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The Spatial Ambiguity Function and Its Applications
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Abstract—This letter introduces the spatial ambiguity functions
(SAF’s) and discusses their applications to direction finding
and source separation problems. We emphasize two properties
of SAF’s that make them an attractive tool for array signal
processing.

Index Terms—Array signal processing, joint-variable MUSIC,
nonstationary signals, spatial ambiguity function, time-frequency
distribution.

I. INTRODUCTION

T HE EVALUATION of quadratic time-frequency distribu-
tions of the data snapshots across the array yields spatial

time-frequency distributions (STFD’s), which can be used to
solve a large class of blind source separation and high resolution
direction-of-arrival (DOA) estimation problems [1], [2]. STFD
techniques are appropriate to handle sources of nonstationary
waveforms that are highly localized in the time-frequency do-
main.

The concept of STFD can been extended to an arbitrary joint-
variable domain [3], [4]. In this letter, the ambiguity functions
are considered. Similar to STFD’s, spatial ambiguity functions
(SAF’s) are discriminatory tools. The sources whose ambiguity
domain signatures are used in constructing the SAF matrix are
the only ones considered for signal separation and subspace es-
timation.

II. A NALYSIS MODEL

The following linear data model

(1)

is commonly used in narrowband array processing,
where is the mixing matrix of dimension ,

is the sensor array output
vector, and is the source signal
vector. The superscript denotes the transpose operator.
is an additive noise vector. In direction-finding problems, we
require to have a known structure.

The SAF matrix of a signal vector is defined as

(2)
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where and are the frequency lag and the time lag, respec-
tively, and denotes conjugate transpose. In a noise-free envi-
ronment, . In this case

(3)

Equation (3) is similar to the formula that has been commonly
used in blind source separation and DOA estimation problems,
relating the data correlation matrix to the signal correlation ma-
trix [5], [6]. Here, these matrices are replaced by the data spa-
tial ambiguity function and signal ambiguity function matrices,
respectively. The two subspaces spanned by the principle eigen-
vectors of and the columns of are identical. This
implies that array signal processing problems can be approached
and solved based on the SAF.

III. PROPERTIES OFSPATIAL AMBIGUITY FUNCTIONS

The SAF’s have the following two important offerings that
distinguish them from other array spatial functions.

1) The crossterms in between source signals reside on the
off-diagonal entries of matrix , violating its
diagonal structure, which is necessary to perform blind
source separation. In the ambiguity domain, the signal
autoterms are positioned near and at the origin, making it
easier to leave out crossterms from matrix construction.

2) The autoterms of all narrowband signals, regardless of
their frequencies and phases, fall on the time-lag axis
( 0), while those of the wideband signals fall on a
different ( ) region or spread over the entire ambiguity
domain. Therefore, the SAF is a natural choice for re-
covering and spatially localizing narrowband sources in
broadband signal platforms.

IV. A MBIGUITY -DOMAIN MUSIC

Similar to time-frequency MUSIC [2], the signal and noise
subspaces of the SAF matrix can be
obtained by the block joint-diagonalization of ob-
tained at different points. Once the noise subspace is
estimated, the ambiguity-domain MUSIC (AD-MUSIC) tech-
nique estimates the DOA’s by finding the largest peaks of
the localization function .

Consider the scenario of a four-element, equispaced linear
array, where one chirp signal and two sinusoidal signals are re-
ceived. The data record has 128 samples. All three signals have
the same SNR of 20 dB. The DOA’s of the chirp signal and the
two sinusoidal signals are 15, 10 , and 0, respectively. While
the ambiguity function of the chirp signal sweeps the ambiguity
domain with contribution at the origin, the exact autoterm ambi-
guity function of the narrowband arrivals and is zero
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Fig. 1. Ambiguity functions of the chirp signal and two sinusoidal signals.

Fig. 2. Estimated spatial spectra of AD-MUSIC and conventional MUSIC.

for nonzero frequency lags and may have nonzero values only
along the vertical axis 0.

In this simulation example, we selected 24 points on the
time-lag axis excluding the origin, and in so doing emphasized
the narrowband components. Fig. 1 shows the ambiguity
function where the two vertical lines represent the crossterms
between the sinusoidal components. Fig. 2 shows the two
estimated spatial spectra of three independent trials. One
spectrum corresponds to the conventional method, and the
other corresponds to the AD-MUSIC. There are two dominant
eigenvalues for the case of the AD-MUSIC, since the chirp
signal has been dropped out through our careful selection of
the ambiguity-domain points. It is clear that the AD-MUSIC
resolves the two sinusoidal signals, while the conventional
MUSIC could not separate the three signals.

V. AMBIGUITY -DOMAIN SOURCESEPARATION

Analogous to blind source separation based on STFD [1],
blind source separation based on SAF consists mainly of two
steps. The first step is to whiten the array signal vector by an

matrix such that (i.e.,
is a unitary matrix). The whitening matrix can be ob-

tained, for example, from the covariance matrix [1]. The second
step is to perform joint diagonalization to obtain the unitary ma-

Fig. 3. Ambiguity functions of the mixed signal.

Fig. 4. Real part of the waveforms of the source signals (- - -) and the separated
signals (——).

trix [1], which is then used to provide , where
denotes pseudo-inverse, and the source signal vector is re-

covered as . All of the above matrices are
replaced by their estimates when dealing with one realization.

Assume that we have two sources and three equispaced sen-
sors. One source is a sinusoid, whereas the other is a pulsed sinu-
soidal signal that extends over eight samples. The SNR of both
signals, defined in the total power, is 10 dB. In this example,
the mixing matrix did not have a presumed structure, and its
columns were not complex exponential vectors.

The ambiguity function of the mixed signal at the first sensor
is shown in Fig. 3. In this specific case, we select four points
along the frequency-lag axis and the time-lag axis closest to
the origin. Then, by using the spatial ambiguity functions, we
are able to recover the original signals from only their observed
mixture. Fig. 4 shows the waveforms of the original and the sep-
arated signals after multiplication by the proper complex scalar.

VI. CONCLUSION

The spatial ambiguity function and its application to direction
finding and blind source separation have been discussed. Based
on the spatial ambiguity functions, we have introduced the am-
biguity-domain MUSIC and the ambiguity-domain blind source
separation techniques.
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