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Abstract

This paper proposes a novel time}frequency maximum likelihood (t}f ML) method for
direction-of-arrival (DOA) estimation for nonstationary signals impinging on a multi-sensor
array receiver, and compares this method with conventional maximum likelihood DOA
estimation techniques. Time}frequency distributions localize the signal power in the
time}frequency domain, and as such enhance the e!ective SNR, leading to improved DOA
estimation. The localization of signals with di!erent time}frequency signatures permits the
division of the time}frequency domain into smaller regions, each containing fewer signals than
those incident on the array. The reduction of the number of signals within di!erent
time}frequency regions not only reduces the required number of sensors, but also decreases the
computational load in multidimensional optimizations. Compared to the recently proposed
time}frequency MUSIC (t}f MUSIC), the proposed t}f ML method can be applied to coherent
environments, without the need to perform any type of preprocessing that is subject to both
array geometry and array aperture. ( 2000 The Franklin Institute. Published by Elsevier
Science Ltd. All rights reserved.

Keywords: Time}frequency distribution; Direction "nding; Maximum likelihood; Spatial time}frequency
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1. Introduction

The localization of spatial sources by passive sensor array is one of the important
problems in radar, sonar, radio-astronomy, and seismology. So far, numerous
methods have been proposed for direction "nding, most of which are based on the
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estimates of the data covariance matrix. Among these methods, the maximum likeli-
hood (ML) technique was one of the "rst to be devised and investigated [1]. It has
a superior performance compared to other methods, particularly when the input
signal-to-noise ratio (SNR) is low, the number of data samples is small, or the sources
are highly correlated [2]. Therefore, despite its complexity, the ML technique remains
of practical interest.

The evaluation of quadratic time}frequency distributions of the data snapshots
across the array yields what is known as spatial time}frequency distributions (STFDs)
[3,4]. STFD techniques are most appropriate to handle sources of nonstationary
waveforms. STFDs spread the noise power while localizing the energy of the imping-
ing signals in the time}frequency domain. This property leads to increasing the
robustness of eigenstructure signal and noise subspace estimates with respect to the
channel and receiver noise, and hence improves spatial resolution performance.

In this paper, we propose the time}frequency maximum likelihood (t}f ML) method
for direction "nding and provide the analysis that explains its performance. It is
shown that the superior performance of the t}f ML method relative to other methods
is attributed to the following three fundamental reasons: (1) Time}frequency distribu-
tions localize the signal power in the time}frequency domain, and as such enhance the
e!ective SNR and improve the direction-of-arrival (DOA) estimation. (2) The localiza-
tion of signals with di!erent time}frequency signatures permits the division of the
time}frequency domain into smaller regions, each containing fewer signals than those
incident on the array. The reduction of the number of signals within di!erent
time}frequency regions relaxes the condition on the size of the array aperture as well as
simpli"es the multidimensional optimization estimation procedure. (3) Compared with
the previously proposed time}frequency MUSIC (t}f MUSIC), the t}f ML method
can be applied when the signal arrivals are highly correlated, whereas the t}f
MUSIC algorithm cannot do so without some sort of preprocessing, such as spatial
smoothing.

This paper is organized as follows. In Section 2, the signal model is established, and
a brief review of the spatial time}frequency distributions is given. In Section 3, we
discuss the SNR enhancement based on time}frequency distributions and its e!ect on
the signal and noise subspace estimates using STFD matrices. The subspace estimates
obtained from the STFD matrices are more robust to SNR and angular separation
compared to those obtained from data covariance matrices. Section 4 presents the t}f
ML and shows its performance in time-varying environments.

2. Background

2.1. Signal model

In narrowband array processing, when n signals arrive at an m-element array, the
linear data model

x(t)"y(t)#n(t)"A(H)d(t)#n(t) (1)
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is commonly assumed, where the m]n spatial matrix A(H)"[a(h
1
),2, a(h

n
)] repres-

ents the mixing matrix or the steering matrix, and a(h
i
) are the steering vectors

corresponding to angle of arrival h
i
. Due to the mixture of the signals at each sensor,

the elements of the m]1 data vector x(t) are multicomponent signals, whereas each
source signal d

i
(t) of the n]1 signal vector d(t) is often a monocomponent signal. n(t) is

an additive noise vector whose elements are modeled as stationary, spatially and
temporally white, zero-mean complex random processes, independent of the source
signals. That is,

E[n(t#q)nH(t)]"pd(q)I and E[n(t#q)nT(t)]"0 for any q, (2)

where d(q) is the Kronecker delta function, I denotes the identity matrix, p is the noise
power at each sensor, superscripts H and T, respectively, denote conjugate transpose
and transpose, and E( ) ) is the statistical expectation operator.

