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Abstract— This paper investigates performance tradeoffs be-
tween energy and information transfer in a relay based two-
hop wireless system involving an energy harvesting receiver. The
source and relay nodes of the two-hop amplify-and-forward (AF)
system employ orthogonal space-time block codes along with
orthogonal frequency-division multiplexing (OFDM) scheme. The
joint optimal source and relay precoders over the subchannels in
frequencies are designed to achieve different tradeoffs between
the overall energy transfer capability and the information rate,
which are characterized by the boundary of the so-called rate-
energy (R-E) region. The effect of various parameters on the
boundary of the R-E region is demonstrated for different fre-
quency selective channel models.

Index Terms— MIMO-OFDM, energy harvesting, information
and power transfer, OSTBC, and AF relay.

I. INTRODUCTION

Recently, the technique of harvesting energy from radio
signals has received much attention in various applications,
such as radio-frequency identification systems [1] and body
sensor networks with medical implants [2]. Energy harvesting
(EH) can be used for prolonging the network lifetime operation
of energy-constrained sensor networks which typically employ
small batteries having limited power-supply capability and
duration. This has motivated the authors of [3] to propose
a wireless communication system in which some nodes do
not possess reliable power supplies, and therefore, have to
harvest energy from signals transmitted by other nodes. In
particular, [3] considers a three-node multiple-input multiple-
output (MIMO) system in which one receiver node decodes
information whereas the other node harvests energy using the
signals broadcast by a common transmitting node. The trans-
mitter attempts to simultaneously maximize the information
transfer to the intended receiver and the power transfer to the
EH receiver. Note that [3] extends the study of simultaneous
information and power transfer of [4], [5] from the single-
input single-output (SISO) link in the co-located receiver (i.e.,
information and EH receivers are the same) case to the multi-
antenna setup with both co-located and separated receivers.

In this paper, different from previous contributions [3], [4],
[5], we consider a wireless communication system in which a
multi-antenna EH receiver exists in the vicinity of a two-hop
MIMO relay system where both the source and relay nodes
employ orthogonal space-time block codes (OSTBCs) [7] and
precoders for data transmission. In contrast to the assumption
of flat-fading channels [6], we consider frequency selectivity,
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which is most representative for radio channels subject to mul-
tipath fading. To this end, we employ orthogonal frequency-
division multiplexing (OFDM) and transmit information over
different frequency bands or subcarriers. Further, the fact
that OSTBCs significantly simplify optimal decoding without
incurring rate-loss for specific case, such as the case with the
Alamouti code [7], has motivated us to employ OSTBCs on
top of the source and relay precoders for each subcarrier. The
relay/destination node of the two-hop system uses maximum-
ratio combining (MRC) technique for detecting/decoding the
source signal. In overall, the relay operates in a half-duplex
mode using an amplify-and-forward (AF) protocol. The EH
receiver harvests energy from the radio signals transmitted
by both the source and relay. Information transfer to the
destination node and power transfer to the EH receiver are
optimally controlled by properly designing the source and
relay precoders in a subcarrier basis. In particular, under the
total power constraint of the source and relay, we design
both precoders to maximize the rate for the intended receiver
while keeping the power transfer to the EH receiver above
a certain predefined value. This value is varied to obtain the
boundary of the rate-energy (R-E) region which illustrates the
tradeoffs between information and energy transfer capability
of the relay system. Although power allocation schemes for
single user MIMO-OFDM relay system [8] and MIMO relay
precoder designs for flat-fading multiuser systems [9] have
been considered, to the best our knowledge, simultaneous
transfer of energy and information has not been addressed
before for frequency selective channels.

The remaining of this paper is organized as follows. In
Section II, the proposed system model is described, whereas in
Section III, the solutions for the precoder design optimization
problems are provided for different transmission strategies.
Numerical simulation results are given in Section IV and
concluding remarks are made in Section V.
Notations: Upper (lower) bold face letters are used for matrices
(vectors); (·)H , E {·}, and ||·|| denote Hermitian transpose,
mathematical expectation and Frobenius norm, respectively.
tr(·), CM×M , and A � 0 denote the matrix trace operator,
space of M ×M matrices with complex entries, and positive
semidefiniteness of A, respectively.

