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I
n this article, we describe the role of time-frequency dis-
tributions (TFDs) in array processing. We particularly 
focus on quadratic TFDs (QTFDs). We demonstrate how 
these distributions can be properly integrated with the 
spatial dimension to enhance individual source signal 

recovery and angular estimation. The framework that 

enables such integration is referred to as spatial TFD (STFD). 
We present the important milestones of STFDs that have 
been reached during the last 15 years. Most importantly, we 
show that array processing creates new perspectives of 
QTFDs and defines new roles to the autoterms and cross-
terms in both problem formulation and solution. Multisen-
sor configurations, in essence, establish a different paradigm 
and introduces new challenges that did not exist in a single-
sensor time-frequency distribution. 

[Adel belouchrani, Moeness G. Amin, Nadège Thirion-Moreau, and Yimin D. Zhang]

[An overview]

Source Separation  
and Localization  

Using Time-Frequency 
Distributions

Th
eo

ry
 a

nd

 A
pplications of Time-Frequency Analysis

© istockphoto.com/–m–i–s–h–a–



 IEEE SIGNAL PROCESSING MAGAZINE [98] NOvEMbER 2013

IntroductIon and 
HIstorIcal PersPectIve
Time-frequency (T-F) signal repre-
sentations enable separations of 
nonstationary signals overlapping 
in both time and frequency 
domains where windowing- and 
filtering-based approaches fail to 
isolate the different signal components [1], [2]. Among numer-
ous nonstationary signals that arise in many passive and sens-
ing modalities, signals with instantaneous frequency (IF) laws, 
such as frequency modulated (FM) signals, have clear T-F signa-
tures that are contiguous and highly localized. These two prop-
erties have led to important advances in nonstationary signal 
detection and classifications over the past four decades. Both 
parametric and nonparametric techniques play important roles 
in characterizing FM signals. Whereas the latter are mainly 
defined by QTFDs that have their roots in Wigner–Ville distribu-
tions [3], the former pursue the estimation of the order as well 
as the parameters of the FM polynomial phase signal (PPS). The 
advantages of QTFDs lie in their accommodation of multi-
component signals, where each component in the signal can 
have a different IF. The PPS parameter estimation techniques 
avoid any bilinear operation and, as such, are not faced with the 
challenge of eliminating cross-terms that falsely point to signal 
power concentration regions when using QTFDs. In addition to 
QTFD and PPS estimation techniques, linear TFDs, such as the 
short-time Fourier transform (STFT) and wavelet transform, 
have also been successfully applied to analyze signals with IF 
characterizations [4]. 

Similar to the T-F signature, the source spatial signature 
also reveals important information about the source. It enables 
source discrimination based on the respective angular position 

as viewed from a receiver array. A 
source may be an emitter or a 
reflector of electromagnetic, 
acoustics, or ultrasound waves. 
Depending on the propagation 
environment, the source can be 
characterized solely by its bear-
ings, i.e., directions-of-arrival 

(DOA) or through a linear combination of its multipaths (see 
Figure 1). The former characterization is known as steering vec-
tors in which the signal exhibits a phase progression across the 
different antennas as it traverses the array. In this case, the 
source spatial signature is characterized by its respective bear-
ing angle that can be provided by DOA estimation techniques. 
The latter is often referred to as the “generalized” steering vec-
tor and establishes the notion of “mixing.” The mixing matrix 
depends on the corresponding source propagation channel and 
is a function of unknown array manifold. In this case, we cast 
the problem as blind source separation (BSS), which can be 
associated with sensors in either colocated or distributed con-
figurations. The maturities of the two general areas of array pro-
cessing and T-F analysis made the case for developing an 
integrated approach where the spatial and T-F signature estima-
tions interplay to serve both problems. The result is an 
improved signal localization and separation using time, fre-
quency, and space variables. We tend to refer to this area of 
research as nonstationary array processing. The importance of 
this area stems from the fact that nonstationary signals are 
encountered in various passive and active arrays using different 
sensing apparatuses. 

In this article, we describe the role of TFD in array process-
ingm, which has wide applications in radar, communications, 
and satellite navigation. We focus on the class of signals where 
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[FIG1] nonstationary array signal processing.
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the IFs uniquely or dominantly define the signal T-F signa-
tures. These signals are ubiquitous and can be biological or 
man-made. Combining the spatial and T-F signatures is 
achieved within a framework referred to as STFDs. This frame-
work utilizes the signal local behavior and power localization 
for improving both signal-to-noise ratios (SNRs) and source 
discriminations prior to performing high-resolution direction 
finding and BSS. The STFD requires the computations of the 
QTFDs of the data received at each antenna, i.e., auto-QTFDs, 
as well as the cross-QTFDs between each pair of sensors. The 
STFD framework was originally applied to narrowband signals 
and then extended to wideband sources. 

concePt oF sPatIal tIme-FreQuency dIstrIbutIons
Consider an analytic signal vector ( )z t  and define the spatial 
instantaneous autocorrelation function as 

