIC algorithms to be more
robust to noise [4] compared to its conventional MUSIC coun-
terpart.

In (34), the term in brackets is minimized by finding the min-
imum eigenvalue of the 2 2 matrix . Thus,
a computationally expensive search in the polarization domain
is avoided by performing a simple eigen-decomposition on a
2 2 matrix. As a result, the PTF-MUSIC spectrum can be ex-
pressed as

(35)

where denotes the minimum eigenvalue operator. The
DOAs of the sources are estimated as the locations of the highest
peaks in the PTF-MUSIC spectrum. For each angle corre-
sponding to the signal arrivals, , the polariza-
tion parameters of the respective source signal can be estimated
from

(36)

where is the eigenvector corresponding to the minimum
eigenvalue .

V. SPATIO-POLARIMETRIC CORRELATIONS

The spatial resolution capability of an array highly depends
on the correlation between the propagation signatures of the
source arrivals [4], [31]. This is determined by the normalized
inner product of the respective array manifold vectors. In the
underlying problem, in which both the spatial and polarimetric
dimensions are involved, the joint spatio-polarimetric correla-
tion coefficient between sources and is defined using the ex-
tended array manifold , i.e.,

(37)

where is the spatial correla-
tion coefficient between sources and for polarization , with

or .
An interesting case arises when the vertically and horizon-

tally polarized array manifolds are identical, i.e.,

. In this case, , and the joint spatio-polari-
metric correlation coefficient becomes the product of the indi-
vidual spatial and polarimetric correlations, that is

(38)

with

(39)
representing the polarimetric correlation coefficient. In partic-
ular, for linear polarizations, , and (39) reduces to

(40)

Since , with the equality holds only when the two
sources have identical polarization states, the spatio-polariza-
tion correlation coefficient is always smaller than that of the
individual spatial correlation coefficient. The reduction in the
correlation value due to polarization diversity, through the in-
troduction of , translates to improved source distinctions.
As such, two sources that could be difficult to resolve using the
single-polarized spatial array manifold or can be
easily separated using the extended spatio-polarized array man-
ifold, defined by . This improvement is more evident in the
case when the source spatial correlation is high, but the respec-
tive polarimetric correlation is low.

VI. SOURCES WITH TIME-VARYING POLARIZATIONS

In this section, we consider the performance of DOA esti-
mation when the source signals have time-varying polarization
signatures. Time-varying polarizations are often observed when
active or passive sources move or change orientations [32].
The performance of polarimetric MUSIC and PTF-MUSIC
techniques are discussed and compared. For simplicity, we
consider in this section the noise-free environment.

A. Polarimetric MUSIC

Given the time-varying nature of the source signal polariza-
tions, the covariance matrix of the received signal vector is

(41)

We replace the expectation operator by time-averages. Then, we
have (42), shown at the bottom of the page, where denotes
the average and is the time-average estimate of the source

(42)
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covariance matrix. The time-varying source signal polarization
vectors are defined, similarly to (26) and (27), as

(43)

(44)

If the source signal polarizations assume constant values, i.e.,
and , then the noise-free received

signal covariance matrix becomes

(45)

The effect of the signal time-varying polarization on the co-
variance matrix is evident from (42) and (45). The two cases
of time-varying and time-invariant polarizations will lead to the
same performance if their corresponding covariance matrices
are identical. Consider, for example, a covariance matrix due to
two source signals. The first signal has a linearly time-varying
polarization over the observation period from 0 to 90 , whereas
the second signal’s linear polarization varies from 90 to 0
over the same period. This case is equivalent to both sources
assuming fixed, time-invariant polarization of 45 , and
thereby, the source polarization diversity cannot be utilized in
DOA estimation using polarimetric MUSIC.

To achieve polarization diversity in the above case, the
data covariance matrix in (42) should be constructed from
the moving average of the received data vector, instead of
averaging over the entire data record. However, using few
samples compromises the precision and robustness of direction
estimation.