II. SYSTEM MODEL

We consider a system shown in Fig. 1, which consists of a
multi-antenna two-hop relaying system with a source, a relay,
and a destination which is also referred to as an informa-
tion decoding (ID) receiver, and an EH receiver. The direct
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link between the source and ID receiver is not considered,
because we assume that the effects of path attenuation and
shadowing are more severe on the direct link when compared
to the link via relay. Since, the relay operates in a half-
duplex mode, signal transmissions over source-relay (S-R) and
relay-ID receiver (R-ID) channels take place in two phases.
It is assumed that the available bandwidth is divided into
N subcarriers so that each subchannel is basically a flat-
fading channel, i.e., the separation between two subcarriers
(subchannel) is smaller than the coherence bandwidth of the
channel. Moreover, the OFDM guard interval is assumed to be
larger than the maximum path delay of the channels. Under
these assumptions, the OFDM transmission can be analyzed in
a subcarrier basis. In the first phase of transmission, the source
encodes the input signal of the nth subcarrier (n ∈ N =
{1, · · · , N}) using an OSTBC, precodes the encoded signal
and transmits the resulting signal to the relay. The nr × T
matrix of received signal samples at the relay for the nth
subcarrier can be given by

Yr,n = H1,n,IF1,nC(sn) +Vr,n (1)

where sn = [s1,n · · · , sK,n]T is K × 1 information-bearing
complex symbol vector, C(sn) is the ns × T OSTBC matrix
formed from sn, T is the number of time periods used
for transmitting sn, H1,n,I ∈ Cnr×ns is the S-R MIMO
channel (in frequency domain), F1,n ∈ Cns×ns is the source
precoder, and Vr,n ∈ Cnr×T is the matrix of zero-mean
circularly symmetric complex Gaussian (ZMCSCG) elements
with variance σ̃2

1,n. It is assumed that {sk,n}Kk=1 are chosen
from signal constellations with E

{
|sk,n|2

}
= 1. Due to

the orthogonality of the OSTBC, C(sn) fulfills the property
C(sn)CH(sn) = a||sn||2Ins , where the constant a (e.g, a = 1
for the Alamouti code [7]) depends on the chosen OSTBC
matrix. The transmit power of the source and the energy
received by the EH receiver on the nth subcarrier during the
first phase of the two-hop transmission can be, respectively,
given by

Ps,n = aKtr
(
F1,nFH

1,n
)
,

Pe,1,n = aKtr
(
H1,n,EF1,nFH

1,nH
H
1,n,E

)
(2)

where H1,n,E ∈ Cne×ns is the MIMO channel between the
source and EH receiver corresponding to nth subcarrier. Due
to the application of the OSTBC at the source and the MRC
scheme at the relay during the first phase of signal transmis-
sion, the S-R MIMO channel of nth subcarrier is decoupled
into K parallel SISO channels. Thus, the signal received by
the relay on the kth S-R SISO channel corresponding to nth
subcarrier is given by [10]

yRk,n = ||H1,n,IF1,n||sk,n + v1,k,n, k ∈ {1, · · · , K} (3)

where v1,k,n ∼ NC(0, σ2
1,n) is the additive Gaussian noise at

the relay for the kth S-R SISO channel and σ2
1,n = σ̃2

1,n/a.

The relay normalizes
{
yRk,n

}K

k=1
yielding

ỹRk,n =
yRk,n√

E
{
|yRk,n|2

} =
||H1,n,IF1,n||sk,n + v1,k,n√

||H1,n,IF1,n||2 + σ2
1,n

. (4)

The relay then employs OSTBC to encode
{
ỹRk,n

}K

k=1
and

precodes the resulting OSTBC encoded signal. The output of
the relay for the nth subcarrier is thus given by Yro,n =
F2,nC(ỹn) where F2,n ∈ Cnr×nr is the relay precoder, ỹn =
[ỹR1,n, · · · , ỹRK,n]

T , C(ỹn) ∈ Cnr×T is the OSTBC obtained
after encoding ỹn and satisfies the relation C(ỹn)CH(ỹn) =
a||ỹn||2Inr . The transmit power of the relay and the energy
received by the EH receiver on the nth subcarrier during the
second phase can be thus, respectively, given by

Pr,n = aKtr(F2,nFH
2,n),

Pe,2,n = aKtr
(
H2,n,EF2,nFH

2,nH
H
2,n,E

)
. (5)

OSTBC
MRC

OSTBC MRC

Source Relay

Energy Harvesting

-(EH) Rx.