In Eq. (1), it is assumed that the number of sensors is greater than the number of
sources, i.e., m'n, and the number of snapshots is greater than the number of array
sensors, i.e., N'm. We also assume that matrix A is full column rank, which implies
that the steering vectors corresponding to n di!erent angles of arrival are linearly
independent.

Under the above assumptions, the correlation matrix is given by

Rxx"E[x(t)xH(t)]"A(H)RddAH(H)#pI, (3)

where Rdd"E[d(t)dH(t)] is the signal correlation matrix. For notational convenience,
we drop the argument H and simply use A instead of A(H). If H) is an estimate of H,
then we also use AK instead of A(H) ).

Let j
1
'j

2
'2'j

n
'j

n`1
"j

n`2
"2"j

m
"p denote the eigenvalues of

Rxx . The unit-norm eigenvectors associated with j
1
,2, j

n
constitute the columns of

matrix S"[s
1
,2, s

n
], and those corresponding to j

n`1
,2, j

m
make up matrix

G"[g
1
,2, g

m~n
]. Since the columns of A and S span the same subspace, then

AHG"0.
In practice, Rxx is unknown, and therefore should be estimated from the available

data samples (snapshots) x(i), i"1, 2,2, N. The estimated correlation matrix is given
by

R) xx"
1

N

N
+
i/1

x(i)xH(i). (4)

Let Ms(
1
,2, s(

n
, g(

1
,2, g(

m~n
N denote the unit-norm eigenvectors of R) xx , arranged in

the descending order of the associated eigenvalues, and let S) and G) denote the
matrices made of the set of vectors Ms(

i
N and Mg(

i
N, respectively. The statistical properties

of the eigenvectors of the sample covariance matrix R) xx for signals modeled as
independent processes with additive white noise is given in [5].

In this paper, we focus on frequency-modulated (FM) signals, modeled as

d(t)"[d
1
(t),2, d

n
(t)]T"[D

1
e+t1 (t),2,D

n
e+tn (t)]T, (5)
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where D
i
and t

i
(t) are the "xed amplitude and time-varying phase of the ith source

signal. For each sampling time t, d
i
(t) has an instantaneous frequency

(IF) f
i
(t)"

1

2p

dt
i
(t)

dt
.

FM signals are often encountered in applications such as radar and sonar. The
consideration of FM signals in this paper is motivated by the fact that these signals are
uniquely characterized by their IFs and, therefore, they have clear time}frequency
signatures that are utilized by the STFD approach. Also, FM signals have constant
amplitudes and, subsequently, yield time-independent covariance matrices. This prop-
erty makes them amenable to conventional array processing based on second-order
statistics.

2.2. Spatial time}frequency distributions

The STFDs based on Cohen's class of time}frequency distribution were introduced
in [3] and its applications to direction "nding has been discussed in [4]. However, the
performance of direction "nding based on STFD has not been made clear yet. In this
paper, we focus on one key member of Cohen's class, namely the pseudo-Wigner}Ville
distribution (PWVD) and its respective spatial distribution. Only the time}frequency
points in the autoterm regions of PWVD are considered for STFD matrix construc-
tion. In these regions, it is assumed that the crossterms are negligible. This assumption
serves to simplify the analysis and does not present any condition on performance. It
is noted that the crossterms in STFD matrices play a similar role to the cross-
correlation between source signals [6], and therefore they do not always impede the
direction "nding process.