B. PTF-MUSIC

In the presence of time-varying polarized sources, the auto-
and cross-polarized SPTFD, defined in (19) and (21), respec-
tively, can be expressed as

(46)

where ,
and . We assume
that the frequency and the polarization signatures of the
sources change almost linearly within the temporal span

of the t-f kernel. Then, using the first-order Taylor-series
expansion, the polarization-dependent terms can be approx-
imated as , where

. The autoterms of the source polarization
information, which reside on the diagonals of ,

, and , are given by

(47)

(48)

(49)

(50)

respectively. For symmetric t-f kernels, , the second si-
nusoidal terms in (48) and (49) assume zero values in the TFD.
Therefore, can be expressed at the autoterm points
as

(51)

(52)

(53)

with

(54)

When different sources are uncorrelated, their time-fre-
quency signatures have no significant overlap. If the t-f points
located in the autoterm region of the th source are used in
constructing the SPTFD matrix, then

(55)

where

In the new structure of the SPTFD matrix of (55), the
source time-varying polarization has the effect of loading
the diagonal elements with and, as such, alters the
eigenvalues of the above 2 2 matrix. However, the eigen-
vector of remain unchanged. The new eigenvalues are

. The signal polarization
signature, i.e., the eigenvector corresponding to the maximum
eigenvalue, is . Therefore,
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TABLE I
SIGNAL PARAMETERS (UNCORRELATED SOURCE SCENARIO)

in the context of PTF-MUSIC, the instantaneous polarization
characteristics can be utilized for source discriminations.

VII. SUBARRAY AND POLARIMETRIC AVERAGING

In coherent signal environments, spatial smoothing [28] and
polarization averaging [29] methods are commonly applied in
the MUSIC algorithms to restore the rank of the source ma-
trix, prior to signal and noise subspace estimations. While spa-
tial smoothing has a drawback of reducing the array aperture,
polarization averaging eliminates pertinent source polarization
information. In a combined spatial and polarization averaging
approach, signal polarizations can be used to limit the reduction
in array aperture. This, in turn, increases the number of coherent
sources that can be resolved by the array over the case where
only spatial averaging is performed.

In this section, the above methods are considered for the
PTF-MUSIC for estimating DOAs of coherent sources in the
context of TFDs, using dual-polarized double-feed arrays. For
subarray averaging, uniform linear arrays (ULAs) are assumed
with identical array manifolds for both polarizations, i.e.,

. For polarization averaging, only the
latter assumption (identical manifolds for both polarizations) is
required.

A. Subarray Averaging

Subarray averaging involves dividing the dual-polarized
antenna array into overlapping subarrays of
antennas, and averaging the respective subarray SPTFD ma-
trices. Define as the new steering matrix for
the first subarray which consists of the first rows of matrix

. The data vector at the th sub-
array is expressed as

(56)

where is the noise vector at the subarray for polariza-
tion , or

(57)

(58)

where denotes the sensor interelement spacing and denotes
the source wavelength. Denoting as the SPTFD ma-
trix corresponding to of the th subarray, the spatially
smoothed SPTFD matrix is defined by averaging
over the subarrays, i.e.,

(59)

The averaged SPTFD matrix can be written as the augmentation
of four spatially-smoothed auto- and cross-polarized SPTFD
matrices, expressed as

(60)

The -th element of , , with
, of the auto- and cross-polarized

matrices in the above equation can be described as

(61)

where
is the steering vector of a subgroup

of sensors for which the received signals are averaged, and
is the spatial correlation between signals

and defined in the -sensor group. It is easy to show that
for any , whereas for .

Different values of and affect the phase of but
not its magnitude. Therefore, averaging the TFDs of the re-
ceived data across the array sensors reduces the interactions
between source signals, whereas the source autoterms remain
unchanged. This in turn reduces the off-diagonal elements of
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the source TFD matrix and leads to matrix rank
restoration.

B. Polarimetric Averaging

Similar to subarray averaging, polarimetric averaging aims
at combating the rank deficiency of the source SPTFD matrix,

, provided that the sources have different polarization
states. The polarimetric averaged SPTFD matrix is defined as

(62)

As with subarray averaging, polarization averaging also reduces
source signal crossterms depending on the polarization correla-
tion between them, as was shown in [33].