Information decoding (ID)
-Rx.

sn
C(sn)

F1,n F2,n

ŝn
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Fig. 1. Two-hop OSTBC based relay system with EH Rx.

The nd × T matrix of signal samples received at the ID
receiver on the nth subcarrier during the second phase of
transmission can be written as Yd,n = H2,n,IF2,nC(ỹn) +
Vd,n, where H2,n,I ∈ Cnd×nr is the R-ID MIMO channel
and Vd,n ∈ Cnd×T is the matrix of ZMCSCG elements with
variance σ̃2

2,n. The ID receiver uses MRC to detect the source
signals. Due to the application of the OSTBC at the relay and
MRC at the ID receiver, the R-ID MIMO channel also turns
into K parallel SISO channels. Thus, the signal received by
the ID receiver on the kth R-ID SISO channel corresponding
to the nth subcarrier can be expressed as

yDk,n = ||H2,n,IF2,n||ỹRk,n + v2,k,n (6)

where v2,k,n ∼ NC(0, σ2
2,n) is the additive Gaussian noise at

the ID receiver for the kth channel and σ2
2,n = σ̃2

2,n/a. With
the help of (4), (6) can be written as

yDk,n=
||H2,n,IF2,n||||H1,n,IF1,n||sk,n + ||H2,n,IF2,n||v1,k,n√

||H1,n,IF1,n||2 + σ2
1,n

+v2,k,n. (7)

The signal-to-noise ratio (SNR) at the ID receiver for the nth
subcarrier can be expressed as

γn=
||H2,n,IF2,n||2||H1,n,IF1,n||2

||H2,n,IF2,n||2σ2
1,n + ||H1,n,IF1,n||2σ2

2,n + σ2
1,nσ2

2,n

=
γ1,nγ2,n

γ1,n + γ2,n + 1
(8)

where γi,n = ||Hi,n,IFi,n||2

σ2
i,n

for i = 1, 2 and n ∈ N .
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III. PROPOSED TRANSMISSION STRATEGIES

In this section, we determine joint optimal precoders F1,n
and F2,n over all subcarriers for separately maximizing energy
transfer to the EH receiver and information transfer to the
ID receiver. We then consider the problem of optimizing the
precoders when both receivers are present.

A. Optimization with only EH receiver

Consider the MIMO links from the source and relay to the
EH receiver, when there is no ID receiver. In this case, the
goal is to design F1,n and F2,n for maximizing the total power∑N

n=1 Pe,1,n+Pe,2,n received at the EH receiver. This design
problem can be formulated as

P1 : max
{F1,n,F2,n,n∈N}

N∑

n=1

{
tr
(
H1,n,EF1,nFH

1,nH
H
1,n,E

)
+

tr
(
H2,n,EF2,nFH

2,nH
H
2,n,E

)}

s.t.
N∑

n=1

tr
(
F1,nFH

1,n
)
+ tr

(
F2,nFH

2,n
)
≤ PT (9)

where the constant aK is omitted from the objec-
tive function, and PT is given by PT = P̃T

aK ,
where P̃T is the total power (source and relay). Let
the eigen-decomposition (ED) of HH

i,n,EHi,n,E be given
by HH

i,n,EHi,n,E=UHi,n,EΛHi,n,EU
H
Hi,n,E

with eigenvalues
λHi,n,E
k (k = 1, ··, ri , rank(Hi,n,E)), in the non-decreasing

order, where i = 1, 2. Let {ui,n,E}2i=1 be the column vectors

of
{
UHi,n,E

}2
i=1

corresponding to
{
λHi,n,E
1

}2

i=1
.