 ( , ) ( ) ( ),K z zt t t2 2zz
Hx x x= + -  (1)

where ( ) H$  denotes conjugate transpose (Hermitian) operation. 
An analytic signal is a complex-valued signal that contains 
energy in the frequency domain only at positive frequencies. 
Such a signal is obtained from a real-valued signal thanks to the 
Hilbert transform. The smoothed spatial instantaneous autocor-
relation function is defined as 

 ( , ) ( , ) * ( , ),Q Kt G t tzz zztx x x=  (2)

where ( , )G t x  is some time-lag kernel. The time convolution 
operator *t  is applied to each entry of the matrix ( , ) .K tzz x  The 
class of quadratic STFDs are then defined as 

 ( , ) { ( , )},D t f Q tFzz zz
f

x=
"x

 (3)

where the Fourier transform F  is applied to entry x  of matrix  
( , ) .Q tzz x  The discrete time form equivalent to (3) and (2) leads 

to the following implementation of an STFD 

 ( , ) { ( , ) * ( , )},D Kn k G n m n mDFzz zz
m k

n=
"

 (4)

which can also be expressed as 

( , ) ( , ) ( ) ( ) ,D z zn k G p n m p m p m e
,

zz
m p M

M
H j N

mk4= - + - r

=-

-/  (5)

where the discrete Fourier transform DF  and the discrete 
time convolution operator *n  are applied to entry n  of matrix 
( , ) * ( , )KG n m n mzzn  and matrix ( , )K n mzz , respectively. 

N M2 1= +  is the signal length. Note that the diagonal ele-
ments of the STFD matrix are called autoterms, as they cor-
respond to the quadratic terms associated with each 
component of the vector ( ) .z n  The off-diagonal elements are 
referred to as cross-terms, since they correspond to the bilin-
ear transforms associated with two different components of 
this vector. 

STFD properTieS
Consider a linear model for the vector signal ( )z n

 ( ) ( ),z Asn n=  (6)

where A is a K L#  matrix ( )K L$  and ( )s n  is an L 1#  vector 
referred to as the source signal vector. Under the above model, the 
STFDs take the following structure: 

 ( , ) ( , ) ,D AD An k n kzz ss
H=  (7)

where ( , )D n kss  is the source TFD of vector ( ) .s n  Consider an 
L K#  matrix W,  referred to as a whitening matrix, such that 
WA  is a unitary matrix and is denoted as U.  That is, 

 ( ) ( ) ,WA WA UU IH H= =  (8)

where I  denotes the identity matrix. Pre- and postmultiplying the 
STFD ( , )D n kzz  by W  leads to the whitened STFD, defined as  

 ( , ) ( , ) ( , ) ,D WD W UUDn k n k n kzz zz ss
H H= =  (9)

where the second equality stems from the definition of W  and  
(7). Clearly, the whitening step leads to a linear model with a 
unitary mixing matrix. Note that the whitening matrix can be 
computed as an inverse square root of the data covariance 
matrix [1] or else obtained from the STFD matrices [2]. Note 
that while the computation of the whitening matrix from the 
covariance matrix assumes independent source signals, its com-
putation from the STFD matrices does not require such 
assumption. The STFD structures in (7) and (9) permit the 
application of the powerful subspace techniques to solve a large 
class of problems such as channel estimation, BSS, and high-
resolution DOA estimation [1], [5]. 

STFD STrucTure in narrowbanD  
array Signal proceSSing
When considering L  signals arriving at a K-element antenna 
array, the linear data model 

 ( ) ( ) ( )z As nn n n= +  (10)

is commonly assumed, where ( )z n  is the K 1#  signal vector 
received at the array, ( )s n  is the L 1#  source signal vector, 
matrix [ , , ]A a an1 g=  represents the propagation matrix, ai  is 
the steering vector corresponding to the ith  signal, and ( )n n  is 
an additive noise vector whose entries are modeled generally as 
stationary, temporally and spatially white, zero mean random pro-
cesses, and independent of the source signals. Under the above 
assumptions, the expectation of the TFD matrix between the 
source signal vector and the noise vector  vanishes, i.e., 

 [ ( , )] ,DE n k 0sn =  (11)

and it follows 
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 ( , ) ( , ) ,D AD A In k n kzz ss
H 2v= +u u  (12)

where ( , ) [ ( , )], ( , ) [ ( , )],D D D Dn k E n k n k E n kzz zz ss ss= =u  and 
2v  denotes the noise power. Under the same assumptions, the 

data covariance matrix, commonly used in array signal processing, 
has the structure 

 ,R AR A Izz ss
H 2v= +  (13)

where [ ( ) ( )]R z zE n nzz
H=  and [ ( ) ( )] .R s sE n nss

H=  From rela-
tions (12) and (13), it is clear that the STFD and the covariance 
matrices exhibit the same eigenstructure. This structure is often 
exploited to estimate signal parameters through  subspace-based 
techniques  [6], [7]. 