C. Combined Spatial and Polarimetric Averaging

Polarization averaging can also be used in conjunction with
subarray averaging. Denote and
as the STFDs corresponding to and , respec-
tively. Then, the combined subarray and polarization averaged
SPTFD matrix becomes

(63)
It is implicit in (59)–(63) that whether it is polarization

and/or subarray averaging, source decorrelation is performed
for each t-f point. Once the rank deficiency in the SPTFD
matrices corresponding to multiple t-f points is restored, one
can estimate the DOAs through PTF-MUSIC (for subarray
averaging) or TF-MUSIC (for polarimetric or combined spatial
and polarimetric averaging since the polarimetric information
is lost in the process of averaging).

D. Decorrelation Requirements

Consider that sources are selected in the t-f domain, out of
which a maximum number of sources are coherent with each
other. It is well-known that to decorrelate coherent sources
using spatial averaging, the minimum number of subarrays must
be . In addition, the condition is required so that
the DOAs of all sources can be identified. However, when
polarization averaging is used in addition to subarray averaging,
only half the number of subarrays is needed, i.e., ,
given that the polarization states of the coherent sources are not
identical. Accordingly, to decorrelate two coherent sources with
different polarization states, polarization averaging alone will
suffice. To decorrelate four coherent sources with different po-
larization states, polarization averaging accompanied with two
subarays will then be required. The proof of the reduction of the
number of subarrays in the presence of polarization averaging
was provided in [29] for non-time-frequency-based methods.
The extension to the t-f based methods is rather straightforward,
and achieved by substituting the covariance matrix with a STFD
or SPTFD matrix [34].

E. Remarks

From the above discussion, the following remarks are in
order.

Fig. 2. Averaged PWVD results. (a) PWVD averaged over the
vertically-polarized array sensors; (b) PWVD averaged over the
horizontally-polarized array sensors; and (c) PWVD averaged over array
sensors and polarizations.

1) Polarization averaging does not require a ULA, a condi-
tion that has to be satisfied in subarray averaging. How-
ever, the dual-polarized sensors must be identically po-
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Fig. 3. Comparison of MUSIC spectra: (a) Conventional MUSIC; (b) polarimetric MUSIC; (c) TF-MUSIC; and (d) PTF-MUSIC.

larized and both polarizations have the identical array
manifolds.

2) Polarization averaging is beneficial for matrix rank
restoration only when the coherent sources have dif-
ferent polarization states. Polarization averaging sacri-
fices the polarization information and, therefore, signal
polarization parameters can not be estimated.

3) In some cases, polarization averaging must be utilized
along with subarray averaging. For example, when three
sources impinge on a five-sensors ULA, while polariza-
tion averaging combined with two subarrays can resolve
the source DOAs, subarray averaging alone would fail.

VIII. SIMULATIONS

A. Uncorrelated Source Scenarios

We consider two sources (sources 1 and 2) with chirp wave-
forms in the presence of an undesired sinusoidal signal (source
3) which impinge on a ULA of four dual-polarized
cross-dipoles with half-wavelength interelement spacing. The

vertical and horizontal array manifolds are set to be equal.
Table I shows the sources’ respective normalized starting and
end frequencies, DOAs (measured from the broadside), and the
two polarization parameters, and . All signals have the same
signal power (SNR = 13 db). The task is to find the DOAs of
the chirp signals. The data length is 256 samples and the length
of the rectangular window used in the pseudo Wigner–Ville
distribution (PWVD) is 65 samples.

As proposed in [35], averaging the sensor TFDs across the
array mitigates the source cross terms and, as such, enhances the
source t-f signatures. The PWVDs averaged over the four sen-
sors are shown in Fig. 2(a) and (b), respectively, for the vertical
and horizontal polarizations. Because the sources are closely
spaced, crossterm mitigation through array averaging is limited.
To further suppress the crossterms, we utilize both the spatial
and polarimetric dimensions. Fig. 2(c) shows the PWVD aver-
aged over the four sensors as well as both polarizations. In this
case, since source 1 and source 2 have orthogonal polarizations,
the cross terms between the two chirp signals are completely
suppressed, revealing the source instantaneous frequencies and
the true chirp signatures. The t-f points along these signatures



1336 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 4, APRIL 2006

TABLE II
SIGNAL PARAMETERS (COHERENT SOURCE SCENARIO

Fig. 4. RMSE performance of the MUSIC methods.

can, subsequently, be considered for STFD and SPTFD matrix
constructions.