Proposition 1: The optimal solutions to P1 are either

F̂1,n̂ = [
√
PTu1,n̂,E,0, · · · ,0],

[
F̂1,ñ

]N
ñ6=n̂,ñ=1

= 0,
[
F̂2,n

]N
n=1

= 0, if λH1,n̂,E
1 ≥ λH1,ñ,E

1 ≥ max
n

λH2,n,E
1 ,

(10)

or
F̂2,n̂ = [

√
PTu2,n̂,E,0, · · · ,0],

[
F̂2,ñ

]N
ñ 6=n̂,ñ=1

= 0,
[
F̂1,n

]N
n=1

= 0, if λH2,n̂,E
1 ≥ λH2,ñ,E

1 ≥ max
n

λH1,n,E
1 .

(11)

Proof: Please refer to Appendix A.
It is clear from Proposition 1 that the total power is allocated
to the subcarrier corresponding to the best channel from all
S-EH and R-EH channels.

B. Optimization with only ID receiver

Consider the two-hop MIMO relay link from the source to
the ID receiver, when no EH receiver exists. The optimal F1,n
and F2,n that maximize the information rate over the two-hop

MIMO channel is obtained by solving the following problem

P2 : Rmax , max
{F1,n,F2,n,γ1,n,γ2,n,n∈N}

Rc

2N

N∑

n=1

ln2

{
1+

γ1,nγ2,n
γ1,n + γ2,n + 1

}

s.t γ1,n =
||H1,n,IF1,n||2

σ2
1,n

, γ2,n =
||H2,n,IF2,n||2

σ2
2,n

, ∀n,(12)

N∑

n=1

tr
(
F1,nFH

1,n
)
+ tr

(
F2,nFH

2,n
)
≤ PT,

where Rc is the code rate of the OSTBC (i.e., Rc = K
T )

and the factor 1
2 is due to the half-duplex relay. Let the ED of

HH
j,n,IHj,n,I be given by HH

j,n,IHj,n,I=UHj,n,IΛHj,n,IU
H
Hj,n,I

with the eigenvalues λHj,n,I
k (k = 1, ··, rj , rank(Hj,n,I))

in the non-decreasing order, where j = 1, 2. Let {uj,n,I}2j=1

be the column vectors of
{
UHj,n,I

}2
j=1

corresponding to
{
λHj,n,I
1

}2

j=1
. It can be proved (the proof is omitted for

brevity) that the optimal F1,n and F2,n in P2 are

F̄1,n = [
√
a1,nu1,n,I,0, · · · ,0],

F̄2,n = [
√
a2,nu2,n,I,0, · · · ,0], ∀n ∈ N (13)

where a1,n ≥ 0, a2,n ≥ 0, ∀n need to be optimized for P2.
This leads to the following optimization problem for P2:

P̄2 : Rmax , max
{a1,n,a2,n,n∈N}

Rc

2N

N∑

n=1

ln2

{
1+

a1,na2,nλ̃
H1,n,I
1 λ̃H2,n,I

1

a1,nλ̃
H1,n,I
1 + a2,nλ̃

H2,n,I
1 + 1

}

s.t
N∑

n=1

a1,n + a2,n ≤ PT (14)

where λ̃H1,n,I
1 = λ

H1,n,I
1

σ2
1,n

and λ̃H2,n,I
1 = λ

H2,n,I
1

σ2
2,n

. The op-

timization problem P̄2 is not convex due to the fact that
its objective is a sum of quasiconcave functions where each

function fn(a1,n, a2,n) = ln2

{
a1,na2,nλ̃

H1,n,I
1 λ̃

H2,n,I
1

a1,nλ̃
H1,n,I
1 +a2,nλ̃

H2,n,I
1 +1

}
is

a quasiconcave (not concave) function of a1,n and a2,n.
The quasiconcavity can be verified by showing that the or-
dered determinants of the bordered Hessian matrix [11] of
fn(a1,n, a2,n) alternate in signs. The derivations are shown in
Appendix B.