The discrete form of pseudo-Wigner}Ville distribution of a signal x(t), using
a rectangular window of length ¸, is given by

D
xx

(t, f )"
(L~1)@2

+
q/~(L~1)@2

x(t#q)xH(t!q)e~+4pfq, (6)

where * denotes complex conjugation. The spatial pseudo-Wigner}Ville distribution
(SPWVD) matrix is obtained by replacing x(t) by the data snapshot vector x(t),

Dxx(t, f )"
(L~1)@2

+
q/~(L~1)@2

x(t#q)xH(t!q)e~+4pfq. (7)

Substituting (1) into (7), we obtain

Dxx(t, f )"Dyy(t, f )#Dyn(t, f )#Dny(t, f )#Dnn(t, f ). (8)

Under the assumption of uncorrelated signal and noise components and the zero-
mean noise property, the expectation of the crossterm TFD matrices between the
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signal and noise vectors is zero, i.e., E[Dyn (t, f )]"E[Dny (t, f )]"0, and it follows that

E[Dxx(t, f )]"Dyy (t, f )#E[Dnn(t, f )]

"ADdd(t, f )AH#E[Dnn(t, f )]. (9)

It is noted that relationship (9) holds true for every (t, f ) point. Therefore, multiple
time}frequency points can be used to reduce the e!ect of noise and ensure the full
column rank property of the STFD matrix. In this paper, the STFD matrices over
multiple time}frequency points are averaged, as is discussed in the next section.

3. Subspace analysis for STFD matrices

The purpose of this section is to show that the signal and noise subspaces based on
time}frequency distributions for nonstationary signals are more robust than those
obtained from conventional array processing.

3.1. SNR enhancement

The ith diagonal element of TFD matrix Ddd(t, f ) is given by

D
didi

(t, f )"
(L~1)@2

+
q/~(L~1)@2

D2
i
e+*ti (t`q)~ti (t~q)+~+4pfq. (10)

Assume that the third-order derivative of the phase is negligible over the window
length ¸, then along the true time}frequency points of ith signal, f

i
"(1/2p)dt

i
(t)/dt,

and t
i
(t#q)!t

i
(t!q)!4pf

i
qK0. Accordingly,

D
didi

(t, f
i
)"

(L~1)@2
+

q/~(L~1)@2

D2
i
"¸D2

i
. (11)

Similarly, the noise STFD matrix Dnn(t, f ) is

Dnn(t, f )"
(L~1)@2

+
q/~(L~1)@2

n(t#q)nH(t!q)e~+4pfq. (12)

Under the spatial white and temporal white assumptions, the statistical expectation of
Dnn(t, f ) is given by

E[Dnn(t, f )]"
(L~1)@2

+
q/~(L~1)@2

E[n(t#q)nH(t!q)]e~+4pfq"pI. (13)

Therefore, when we select the time}frequency points along the time}frequency signa-
ture or the IF of the ith FM signal, the SNR in model (9) is ¸D2

i
/p, which has an

improved factor ¸ over the one associated with model (3).
The pseudo-Wigner}Ville distribution of each FM source has a constant value over

the observation period, providing that we leave out the rising and falling power
distributions at both ends of the data record. For convenience of analysis, we select
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those N!¸#1 time}frequency points of constant distribution value for each source
signal. Therefore, the averaged STFD over the time}frequency signatures of n

0
sig-

nals, i.e., a total of n
0
(N!¸#1) time}frequency points, is given by

D) "
1

n
0
(N!¸#1)

n0
+
q/1

N~L`1
+
i/1

Dxx (ti
, f

q,i
), (14)

where f
q,i

is the instantaneous frequency of the qth signal at the ith time sample. The
expectation of the averaged STFD matrix is

D"E[D) ]"
1

n
0
(N!¸#1)

n0
+
q/1

N~L`1
+
i/1

E[Dxx(ti
, f

q,i
)]

"

1

n
0

n0
+
q/1

[¸D2
q
a(h

q
)aH(h

q
)#pI]"

¸

n
0

A0R0dd(A0)H#pI, (15)

where R0dd and A0, respectively, represent the signal correlation matrix and the mixing
matrix constructed by only considering n

0
signals out of the total number of signal

arrivals n.

3.2. Signal and noise subspaces based on STFDs

The statistical properties of the eigenstructures using the STFD matrix are pro-
vided in this subsection.