The PTF-MUSIC spectrum is computed and the results are
compared with the conventional MUSIC, polarimetric MUSIC,
and TF-MUSIC. The MUSIC spectra for three independent
trials are shown in Fig. 3. For the conventional and TF-MUSIC,
only the vertical polarization components are used. For the TF-
and the PTF-MUSIC, 192 t-f points were selected along the
signatures of each of the two chirp signals meanwhile the sinu-
soidal signal is eliminated from consideration. The TF-MUSIC
benefits from fewer sources and increased SNR, whereas
the polarimetric MUSIC utilizes the distinction in the source
polarization properties. Both attributes are enjoyed by the
PTF-MUSIC. It is evident that only the proposed PTF-MUSIC
accurately estimates the DOAs of the two chirp sources.

Fig. 4 shows the root mean square error (RMSE) performance
of estimated DOA for the four MUSIC methods. The results
are obtained using 50 independent trials for each value of SNR
and averaged over all the selected sources. The RMSE perfor-
mance of the conventional MUSIC with twice the number of
sensors (i.e., eight sensors) is also included for comparison. It
is seen that the PTF-MUSIC outperforms all other methods.
The PTF-MUSIC enjoys about 5-dB gain over the polarimetric
MUSIC due to the source selection/discrimination capability
and the localization of the source signal energy.

B. Coherent Source Scenarios

In the second set of simulations, we consider a ULA of five
dual-polarized cross-dipoles with half-wavelength in-

terelement spacing. Three sources are considered. The first two

Fig. 5. PWVD averaged over all array sensors and polarizations.

sources (sources 1 and 2) are coherent and of identical chirp sig-
natures, whereas the third one is an undesired sinusoidal signal
(source 3). Table II shows the signal parameters. All signals have
the same signal power SNR = 10 dB . The data length is 256
samples. The PWVD averaged over the five dual-polarized sen-
sors is shown in Fig. 5.

1) Polarimetric Averaging: Polarimetric averaging of the
STFD matrices of the data samples across the vertical and the
horizontal polarizations can successfully decorrelate coherent
sources. Fig. 6 shows the spectra of the conventional MUSIC
and TF-MUSIC, respectively, over three independent trials,
where polarimetric averaging was employed on the five vertical
and five horizontal antennas. For the TF-MUSIC method, only
the two coherent sources (i.e., sources 1 and 2) are selected.
It is evident that both methods show a clear spectrum peak
for source 1 as a result of successful decorrelation of the two
coherent sources. However, only the TF-MUSIC shows an
exemplary performance for both sources due to the source
selection capability.

2) Subarray and Polarization Averaging: In this simulation,
polarimetric averaging is performed combined with spatial
smoothing. The spectra of the MUSIC and the TF-MUSIC
techniques utilizing the combined polarization and subarray
averaging are shown in Fig. 7. In this case, the number of
subarrays is 2. For comparison, we plotted in Fig. 8 the
spectra using the conventional MUSIC method, applied to 10
vertically-polarized antenna array. Due to the close spatial
separation between sources 2 and 3, the performance of all
non-time-frequency-based methods is not satisfactory. Only
the TF-MUSIC spectrum, which drops the third signal from
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Fig. 6. Conventional MUSIC and TF-MUSIC spectra with polarization averaging: (a) Conventional MUSIC and (b) TF-MUSIC (two signals chosen).

Fig. 7. Conventional and TF-MUSIC spectra with spatial smoothing and polarization averaging: (a) MUSIC and (b) TF-MUSIC (two signals chosen).