aDvanTageS oF STFDs over  
covariance maTrix
STFD-based methods can handle signals corrupted by interfer-
ence occupying the same frequency band and/or the same 
time segment but with different T-F signatures, improving sig-
nal selectivity over approaches using the covariance matrix. In 
addition, the effect of spreading the noise power while localiz-
ing the source signal power in the T-F plane increases the 
effective SNR and provides robustness with respect to noise. 
Quantitative evaluation of such improvement can be found in 
[2]. If one selects the kernel ( , )G n m  in (4) so that the corre-
sponding TFD satisfies the marginal condition ([3], Sec. 6.1), 
then we obtain 

 ( , ) [ ( ) ( )] .D z z Rn k E n nzz zz
k

H= =u/  (14)

Therefore, Rzz  is a low-dimension representation of ( , ) .D n kzzu  
In fact, this is the reason that the STFD-based methods offer 
better performance, such as signal selectivity, interference 

suppression and high resolution, than conventional covariance 
matrix-based approaches. 

oTher SpaTial Time Frequency  
repreSenTaTionS
A similar STFD framework can be provided using linear trans-
forms, such as the STFT and wavelet transform, leading to the 
following spatial STFT 

 ( , ) { ( ) ( )},S n k h m n z mDFz
m k

= -
"

 (15)

where ( )h n  is a windowing function. Under the linear model 
(6), the spatial STFT retains the same structure but with higher 
dimensionality 

 ( , ) ( , ) .S ASn k n kz s=  (16)

These transforms tradeoff temporal and spectral resolutions, 
and their squared magnitudes are already considered within 
the STFD framework. Moreover, multiresolution analyzes are 
not most effective for signals characterized by their IF laws. 
Figure 2(a) illustrates the discrimination problem between 
two closely spaced chirp signals when dealing with the STFT. 
In contrast, in Figure 2(b), the use of a QTFD allows the two 
signals to be resolved. Therefore, the STFD, incorporating 
QTFD, enables source separation and thus estimation of the 
respective DOAs. In practice, T-F discrimination is generally 
performed through T-F point selection procedures, as dis-
cussed in the next section. 

tIme-FreQuency PoInt selectIon
The advantages of T-F-based BSS and DOA estimation can only 
be materialized if appropriate T-F points are selected in the 
formulation of the STFD matrices. 
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[FIG2] (a) the square modulus of the stFt of two closely spaced chirps. (b) the QtFd of two closely spaced chirps as used in an stFd 
framework. 
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Time-Frequency poinT properTieS
The STFD framework assumes the T-F signatures of the 
source signals are sufficiently different to satisfy one or two of 
the following conditions:

1) There exist T-F points ( , )n kl l  that correspond to indi-
vidual source autoterms. In other words, if ( , )D n ks si j =  

( , )D n k ,ss ij^ h  then 

 ( , )D n k D, , ,s s l l i j i j li j d=  (17)

and, for each of the L  sources ,i  there is at least an thl  T-F 
point, such that .D 0, ,i i l !  ,i jd  is the Kronecker delta, i.e., 

0,i jd =  if i j!  and one otherwise. D , ,i j l  ( D , ,i i l ) is the value 
of the QTFD between the sources si  and s j  (or si ) at the 
T-F point ( , ) .n kl l

2) There exist T-F points ( , )n kl l  that correspond to cross-
terms. That is, 

 ( , ) ( ) .D n k D1 , , ,s s l l i j i j li j d= -  (18)

The above two assumptions imply that, in the STFD frame-
work, the source T-F signatures should not be strongly over-
lapping. The “sufficiently” different signatures represent the 
“known” discriminating property about the sources required 
for applications of blind methods. 

Time-Frequency poinT caTegorizaTion
Figure 3 shows the real part of the source STFD matrix 

 ( , )
( , )
( , )

( , )
( , )

D n k
D n k
D n k

D n k
D n kss

s s

s s

s s

s s1 2

=
1 1

2

1 2

2

f p

when the pseudo-Wigner–Ville distribution (PWVD) is used 
with a Hamming window of size 65. In this example, the two 
signals of interest, ( )s n1  and ( ),s n2  are linear FM [(LFM), or 
chirp] signals. They cross at T-F point (128, 0.3). The time 
scale is [ , ]0 255  and the frequency scale is given in normalized 
frequency (limited to [ , . ],0 0 5  which corresponds to the first 
128 frequencies obtained by discrete Fourier transform divided 
by 256). As observed in Figure 3, the following four types of T-F 
points are observed. 

 ■ Type 1: T-F points that correspond to source autoterms 
only. For those points, the source TFD matrix is a rank-one 
diagonal matrix. The rank-one diagonal matrix is the 
“only” possibility of diagonal matrix due to the “middle-
point” rule that defines the cross-terms geometry [3]. 

 ■ Type 2: T-F points that correspond to source cross-terms 
only. For those points, the source TFD matrix is off-diago-
nal. (A matrix is said to be off-diagonal if its diagonal 
entries are zeros.) 
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[FIG3] the real part of ( , )D n kss  when the PWvd is used for two lFm signals. t-F point types: source autoterms only (red squares), 
source cross-terms only (black square), both source cross-terms and autoterms (blue square), and neither source cross-terms nor source 
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 ■ Type 3: T-F points that correspond to both source cross- 
and autoterms. For those points, the source TFD matrix 
does not exhibit an algebraic structure that could be 
directly exploited. 