Lemma 1. Let j0
1
'j0

2
'2'j0

n0
'j0

n0`1
"j0

n0`2
"2"j0

m
"p denote the

eigenvalues of R0xx , which is dexned from a data record of a mixture of the n
0

selected FM
signals. Denote the unit-norm eigenvectors associated with j0

1
,2, j0

n0
by the columns of

S0"[s0
1
,2, s0

n0
], and those corresponding to j0

n0`1
,2, j0

m
by the columns of

G0"[g0
1
,2, g0

m~n0
]. We also denote jtf

1
'jtf

2
'2'jtf

n0
'jtf

n0`1
"jtf

n0`2
"2"jtf

m
"ptf as the eigenvalues of D dexned in (15). The unit-norm eigenvectors

associated with jtf
1
,2, jtf

n0
are represented by the columns of Stf"[stf

1
,2, stf

n0
], and

those corresponding to jtf
n0`1

,2, jtf
m

are represented by the columns of
Gtf"[gtf

1
,2, gtf

m~n0
]. Accordingly,

(a) The signal and noise subspaces of Stf and Gtf are the same as S0 and G0, respectively.
(b) The eigenvalues have the following relationship:

jtf
i
"G

¸

n
0

(j0
i
!p)#p"

¸

n
0

j0
i
#A1!

¸

n
0
Bp i)n

0
,

ptf"p n
0
(i)m.

(16)

Both parts of the above equations are direct results of (15). From Lemma 1 it is clear
that the largest n

0
eigenvalues are ampli"ed using STFD analysis.
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Lemma 2. If the third-order derivative of the phase of the FM signals is negligible over
the time-period [t!¸#1, t#¸!1], then D) !D is a zero-mean, random matrix
whose elements are asymptotically jointly Gaussian. The proof is given in Appendix A.

Lemma 3. If the third-order derivative of the phase of the FM signals is negligible over
the time-period [t!¸#1, t#¸!1], then the orthogonal projections of Mg( tf

i
N onto the

column space of Stf are asymptotically ( for N<¸) jointly Gaussian distributed with zero
means and covariance matrices given by

E(Stf(Stf)Hg( tf
i
)(Stf(Stf)Hg( tf

j
)H"

1

(N!¸#1)
Utfd

i,j
, (17)

E(Stf(Stf)Hg( tf
i
)(Stf(Stf)Hg( tf

j
)T"0 for all i, j, (18)

where

Utf"
p¸
n
0
C

n0
+
k/1

jtf
k

(p!jtf
k
)2

stf
k
(stf
k
)HD

"pC
n0
+
k/1

(j0
k
!p)#(n

0
/¸)p

(p!j0
k
)2

s0
k
(s0
k
)HD. (19)

The proof is given in [7]. For comparison, we quote the results from reference [5],
which were provided using the data covariance matrix

E(SSHg(
i
)(SSHg(

j
)H"

p
NC

n
+
k/1

j
k

(p!j
k
)2

s
k
sH
kDdi,j , (20)

E(SSHg(
i
)(SSHg(

j
)T"0 for all i, j, (21)

where S, s
k
, g(

k
, j

k
are analogous to S0, s0

k
, g( 0

k
, j0

k
, respectively, except that they are

de"ned for all n signals instead of only n
0

signals.
Comparing (17) and (19) with (20), two important observations are in order. First, if

the signals are both localizable and separable in the time}frequency domain, then the
reduction of the number of signals from n to n

0
reduces the estimation error,

speci"cally when the signals are closely spaced. The second observation relates to
SNR enhancements. The above equations show that error reductions using STFDs
are more pronounced for the cases of low SNR and/or closely spaced signals. It is clear
from (17) and (19) that, when j0

k
<p for all k"1, 2,2, n

0
, the results are almost

independent of ¸ (suppose N<¸ so that N!¸#1KN), and therefore there would
be no obvious improvement in using the STFD over conventional array processing.
On the other hand, when some eigenvalues are close to p (j0

k
Kp, for some

k"1, 2,2,n
0
), which is the case of weak or closely spaced signals, the result of (17) is

reduced by a factor of up to G"¸/n
0
. This factor represents the gain achieved using

STFD processing.
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4. The time+frequency maximum likelihood methods

In this section, we analyze the performance of the maximum likelihood methods
based on time}frequency distributions (t}f ML). For conventional ML methods, the
joint density function of the sampled data vectors x(1), x(2),2,x(N), is given by [2]

f (x(1),2, x(N))"
N
<
i/1

1

pmdet[pI]
expA!