It is difficult to confirm that the objective function of
P̄2 remains quasiconcave, although it is a sum of separable
quasiconcave functions. This is due to the fact that in general
even the sum of the separable quasiconcave functions may
not be quasiconcave [12]. Consequently, we cannot confirm
that the local maximum of P̄2 is also the global maximum.
However, if a1,nλ̃

H1,n,I
1 +a2,nλ̃

H2,n,I
1 >> 1 holds true, which

is usually the case for moderate and high SNR values of the S-
R and R-ID links on the nth subcarrier (subcarriers with very
low SNR can be allocated zero powers), fn(a1,n, a2,n) can be
shown to be a concave function. Since, the sum of concave
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functions is concave, the approximated objective function in
P̄2 becomes concave. As such the maximization of concave
function with convex constraints is a convex optimization
problem. In the rest of the paper, we deal with the following
approximated convex objective function for P̄2:

f̃ ,
Rc

2N

N∑

n=1

ln2

{
1 +

a1,na2,nλ̃
H1,n,I
1 λ̃H2,n,I

1

a1,nλ̃
H1,n,I
1 + a2,nλ̃

H2,n,I
1

}
. (15)

For the convex optimization problem with the objective func-
tion f̃ and linear constraint of P̄2, the Karush-Kuhn-Tucker
(KKT) conditions are necessary and sufficient for the global
optimality [13]. The Lagrangian for this problem is given by

L(a1,n, a2,n, µ) = −f̃ + µ

(
N∑

n=1

a1,n + a2,n − PT

)
(16)

where µ ≥ 0 is the Lagrangian multiplier. Solving KKT
conditions for (16), we find that the optimal solutions for a1,n
and a2,n are

ai,n=

√
λ̂j,n√

λ̂1,n +
√
λ̂2,n



c
µ
−

[√
λ̂1,n +

√
λ̂2,n

]2

λ̂1,nλ̂2,n




+

(17)

where j = 2 if i = 1, j = 1 if i = 2, c = Rc

2N ln 2 , [x]+ =
max(0, x), λ̂1,n , λ̃H1,n,I

1 , λ̂2,n , λ̃H2,n,I
1 and µ should be

chosen to satisfy the power constraint in P̄2, which can be
done using standard parallel Gaussian waterfilling method.

C. Optimization with both EH and ID receivers

We consider the case in which the EH receiver exists
in the vicinity of the two-hop relay system. In this case,
our objective is to develop the source and relay precoders
for simultaneously maximizing the power and information
transfer. For this purpose, we use the rate-energy (R-E) region
which consists of all the achievable rate and energy pairs for
a given sum power constraint of the source and relay. Let the
R-E region be defined as

CR−E(PT) ,

{
(R,P ) : R ≤ Rc

2N

N∑

n=1

ln2

{
1+

γ1,nγ2,n
γ1,n + γ2,n + 1

}
,

γ1,n =
||H1,n,IF1,n||2

σ2
1,n

, γ2,n =
||H2,n,IF2,n||2

σ2
2,n

, ∀n,

P ≤
N∑

n=1

||H1,n,EF1,n||2 + ||H2,n,EF2,n||2,

N∑

n=1

||F1,n||2 + ||F2,n||2 ≤ PT

}
. (18)

Let (REH, Pmax) and (Rmax, PID) be the boundary points
of this R-E region corresponding to the maximal power
and information transfers, respectively. The source and relay
precoders for the boundary point (REH, Pmax) are given by
(10)-(11), which yield maximum power transfer of Pmax =

aK(
∑N

n=1 ||H1,n,EF̂1,n||2 + ||H2,n,EF̂2,n||2) to the EH re-
ceiver and the information transfer of REH = 0 to the
ID receiver. Note that no transfer of information to the ID
receiver is obvious in this case, since the solutions (10)-
(11) mean that when the best subcarrier is selected, either
the source or the relay remains turned off. On the other
hand, the source and relay precoders for (Rmax, PID) are
given by (13) together with (17). With these precoders (i.e.,
F̄1,n and F̄2,n), the information rate of Rmax is achieved
whereas the power transferred to the EH receiver becomes
PID = aK