 ■ Type 4: T-F points where there are neither source cross-
terms nor source autoterms.
The diagonal and off-diagonal structures of Types 1 and 2 

are generally distorted when the sources are mixed. Only 
Types 1 and 2 are of interest to the DOA estimation and BSS 
problems. The others should be discarded since they do not 
play any role in either problem. Type 4 points can be removed 
by applying appropriate thresholding. It is difficult to do the 
same for Type 3. When using a QTFD with reduced interfer-
ences (such as spectrogram, smoothed PWVD (SPWVD) [3], or 
based on particular kernels like 
in [8]), Type 2 points will assume 
small or zero values. However, 
Type 3 points will persist, in par-
ticular, when the sources have 
overlapping signatures. With 
reduced interference distribution, 
it becomes easier to select Type 1 
points, but often at the expense of 
autoterms localization (see Figure 2). Disjoint sources elimin-
ate a great majority of Type 3 points and facilitate the auto-
matic selection of Type 1 and 2 points. Such property has been 
exploited in linear T-F-based approaches (principle of the 
degenerate unmixing estimation technique (DUET) algorithm 
[9]). Sophisticated time-frequency point selection procedures 
are generally required, as discussed in the next section. 
Despite the relative effectiveness of these procedures, cross-
terms remain undesirable and discouraged when they exten-
sively clutter the T-F domain. 

Time-Frequency poinT SelecTion proceDureS
Due to (7) and (9) and the fact that in Type 1 (respectively 
Type 2) points, ( , )D n kss  have a very particular algebraic struc-
ture (rank-one diagonal matrix, respectively off-diagonal 
matrix), a natural way to tackle the BSS or DOA problems will 
be to use matrix decomposition algorithms, which happens to 
be a rather classical approach in BSS. Yet, the problem of the 
automatic T-F points selection, in the general case, is not sim-
ple. Several T-F point selection procedures have been sug-
gested, some of which operate in a whitened context, while 
others do not require such preprocessing. In [10], an exhaus-
tive panorama of all existing detectors is provided and these 
detectors are compared on synthetic signals involving multi-
components correlated sources. In a whitened context, some 
procedures utilize matrix trace invariance under unitary 
transform, making it possible to decide on the presence of 
source autoterms. One procedure states that [11] for Type 2 
points, select STFD matrices that verify 

 
trace{ ( , )}

,( , )
D

D n k
n kzz

zz
1 f  (19)

where trace{·}  denotes matrix trace, ·  Frobenius norm 
and f  is a small user-defined positive scalar [in the section 
“Time-Frequency Source Separation,” these matrices will be 
denoted by .(.) ]c  For Type 1 points, select STFD matrices 
that verify  

 
trace{ ( , )}

( , )
D

D n k
n kzz

zz

2 f  (20)

[in the section “Time-Frequency Source Separation,” these matri-
ces will be denoted by .(.) ]a  There is a potential problem with the 
above detector concerning the selection of Type 1 points. If a non-
negligible value of the trace qualifies the presence of source auto-
terms, it does not necessarily mean the absence of source 
cross-terms. In essence, some of the selected T-F points could be 

Type 3 points. This problem is 
addressed in [10] where, under the 
assumption that the STFD exhibits 
a Hermitian symmetry, the real-
value property of the autoterms and 
the complex-value property of the 
cross-terms are exploited. A follow-
up work accounted for the fact that 
cross-terms can take real values. 

Another approach for Type 1 points identifies rank-one matrices 
[12]. More recently, a detector based on the use of the Hough 
transform has been suggested [8].

In a nonwhitened context, most procedures take advantage of 
the fact that the source TFD is a diagonal rank-one matrix at an 
autoterm T-F point of a single source. One way to check whether a 
matrix is rank one is to use a singular value decomposition (SVD). 
For example, it is stated in [13] that for Type 1 points, select STFD 
matrices that verify 

 
( , ) ,n k 1C 2 f= -

( , )
( , )

n k
n k

i

K

kk

K

i1

1

1

m

m

m

=

=

( , ) ,n k 2 fl

Z

[

\

]
]

]
]

/
/

 (21)

where ( , ), , , ,n k i K1i gm =  are the singular values of the STFD 
matrix ( , ) .D n kzz  The latter are sorted in a decreasing order. 
The parameters f  and fl  are some small positive user-
defined scalars. Another procedure was proposed in [14] for 
“quasi-disjoint” sources. In [10], a slight modification was 
suggested to cast off the “quasi-disjoint” assumption. In a 
noisy environment, the selection of T-F points of peak power 
(Type 1 and Type 2 T-F points) may become challenging 
when the signals are highly corrupted by noise. The spatial 
diversity, embedded in the STFD matrix, can reduce noise 
and enhance the T-F signatures of the signals of interest. 
This is achieved by averaging the TFDs over all receiver sen-
sors [15], [16]. In [17] and [18], noise is considered within 
the  Neyman–Pearson framework. The best T-F point selec-
tion method would depend on the data, but focusing on Type 
1 points by searching of rank-one matrices is likely to give 
the desired performance. 