Fig. 8. Ten-sensor conventional MUSIC with spatial smoothing.

consideration, shows sharp and less biased peaks at the DOAs
of the two coherent sources.

C. Sources With Time-Varying Polarization

Two chirp signals impinge upon a uniform linear array (ULA)
of five cross-polarized (horizontal and vertical) dual-feed sen-
sors. The parameters of the two chirp signals are listed in
Table III. Fig. 9 shows the PWVD of two chirp signals. The
interelement spacing of the sensors is half a wavelength. The
array responses in both horizontal and vertical polarizations are
identical. The SNR is 5 dB. The source signals’ polarization
angles and change linearly in the observation period
of 512 samples and are shown in Fig. 10. The length of the
rectangular window used in the PWVD is 65 samples.

We compare the spectra of polarimetric MUSIC and PTF-
MUSIC algorithms, where the sources have time-dependent po-
larizations. When all data samples are used to construct the co-
variance matrix, polarimetric MUSIC estimation fails to resolve
the two sources as both sources appear to have the same po-
larization [see Fig. 11(a)]. This is due to the fact that the two
sources have the same second-order moment of the polarization
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TABLE III
SIGNAL PARAMETERS (TIME-VARYING POLARIZATION SCENARIO)

Fig. 9. PWVD of two chirp signals arriving at the reference sensor.

Fig. 10. Time-varying polarization signatures of the sources.

signature over the observation period and, therefore, the covari-
ance matrix based polarimetric MUSIC method cannot distin-
guish their instantaneous polarization differences.

To take advantage of the time-varying polarizations, there-
fore, we use 95 snapshots in constructing the covariance matrix
for the polarimetric MUSIC in a moving averaging scheme,
whereas 95 consecutive t-f points are used for the PTF-MUSIC.
Fig. 11(b) and (c) shows the performance of the polarimetric
MUSIC and PTF-MUSIC in tracking the DOA, as the source
signal polarization changes. Both methods performance de-
grades when the polarization distinctions among the two source
signal decrease. This is evident in the estimation in the middle
region of the two figures. However, the performance of the

Fig. 11. MUSIC spectra in time-varying polarization scenario:
(a) Polarimetric MUSIC spectra based on the entire data; (b) polarimetric
MUSIC tracking; and (c) PTF-MUSIC tracking.

PTF-MUSIC is superior to that of the polarimetric MUSIC
when the sources have a time-varying polarization.
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IX. CONCLUSION

A platform to deal with diversely polarized sources emitting
nonstationary signals with clear time-frequency (t-f) signatures
has been introduced. This platform, which is termed Spatial
polarimetric time-frequency distributions (SPTFDs), utilizes
the polarimetric, spatial, and temporal signatures of signals
impinging on an array of sensors. Each sensor is of double-feed,
dual-polarized antennas. The SPTFD incorporates the time-fre-
quency distributions (TFD) of the received data across the
polarization and spatial variables. It allows the discrimination
of sources based on their respective direction-of-arrival as
well as their polarization and t-f signal characteristics. The
use of TFD reveals the source time-varying frequency natures,
and as such, permits the consideration of those t-f points of
high signal energy concentrations. The eigen-decomposition
of SPTFDs constructed from a portion of, or the entire, t-f
signatures of all or a subset of the incoming signals is used to
define the polarimetric time-frequency MUSIC (PTF-MUSIC)
algorithm. This algorithm is show to outperform other existing
MUSIC methods, including conventional MUSIC, time-fre-
quency MUSIC, and polarimetric MUSIC. For coherent signal
environments, the ability to collect the data from the horizontal
and vertical polarized antenna arrays, separately, provides the
flexibility to trade off subarray and polarization averaging
for source matrix rank restoration, and as such, can be used
to limit the reduction in array aperture necessary for source
decorrelations. The paper considered the application of TFDs to
sources with a time-varying polarization in the context of array
processing. It has been shown that the difference in the instan-
taneous polarizations of the sources can be uniquely utilized
by the proposed approach to maintain polarization diversity,
specifically, in the cases when the source polarizations have
similar span of polarization angles over the observation period.
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