(∑N
n=1 ||H1,n,EF̄1,n||2 + ||H2,n,EF̄2,n||2

)
. It can

be easily seen that for P̄ ≤ PID, where P̄ ≥ 0, the maximum
rate Rmax is achievable with the same F̄1,n and F̄2,n that
achieve the R-E pair (Rmax, PID). The remaining boundary of
the R-E region can be determined for the interval PID < P̄ <
Pmax. For this purpose, we consider the following optimization
problem, denoted by P3 with W1,n , F1,nFH

1,n � 0 and
W2,n , F2,nFH

2,n � 0:

max
{W1,n,W2,n,γ1,n,γ2,n,n∈N}

N∑

n=1

ln2

(
1 +

γ1,nγ2,n
γ1,n + γ2,n

)
(19a)

s.t. tr(HH
1,n,IH1,n,IW1,n) ≥ γ1,nσ2

1,n, ∀n (19b)

tr(HH
2,n,IH2,n,IW2,n) ≥ γ2,nσ2

2,n, ∀n (19c)
N∑

n=1

tr(HH
1,n,EH1,n,EW1,n +HH

2,n,EH2,n,EW2,n) ≥ b̄ (19d)

tr(W1,n +W2,n) ≤ PT (19e)

W1,n � 0,W2,n � 0, ∀n, (19f)

where b̄ = P̄
aK , the constant term is removed Rc

2N from
the objective function and the approximation as in the case
of (15) is used. This optimization problem is convex since
the constraints are convex and the objective is to maximize
the concave function. However, due to additional optimiza-
tion variables {W1,n,W2,n, n ∈ N}, this problem cannot be
solved using the same method as in P̄2. To this end, we rewrite
f̃n(γ1,n, γ2,n) ,

γ1,nγ2,n
γ1,n+γ2,n

as

f̃n(γ1,n, γ2,n)=
1
2

{
γ1,n + γ2,n − γ1,nγ̃−1

n γ1,n

−γ2,nγ̃−1
n γ2,n

}
(20)

where γ̃n = γ1,n+γ2,n. Introducing slack variables {τn}Nn=1,
the optimization problem (19) is expressed as

max
{τn,W1,n,W2,n,γ1,n,γ2,n,n∈N}

N∑

n=1

ln2 (1 + τn) , s.t.

2τn ≤ γ1,n + γ2,n − γ1,nγ̃−1
n γ1,n − γ2,nγ̃−1

n γ2,n,
(19b), 19c), (19d), (19e), (19f). (21)

Applying Schur-complement theorem [13] twice for the first
constraint of (21), we obtain




γ̃n 0 0 0
0 γ̃n 0 γ2,n
0 0 γ̃n γ1,n
0 γ2,n γ1,n γ̃n − 2τn


 � 0. (22)
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As a result, we obtain the following semidefinite programming
(SDP) formulation for (19)

P3 : max
{τn,γi,n,Wi,n}

2/N
i/n=1

N∑

n=1

ln2(1 + τn) s.t. (22),

(19b), 19c), (19d), (19e), (19f)

which can be efficiently solved using the CVX software [14].
By solving P3 for PID < P̄ < Pmax, we obtain the optimal
rate solutions that form the boundary of the R-E region over
the interval (REH = 0) < R < Rmax. Note that, in our case,
the optimal {Fi,n}2/Ni/n=1 can be recovered from the optimal

{Wi,n}2/Ni/n=1 without any loss of optimality.

IV. NUMERICAL RESULTS

We plot the boundary of the R-E region using numerical
results. The results are obtained by averaging over 100 inde-
pendent realizations of frequency selective MIMO channels,
that are generated using MATLAB’s mimochan function. We
take 5 MHz bandwidth, carrier frequency of 2.6 GHz, N = 16
and consider that channels have root mean-square (rms) delays
up to 45 ns and maximum delay spread up to 410 ns. In
particular, we simulate channels with the following power
delay profiles (PDP) [15]