tHe advantaGes oF t-F-based  
bss and doa estImatIon can only 

be materIalIzed IF aPProPrIate 
t-F PoInts are selected In tHe 

FormulatIon oF tHe  
stFd matrIces.
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tIme-FreQuency doa estImatIon
The advantages of using STFD for DOA estimation stem from 
the fact that T-F point selection, as discussed previously, per-
mits DOA estimation to be performed using STFDs for one or 
a few signal arrivals with specific T-F signatures [2]. This 
means that direction finding can be performed with the 
number of array sensors smaller than the number of imping-
ing signals. In essence, separate STFDs can be constructed, 
each corresponding to one source, to perform individual 
DOA estimation. This would require, however, DOA estima-
tion to be repeated for each signal. By selecting T-F points 
with high signal power, the overall SNR can be improved. 
This improvement over standard covariance matrix counter-
parts is more pronounced when the input SNR is low. The 
offerings of the STFD-based approach extend to all DOA esti-
mations based on second-order statistics, and have been uti-
lized to develop T-F-based methods underlying, e.g., multiple 
signal classification (MUSIC) and maximum likelihood (ML) 
[6], [5]. The spatial quadratic distribution can be extended to 
joint-variable domain distributions, such as the spatial ambi-
guity function (SAF) [19]. The SAF have different features 
from STFD, e.g., the signal autoterms are positioned at and 
around the origin, making it easier to avoid cross-terms in 
matrix constructions. While STFD-based DOA estimation was 
first developed and examined using the narrowband signal 
model, it was thereafter considered for wideband signal plat-
forms [20], [21]. For signals whose IFs can be modeled and 
finitely parameterized, proper linear transformations provide 
effective alternatives to STFD-based techniques. For exam-
ple, FM signals can be made stationary so that the resulting 
sinusoids can be effectively processed by filtering to achieve 
source discrimination and noise mitigation prior to perform-
ing DOA estimation [22]. 

Time-Frequency muSic
To describe conventional MUSIC, we denote Rzz

t  as the esti-
mated covariance matrix of data vector ( ),z n  and Gt  as the 
noise subspace of .Rzz

t  We use ·t  to emphasize that the results 
are estimated. The MUSIC technique estimates the DOAs by 
determining the L  values of i  for which the following spatial 
spectrum is maximized: 

 ( ) ( ) ( ) ,a GG afMU
H H 1

i i i=
-t t6 @  (22)

where ( )a i  is the steering vector corresponding to .i  Simi-
larly, for T-F-MUSIC, which selects T-F regions belonging to 
Lo  signals ( ),L L0 #  we denote Gtf  as the noise subspace of 
the STFD matrix .Dzz

t  The noise subspace Gtft  can be obtained 
based on multiple selected T-F points and by using either joint 
block-diagonalization (JBD) [6] or T-F averaging [2]. For 
Q-selected T-F points ( , ), , ..., ,D n k l Q1zz l l =  the JBD provides 

[ , ..., ]U u uK1=  

 ( , )U u D uarg max n k
U ,

zzi
H

l l p
i p

K

l

Q
2

11
=

==

.t //  (23)

The matrix Ut  is then partitioned into the estimated signal and 
noise subspaces. The T-F averaging, on the other hand, is a much 
simpler alternative that provides the eigenmatrix of ( , ),D n kzz l l

, ..., ,l Q1=  through eigendecomposition of D Dzzl

Q

1
=

=
t /

( , ) .n kl l  Once the noise subspace is obtained, the DOAs are deter-
mined by locating the L0  peaks of the spatial spectrum  

 ( ) ( ) ( ) .a G G af MU
tf tf tfH H 1
i i i=

-t t^ h6 @  (24)

In [2], the variance of the estimated DOA is analytically exam-
ined using LFM signals as examples. Next, we demonstrate the 
advantages of T-F-MUSIC, as compared to conventional MUSIC. 
The IF laws of the LFM signals are assumed to be perfectly 
known. 

Example
Consider a uniform linear array of eight sensors with an interele-
ment spacing of a half wavelength, and an observation period of 
1,024 samples [2]. Two LFM signals are emitted from two sources 
positioned at angles 1i  and .2i  The start and end frequencies of 
the signal source at 1i  are f 0s1 =  and . ,f 0 5e1 =  whereas the 
corresponding two frequencies for the other source at 2i  are 

.f 0 5s2 =  and ,f 0e2 =  respectively. PWVD with rectangular win-
dow of size H 129=  is used to compute the TFD, and T-F aver-
aging is used to compute the noise subspace. Figure 4 displays 
the root-mean-square error (RMSE) of the estimated DOA 1it  ver-
sus SNR for conventional MUSIC, TF-MUSIC, and the  Cramer–
Rao lower bound (CRLB), where( , ) ( , ) .10 101 2i i = - c c  Both 
signals were selected when performing TF-MUSIC ( ) .L L 20 = =  
The results were averaged over 100 independent Monte Carlo 
runs. The advantages of  T-F-MUSIC in low SNR cases are evident 
from this figure. The deviation of the simulation results from the 
theoretical results for low SNR is because only the lowest coeffi-
cient order of the perturbation expansion is used in deriving the 
theoretical results [2]. Figure 5 shows examples of the estimated 
spatial spectrum based on T-F-MUSIC and the conventional 

−25 −20 −15 −10 −5 0 5 10
10−2

10−1

100

101

SNR (dB)

R
M

S
E

 (
°)

Conv. MUSIC (Theo.)
Conv. MUSIC (Exp.)
TF−MUSIC (Theo.)
TF−MUSIC (Exp.)
CRLB

[FIG4] the rmse of doa estimation versus input snr.