1

p
[x(i)!Ad(i)]H[x(i)!Ad(i)]B, (22)

where det[ ) ] denotes the determinant. It follows from (22) that the log-likelihood
function of the observations x(1),x(2),2, x(N), is given by

¸"!mN lnp!
1

p
N
+
i/1

[x(i)!Ad(i)]H[x(i)!Ad(i)]. (23)

To carry out this minimization, we "x A and minimize (23) with respect to d. This
yields the well-known solution

dK (i)"[AHA]~1AHx(i). (24)

We can obtain the concentrated likelihood function as [2,8]

F
ML

(H)"trM[I!A) (A) HA) )~1A) H]RK
xx

N, (25)

where tr(A) denotes the trace of A. The ML estimate of H is obtained as the minimizer
of (25). Let u

i
and u(

i
, respectively, denote the spatial frequency and its ML estimate

associated with h
i
, then the estimation error (u(

i
!u

i
) are asymptotically (for large N)

jointly Gaussian distributed with zero means and the covariance [9]

E[(u(
i
!u

i
)2]"

1

2N
M[Re(H(RTdd )]~1

]Re[H((RddAHUARdd )T][Re(H(RTdd )]~1N
ii
, (26)

where ( denotes Hadamard product. Moreover,

U"

n
+
k/1

j
k
p

(p!j
k
)2

s
k
sH
k
,

H"CH[I!A(AHA)~1AH]C,

C"

dA

du
. (27)

Next we consider the t}f ML method. As we discussed in the previous section, we
select n

0
)n signals in the time}frequency domain. The concentrated likelihood

function de"ned from the STFD matrix is similar to (25) and is obtained by replacing
RK xx by DK (Appendix B),

Ftf
ML

(H)"tr[I!A) 0((A) 0)HA) 0)~1(A) 0)H]DK . (28)
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Therefore, the estimation error (u( tf
i
!u

i
) associated with the t}f ML method are

asymptotically (for N<¸) jointly Gaussian distributed with zero means and the
covariance

E[(u( tf
i
!u

i
)2]

"

p
2(N!¸#1)

M[Re(H0 ( DTdd )]~1

]Re[H0 ( (Ddd(A0)HUtfA0Ddd)T][Re(H0 ( DTdd)]~1N
ii

"

p
2(N!¸#1)

M[Re(H0 ( (R0dd)T)]~1

]Re[H0 ( (R0dd (A0)HUtfA0R0dd )T][Re((H0(R0dd )T)]~1N
ii
, (29)

where Utf is de"ned in (19), and

H0"(C0)H[I!A0((A0)HA0)~1(A0)H]C0,

C0"
dA0

du
. (30)

In the case of n
0
"n, then H0"H, and C0"C.

The signal localization in the time}frequency domain enables us to select fewer
signal arrivals. This fact is not only important in improving the estimation perfor-
mance, particularly when the signals are closely spaced, but also reduces the dimen-
sion of optimization problem solved by the maximum likelihood algorithm, and
subsequently reduces the computational requirement.

To demonstrate the advantages of t}f ML over the conventional ML and the
time}frequency MUSIC (t}f MUSIC), consider a uniform linear array of eight sensors
separated by half a wavelength. Two FM signals arrive from (h

1
, h

2
)"(!103, 103)

with the instantaneous frequencies f
1
(t)"0.2#0.1t/N#0.2]sin(2pt/N) and

f
2
(t)"0.2#0.1t/N#0.2sin(2pt/N#p/2), t"1,2,N. The SNR of both signals is

!20 dB, and the number of snapshots used in the simulation is N"1024. We used
¸"129 for t}f ML. Fig. 1 shows the PWVD of the mixed noise-free signals at the
reference sensor. Fig. 2 shows (h

1
, h

2
) that yield the minimum values of the likelihood

function of the t}f ML and the ML methods for 20 independent trials. It is evident that
the t}f ML provides much improved DOA estimation over the conventional ML.

In the next example, we compare the t}f ML and the t}f MUSIC for coherent
sources. The two coherent FM signals have common instantaneous frequencies
f
1,2

(t)"0.2#0.1t/N#0.2 sin(2pt/N), t"1,2,N, with p/2 phase di!erence. The sig-
nals arrive at (h

1
, h

2
)"(!23, 23). The SNR of both signals is 5 dB and the number of

snapshots is 1024. Again, we used ¸"129 for both t}f ML and t}f MUSIC. Fig. 3
shows the PWVD of the mixed noise-free signals, and Fig. 4 shows the contour plots
of the likelihood function of the t}f ML and the estimated spectra of t}f MUSIC for
"ve independent trials. It is clear that the t}f ML can separate the two signals whereas
the t}f MUSIC cannot.
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Fig. 1. Pseudo-Wigner}Ville distribution of the mixture of the two FM signals.