PDP1 : τ 1 = [0, 50, 110, 170, 290, 310] ns
p1 = [0,−3,−10,−18,−26,−32] dB, and

PDP2 : τ 2 = [0, 110, 190, 410] ns,
p2 = [0,−9.7,−19.2,−22.8] dB

where τ i and pi, (i = 1, 2), represent relative path delays
and corresponding average powers, respectively. For all results,
we take σ2

1,n = σ2
2,n = σ2/N , and ns = nr = 2, i.e., both

the source and relay use the Alamouti code [7] (Rc = 1).
The average SNR is defined as γav , P̃T/σ2. We vary P̃T

with σ2 = 1 and take nd = ne = 2. Figure 2 plots the
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Fig. 2. R-E region tradeoff for the channels with PDP1.

tradeoff between the maximum energy harvested by the EH
receiver and the maximum information rate transferred to the
ID receiver for different values of γav for a channel model with
PDP1. The rms delay for this channel model is 35 ns whereas
a flat Doppler spectrum is used. It can be observed from this
figure that energy transfer to the EH receiver increases with

almost the same factor as that of increment in γav, whereas
this is not the case for information transfer to the ID receiver.
This can be understood from the fact that energy, or roughly
power, is linearly proportional to SNR whereas rate is only
proportional to logarithmic of SNR. In Fig. 3, we display
the boundary of the R-E region for different γav and doppler
frequencies (fD1 , fD2) using the channel model with PDP2.
The rms delay for this channel is 45 ns and we take fD1 = 4.6
Hz and fD2 = 104.2 Hz corresponding to the speeds of 2
Km/hr and 45 Km/hr, respectively. This figure also shows
that both energy and information transfer increase as γav
increases. However, energy increases in a similar proportion
as the increment in γav, whereas the rate not. As expected,
the boundary of R-E shrinks as doppler spread increases.
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Fig. 3. R-E region tradeoff for the channels with PDP2.

V. CONCLUSIONS

We have provided the performance limits of the OSTBC
based MIMO-OFDM relay system that allows low-powered
wireless devices in its vicinity to harvest energy. The tradeoffs
in information rate and energy transfer were demonstrated
from the boundary of the R-E region which is obtained by
solving joint source and relay precoder optimization problems.

APPENDIX A
Let the EDs for F1,nFH

1,n and F2,nFH
2,n be given

by F1,nFH
1,n , UF1,nΣF1,nU

H
F1,n

and F2,nFH
2,n ,

UF2,nΣF2,nU
H
F2,n

, respectively, where UF1,nU
H
F1,n

= Ins ,
UF2,nU

H
F2,n

= Inr . Without loss of generality (w.l.o.g), the

diagonal entries
{
σF1,n
j

}ns

j=1
and

{
σF2,n
k

}nr

k=1
of ΣF1,n and

ΣF2,n are assumed to be in the decreasing order. Then, we
can express si,n , tr

(
Hi,n,EFi,nFH

i,nH
H
i,n,E

)
as

si,n = tr
(
UH

Fi,n
UHi,n,EΛHi,n,EU

H
Hi,n,E

UFi,nΣFi,n

)

≤ tr
(
ΛHi,n,EΣFi,n

)
(23)

where the equality holds only if UFi,n = UHi,n,E . Substitut-
ing this result, P1 can be expressed as

max
σ
F1,n
j ,σ

F2,n
k

N∑

n=1

{ r1∑

j=1

λH1,n,E
j σF1,n

j +
r2∑

k=1

λH2,n,E
k σF2,n

k

}

s.t.
N∑

n=1




r1∑

j=1

σF1,n
j +

r2∑

k=1

σF2,n
k


 ≤ PT, (24)
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which, can be equivalently expressed as

max
σ
F1,n
1 ,σ

F2,n
1

N∑

n=1

{
λH1,n,E
1 σF1,n

1 + λH2,n,E
k σF2,n

1

}

s.t.
N∑

n=1

σF1,n
1 + σF2,n

1 ≤ PT, (25)

with
{
σF1,n
j

}ns

j 6=1
= 0 and

{
σF1,n
k

}nr

k 6=1
= 0. The optimization

problem (25) is a linear programming problem, for which the
optimal solutions are readily given by, either

σF1,n
1 =

{
PT, if λH1,n,E

1 >
{
λH1,ñ,E
1 , λH2,n̄,E

1

}N

ñ6=n,ñ,n̄=1

0 otherwise
,

in which
{
σF2,n
1

}N

n=1
= 0, or

σF2,n
1 =

{
PT, if λH2,n,E

1 >
{
λH2,ñ,E
1 , λH1,n̄,E

1

}N

ñ6=n,ñ,n̄=1

0 otherwise
,

in which
{
σF1,n
1

}N

n=1
= 0. Using these solutions for σF1,n

1

and σF2,n
1 , we obtain (11).