 IEEE SIGNAL PROCESSING MAGAZINE [104] NOvEMbER 2013

MUSIC where the angle separation is small ( . ,2 51i =- c   
. ) .2 52i = c  The input SNR is 5-  dB. The T-F-MUSIC algorithm 

is performed separately for two sets of T-F points, each belonging 
to one source (i.e., L 10 =  in each T-F-MUSIC operation). It is 
evident that the two signals are resolved by the TF-MUSIC 
whereas the conventional MUSIC fails. 

Time-Frequency maximum likelihooD meThoD
Consider array observations ( ), ( ), , ( ),z z z N1 2 f  as described 
in (10), where the mixing matrix ( )A i  is represented as a 
function of the DOAs .i  For conventional ML methods, the 
log-likelihood function, after omitting the constant terms, is 
given by 

 ( ) ) ) ( ) ) ) ( ) .z( A( z( A(n s n n s n1L
n

H

i

N

2
1

i
v

i i=- - -
=

6 6@ @/  (25)

The ML estimate of i  is obtained as the following minimizer: 

 trace ( ) ( ( ) ( )) ( ) .I A A A A Rarg min zz
H H1i i i i i= -

i

-t t6 @$ .  (26)

We now consider the T-F-ML method. We select L L0 #  signals 
in the T-F domain. The T-F-ML estimate of ,0i  i.e., the DOAs of 
the selected L0  signal arrivals, is obtained as the following min-
imizer, which replaces Rzz

t  in (26) by Dzz
t  [5], 

trace ( ) ( ) ( ) ( )]I A A A A D .arg min · zz
H H

0 0 0 0
1

0
0

i i i i i= -
i

-t t^ h6" ,

 (27)

Similar to TF-MUSIC, signal localization in the T-F domain 
enables us to select fewer signal arrivals and thus improves the 
DOA estimates, particularly when the signals are closely 
spaced. In addition, because ML performs multidimensional 
search, selection of fewer sources also reduces the dimension 
of the search space for significant reduction of the computa-
tional complexity. 

In [5], an example is given to show that the T-F-ML can 
estimate the respective DOAs of two closely spaced coherent 
sources (identical sinusoidal frequencies with a constant phase 

difference), whereas T-F-MUSIC fail to separate these two 
coherent sources. 

Doa eSTimaTion oF wiDebanD  
nonSTaTionary SignalS
DOA estimation for wideband signals, for which the steering 
vector is frequency dependent, is different from the narrow-
band signal counterpart. Conventionally, wideband signals are 
decomposed into a set of narrowband signal components using 
the Fourier transform. The resulting narrowband signals can 
then be processed either incoherently or coherently. Coherent 
processing techniques align the phases of the narrowband sig-
nals before they are combined. An effective and commonly 
used technique is the coherent signal-subspace processing, 
which uses a set of focusing matrices to map the steering vec-
tor at each frequency into that at a reference frequency prior 
to coherent combining. The incoherent processing tech-
niques, on the other hand, avoid phase alignment. For exam-
ple, the output power of narrowband Capon beamformers can 
be combined using the arithmetic or geometric averaging 
operation. Generally, the coherent techniques are often pre-
ferred due to the superior performance compared to the inco-
herent counterparts. 

T-F analysis provides a convenient platform to apply coher-
ent signal-subspace for LFM signals and other nonstationary 
signals with clear IF laws. Because LFM signals are instanta-
neous narrowband, focusing matrices can be easily applied to 
T-F points, and the decomposition of the LFM signals into a 
spectrum of frequency bins is inherently performed in the T-F 
analysis. By assuming that the wideband signals are separable in 
the T-F domain and their IFs do not rapidly change, [20] uses a 
sufficiently short sliding window to construct the STFD matri-
ces so as to preserve the narrowband structure of the array 
manifold. The focusing matrices are then applied to the STFD 
matrices at selected T-F points corresponding to the source T-F 
signatures. In [21], the wideband DOA estimation problem is 
considered in the ambiguity domain for LFM signals with 
known chirp rates. This method utilizes the fact that the auto-
ambiguity function of an LFM signal yields a phase progression 
that is proportional to the chirp rate and the DOA-dependent 
delay but is independent of the initial delay and frequency of the 
LFM signal. As such, the DOAs can be obtained because the 
LFM parameters are known a priori. 

tIme-FreQuency source seParatIon
A BSS problem consists of recovering the original waveforms of 
the source signals without any knowledge of their linear mix-
ture. Two types of inherent indeterminacy exist in a BSS prob-
lem, i.e., source signals can only be identified up to a fixed 
permutation and some complex factors [23]. When the spectral 
content of the source signals is time-varying, one can exploit 
the powerful tool of the STFDs to separate and recover the 
incoming signals. In this context, the BSS problem can be 
regarded as signal synthesis from the T-F plane with the incor-
poration of the spatial diversity provided by the antennas. In 
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contrast to conventional BSS approaches, the STFDs-based sig-
nal separation techniques allow separation of correlated Gauss-
ian sources with identical spectral shape, provided that the 
sources have different T-F signatures. 