Fig. 2. (h
1
, h

2
) which minimize the t}f ML and ML likelihood functions.
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Fig. 3. Pseudo-Wigner}Ville distribution of the mixture of the two coherent FM signals.

Fig. 4. Contour plots of t}f ML likelihood function and spatial spectra of t}f MUSIC.
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5. Conclusions

The time}frequency maximum likelihood (t}f ML) method has been proposed for
direction "nding, which is based on the spatial time}frequency distribution (STFD)
matrices. By taking frequency-modulated (FM) signals as example, we show that the
STFD matrices provide more robust eigen-decomposition than covariance matrices.
The analysis and simulation results showed that the t}f ML improves over the
conventional maximum likelihood technique for low SNR, and outperforms the t}f
MUSIC in coherent signal environments.
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Appendix A

Proof of Lemma 2

From (1), (14), and (15),

DK !D

"

1

n
0
(N!¸#1)

n0
+
q/1

N~L`1
+
i/1

(L~1)@2
+

q/~(L~1)@2

y(t
i
#q)nH(t

i
!q)e~+4pfq,i q

#

1

n
0
(N!¸#1)

n0
+
q/1

N~L`1
+
i/1

(L~1)@2
+

q/~(L~1)@2

n(t
i
#q)yH(t

i
!q)e~+4pfq,iq

#

1

n
0
(N!¸#1)

n0
+
q/1

N~L`1
+
i/1

(L~1)@2
+

q/~(L~1)@2

n(t
i
#q)nH(t

i
!q)e~+4pfq,i q!pI.

(A.1)

We "rst consider the "rst term in (A.1). Denoting t@
i
"t

i
!q, and noting the fact

that, when the third-order derivative of the phase is negligible over
[t!¸#1, t#¸!1] for any signal and any t, d

q
(t@
i
#2q)e~+4pfq,iqKd

q
(t@
i
) at the

time}frequency point (t
i
, f
q,i

), then

n0
+
q/1

N~L`1
+
i/1

(L~1)@2
+

q/~(L~1)@2

y(t
i
#q)nH(t

i
!q)e~+4pfq,iq

"

n0
+
q/1

N~L`1
+

t
@
i/1

(L~1)@2
+

q/~(L~1)@2

y(t@
i
#2q)nH(t@

i
)e~+4pfq,iq

K

n0
+
q/1
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Therefore, the elements of the "rst term in Eq. (A.1) are clearly asymptotically
jointly Gaussian from the multivariate Central Limit Theorem [10]. Similar result can
be obtained for the second term of (A.1). The elements of the third term in (A.1) are
also jointly Gaussian from the fact that the covariance between the (p, r)th element of
n(t#q)nH(t!q) at time t

i
and t

k
is given by
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Since the linear combination of joint-Gaussian processes is jointly Gaussian, then
DK !D is a random matrix whose elements are asymptotically jointly Gaussian. Also
DK !DP0 as NPR.

Appendix B

Derivation of (28)

The number of data samples available for the construction of the STFD matrix is
N!¸#1, where the selected n

0
signals are included. Denote u(

k
as the kth column of

DK , and u
k

the kth column of D. From Lemma 2, we know that u(
k

is asymptotically
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jointly Gaussian, and its density function is

f
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where D
k

stands for the asymptotic covariance matrix of u
k
,

D
k
O lim

N?=

(N!¸#1)E[(u(
k
!u

k
)(u(

k
!u

k
)H]. (B.2)

From the results of Lemma 2, it is clear that D
k

is a diagonal matrix with equal
diagonal elements. Denoting D

k
"bI, the log-likelihood function is given by

¸
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logb!
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Maximizing ¸
tf

is equivalent to minimizing

h
k
O[u(

k
!u

k
]H[u(

k
!u

k
]. (B.4)

For di!erent k, we may construct the following cost function.

hO
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h
k

"

m
+
k/1

[u(
k
!u

k
]H[u(

k
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k
]

"trM[DK !D]H[DK !D]N. (B.5)

Similar to (24), and by taking into account that we used n
0

signals instead of n signals,
the estimation of D is obtained as A) 0((A) 0)HA) 0)~1(A) 0)HDK A) 0]((A) 0)HA) 0)~1(A) 0)H, and
the minimization of Eq. (B.5) leads to (28).
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