APPENDIX B
For notational convenience, we define λ1n , λ̃H1,n,I

1 ,
λ2n , λ̃H2,n,I

1 , t1n , a1,n, and t2n , a2,n. Then,
the resulting function fn(a1,n, a2,n) can be expressed as
fn(a1,n, a2,n) , 1

ln 2fn(t1n, t2n) with fn(t1n, t2n) ,

ln
(
1 + t1nλ1nt2nλ2n

t1nλ1n+t2nλ2n+1

)
. The bordered Hessian matrix [11]

for fn(t1n, t2n) is defined as

Hfn =




0 δfn
δt1n

δfn
δt2n

δfn
δt1n

δ2fn
δt21n

δ2fn
δt1nδt2n

δfn
δt2n

δ2fn
δt2nδt1n

δ2fn
δt22n


 . (26)

The first-order partial derivatives of fn with respect to t1n and
t2n are given by

δfn
δt1n

=
λ1nλ2nt2n

(1 + λ1nt1n)(1 + λ1nt1n + λ2nt2n)
δfn
δt2n

=
λ1nλ2nt1n

(1 + λ2nt2n)(1 + λ1nt1n + λ2nt2n)
(27)

which shows that the function fn(t1n, t2n) increases monoton-
ically in t1n and t2n. The corresponding second order partial
derivatives are then given by

δ2fn
δt21n

=
−λ2

1nλ2nt2n(2 + 2λ1nt1n + λ2nt2n)
(1 + λ1nt1n)2(1 + λ1nt1n + λ2nt2n)2

δ2fn
δt22n

=
−λ2

2nλ1nt1n(2 + 2λ2nt2n + λ1nt1n)
(1 + λ2nt2n)2(1 + λ1nt1n + λ2nt2n)2

(28)

which shows that δ2fn
δt21n

and δ2fn
δt22n

are negative for all possible
t1n, t2n. Similarly, we obtain

δ2fn
δt1nδt2n

=
λ1nλ2n

(1 + λ1nt1n + λ2nt2n)2

δ2fn
δt2nδt1n

=
δ2fn

δt1nδt2n
. (29)

Let Di
n denote the ith-ordered determinant of the bordered

Hessian matrix Hfn. Then, we have

D1
n = −

[
δfn
δt1n

]2

D2
n = 2

δfn
δt1n

δfn
δt2n

δ2fn
δt1nδt2n

−
[
δfn
δt1n

]2 δ2fn
δt22n

−
[
δfn
δt2n

]2 δ2fn
δt21n

. (30)

Note that D1
n ≤ 0 since δfn

δt1n
≥ 0, whereas D2

n ≥ 0
since δfn

δt1n
≥ 0, δfn

δt2n
≥ 0, δ2fn

δt21n
≤ 0, δ2fn

δt22n
≤ 0 and

δ2fn
δt1nδt2n

≥ 0. The facts that D1
n ≤ 0 and D2

n ≥ 0 verify
that fn(t1n, t2n) is a quasiconcave function [11]. Although
δ2fn
δt21n

≤ 0, δ2fn
δt22n

≤ 0, this function is not concave since
δ2fn
δt21n

δ2fn
δt22n

−
[

δ2fn
δt1nδt2n

]2
≥ 0 does not hold for all t1n and

t2n. The concavity holds only under some conditions, e.g., for
all t1n, t2n, where t1nλ1nt2nλ2n

t1nλ1n+t2nλ2n+1 ≥ 1/3 for given λ1n and
λ2n. This is usually the case under high SNR assumption.
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