Herein, the multiantenna signal ( )z n  is assumed to be non-
stationary and to obey the linear model (6). The problem under 
consideration consists of identifying the matrix A and/or 
recover the source signals ( )s n  up to a fixed permutation and 
some complex factors. By selecting autoterm points, the whit-
ened auto STFDs have the structure 

 ( , ) ( , )D UD Un k n kzz ss
a a H=  (28)

with ( , )D n kss
a  denoting a diagonal matrix. The missing uni-

tary matrix U  can be retrieved up to permutation and phase 
shifts by joint diagonalization (JD) of a combined set 
{ ( , ) | , , }D n k l P1zz

a
l l g=  of P  auto STFDs. The incorporation 

of several autoterm points in the JD reduces the likelihood of 
having degenerate eigenvalues and increases robustness to a 
possible additive noise. The above JD is defined as the maximi-
zation of the criterion 

 ( ) | ( , ) |V v D vC n kJD
def

zz
i

L

l

P

i
H a

l l i
11

2=
==

//  (29)

over the set of unitary matrices [ , , ] .V v vL1 f=  The selection 
of cross-term points leads to the whitened cross STFD, 

 ( , ) ( , )D UD Un k n kzz ss
c c H=  (30)

with ( , )D n kss
c  an off-diagonal matrix. The unitary matrix U   

is found up to permutation and phase shifts by joint off- 
diagonalization (JOD) of a combined set of Q  cross STFDs,
{ ( , ) | , , } .D n k l Q1zz

c
l l f=  The JOD is defined as the maximiza-

tion of the criterion 

 ( ) | ( , ) |V v D vC n kJOD
def

zz
i

L

l

Q

i
H c

l l i
11

2=-
==

//  (31)

over the set of unitary matrices [ , , ]V v vL1 f= . The unitary 
matrix U  can also be found up to permutation and phase shifts 
by a combined JD/JOD of the two sets { ( , ) | , , }D n k l P1zz

a
l l f=

and { ( , ) | , , } .D n k l Q1zz
c

l l f=  Note that with the introduction 
of the STFD framework and with the goal of source separation, 
cross-terms in the T-F plane are no longer undesirable compo-
nents, as in the case of single-sensor processing, indicating false 
manifestation of energy. Rather, cross-terms and autoterms 
assume equal roles in multisensor signal processing. Once the 
unitary matrix U  is determined from either the JD, the JOD, or 
the combined JD/JOD, an estimate of the mixing matrix A  can 
be computed by the product W U,#  where W  is the whitening 
matrix and ( ) #$  denotes the pseudo-inverse operator. An esti-
mate of the source signals ( )s n  can then be obtained from the 
product ( ) .A z n#  BSS can also be performed by exploiting 
directly the auto- or cross-STFDs (7) without relying on the 
whitening step [10], [13], [24]. Note that the latter usually 
establishes a bound on the reachable performance. 

One of the most important contributions of the STFD frame-
work to BSS problems is enabling solutions of the under- 
determined problem where there are more sources than sensors 
(i.e., ) .L K2  Herein, for the resolution of the underdetermined 
problem, we review a STFD-based BSS method [14]. We start by 
selecting autoterm points where only one source exists. The 
corresponding STFD then has the following form: 

 ( , ) ( , ) , ( , ) ,D a an k D n k n kzz s s i i
H

ii i ! X=  (32)

where iX  denotes the T-F support of the ith source. The main 
idea of this algorithm is to cluster together the autoterm points 
associated with the same principal eigenvector of ( , )D n kzz  rep-
resenting a particular source signal. Once the clustering and 
classification of the autoterms is performed, the estimates of the 
source signals are obtained from the selected autoterms using a 
T-F synthesis algorithm [25]. Note that the missing autoterms 
in the classification, often due to intersection points, are auto-
matically interpolated in the synthesis process. An advanced 
clustering technique of the above autoterms based on Gap sta-
tistics is proposed in   [26]. Note that a byproduct of the above 
clustering procedures in the STFD framework is the estimation 
of the source number. 

aPPlIcatIons
Array processing for source separation and localization is impor-
tant in a wide variety of applications. Conventional array signal 
processing algorithms assume stationary signals and mainly call 
for the covariance matrix estimation of the data vectors. In con-
trast, T-F-based array processing techniques, as discussed above, 
exploit signal nonstationarity and, as a result, offer improved 
source separation and localization capabilities for use in many 
applications, such as wireless communications, navigation, radar, 
sonar, underwater communications, and biomedical systems. 
Some application examples are discussed below. 

In wireless communications, FM signal representations can 
be used for pulse shaping in single- or multiuser communica-
tions. In the latter, multiple sets of FM waveforms are designed 
to have distinct IF laws so as to achieve low correlations among 
different waveforms. Array signal processing improves the sep-
arability of FM signals impinging from different directions or, in 
the situation of multipath propagation, with different channel 
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coefficients. FM signals are also used as smart jamming sources. 
In particular, for FM jammers encountered in direct-sequence 
spread-spectrum (DS/SS) communications and GPS, T-F-based 
techniques enable improved DOA estimation of the jammers 
and thereby facilitate their mitigation [27]. 

In radar applications, LFM signals are commonly used as 
sensing waveforms, whereas target Doppler signatures demon-
strate nonstationarity over the slow time samples. Therefore, 
T-F-based source separation and localization are critical means 
to handle such signals, particularly when the signals are noisy. 
Two examples are as follows: 

 ■ In [28], the STFD-based BSS 
technique [1] is applied to 
ground penetration radar for 
the detection of permafrost 
interface. Because of the shal-
low depth, the response from 
the targets (permafrost) and the 
clutter from ground surface 
overlap in the time domain and 
cannot be separated by simple 
gating. Spatial filtering is diffi-
cult to be applied as well for clutter suppression because the 
medium is not homogeneous. BSS is considered effective for 
the separation of target response from ground surface clutter. 
The nonstationarity of the target response comes from the 
fact that the response is a superposition of many permafrost 
scatterers that have different arrival time and different fre-
quencies The measurement data are collected in multiple 
positions, yielding a synthetic array aperture. As such, the 
STFD platform is very suited in this problem to exploit the 
distinguished in time, frequency, and space for effective sepa-
ration of the permafrost surface response from ground surface 
clutter. Enhanced identification of permafrost surface is 
achieved from the separated permafrost response signal. 

 ■ A practical and tangible method for providing the altitude 
information in over-the-horizon radar system is based on 
micromultipath model that makes use of multipath returns 
due to the ocean or ground reflections local to the target [29]. 
As shown in Figure 6, one path from the target is reflected only 
by the ionosphere, whereas the other is reflected by the earth 
surface and the ionosphere. The two paths have different Dop-
pler frequencies when a target maneuvers with an elevation-
direction component. As such, the observed multipath received 
signal corresponding to a maneuvering target becomes a mul-
ticomponent FM signals with very close IF and angular separa-
tions. DOA estimation is possible only after separating the two 
paths exploiting their difference in the TFD, as each individual 
signal is converted into a stationary signal and properly filtered 
[22]. The resolved DOA estimates of the two paths yield accu-
rate estimation of the target altitude.
In an underwater environment, LFM signals are also com-

monly used in active sonar systems, whereas mammals like dol-
phins rely heavily on sound production and reception to navigate, 
communicate, hunt, and avoid predators in dark or limited-vision 

waters. In addition, continuous-wave (CW) and narrowband sig-
nals are usually distorted due to nonlinear propagation. As such, 
T-F-based array signal processing can play an important role for 
the separation and localization of emitters. In [30], the T-F-MUSIC 
technique is used in an array of multiple hydrophones to produce 
passive acoustic oceanic tomography. 

The ubiquitous use of multiple sensors, whether in colocated 
or in distributed architectures, in radar, acoustic, and biomedical 
application areas, will continue to invite STFDs to play a role in 
array signal processing of nonstationary signals. Signals that are 
instantaneously narrowband are locally sparse by the virtue of 

their T-F power localizations. As 
such, compressive sensing theory 
and sparse signal reconstruction 
can prove effective in achieving 
source separation and direction 
finding using significantly reduced 
number of observations. 

The choice of applying linear 
T-F transforms versus quadratic or 
higher-order TFDs in conjunction 
with array processing will remain 

to be application specific. It will be influenced by the underlying 
physical model and prior knowledge of signal characteristics. 

conclusIons
In this article, we presented a review of the spatial time- frequency 
distributions that constitute an effective framework that enables 
the integration of T-F analysis and array signal processing. Its 
objective is to use the signal power localization properties in the 
T-F domain to enhance the attributes of multisensor receivers, 
especially for direction finding and source separation of far field 
nonstationary sources. The key is to permit linear problem formu-
lation where the sensor data are expressed in terms of the source 
time-frequency signatures. In so doing, SNR enhancement and 
source discrimination can be exploited prior to performing sub-
space decomposition and source signal recovery. The article dis-
cussed challenges and approaches for the selection of T-F points 
along the T-F signatures as well as at cross-terms. It was empha-
sized that the T-F and spatial degrees of freedom can interplay and 
be exploited to enhance their respective domain source character-
ization. With progress in sensing technology driving lower cost 
and higher efficiency sensors and with nonstationarity underlying 
many signal and propagation channel characteristics in emerging 
applications, it is expected that the STFD framework and others 
combining power localizations in space, time, and frequency will 
play a stronger role in signal analysis and sensor data processing. 
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