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ABSTRACT

Multi-task compressive sensing is a framework that, by leveraging
the useful information contained in multiple tasks, significantly re-
duces the number of measurements required for sparse signal re-
covery and achieves improved sparse reconstruction performance of
all tasks. In this paper, a novel multi-task adaptive matching pur-
suit (MT-AMP) algorithm based on a hierarchical Bayesian model
is proposed with the exploitation of both the group structure across
different tasks and the intra-group correlation, yielding an effective
means to simultaneously perform sparse recovery as well as learn
the statistical inter-task and intra-group relationships. Experimental
results using both synthetic data and real data sets demonstrate the
superiorities of the proposed method over existing state-of-the-art
algorithms.

Index Terms— Compressive sensing, multi-task learning,
structured spike-and-slab prior, sparse recovery, intra-group cor-
relation

1. INTRODUCTION

Sparse signal recovery and compressive sensing (CS) have attracted
significant attention in recent years [1]. CS techniques are capable to
recover signals from a small number of measurement samples with a
high probability, given that the signals are sparse or can be sparsely
represented in some domain. They have been widely used in many
applications, such as radar imaging [2, 3], radio astronomy [4–6],
dictionary learning [7, 8], and image classification [9].

Advances in sensing technology have facilitated easy acquisition
of multiple different measurements of the same underlying physical
phenomena. For example, in face recognition or action recognition
we may have different views of a person’s face captured under dif-
ferent illumination conditions or with different facial postures [10].
In automatic target recognition, multiple synthetic aperture radar
(SAR) views are acquired [11]. It has been shown that recovering
multiple related tasks simultaneously, rather than individually, often
significantly improve performance relative to recovering each task
independently [12]. This is the case, for example, when only a few
data per task are available, so that there is an advantage in “pool-
ing” together data across many related tasks. A typical multi-task
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CS model can be described as [13],

yt = Atxt + nt, t ∈ {1, · · · , D}, (1)

where yt ∈ RM denotes the measurement vector at time t, and nt
is an unknown zero-mean Gaussian noise vector. At ∈ RM×L is a
sensing dictionary matrix at time t with M � L, and without loss
of generality, all atoms of {At}Dt=1 are normalized, i.e., the lth atom
in the tth sensing dictionary matrix ‖alt‖22 = 1 for l = {1, · · · , L}
and t ∈ {1, · · · , D}, where alt is the lth column of matrix At.
In addition, xt ∈ RL×1 is the required reconstructed sparse vector
withK non-zero entries at time t. In this model, xt has the same or a
similar sparsity support, i.e., the respective positions of the non-zero
entries are similar for different t. Denote xlt as the lth elment of xt.
Then, the above group sparsity suggests that xl· = [xl1, · · · , xlD],
which aligns the lth element across all D tasks, shares the same s-
parsity pattern, and the values of these elements are often generally
dependent or correlated due to the correlation of observed measure-
ments.

A number of algorithms have been proposed for the reconstruc-
tion of group sparse signals. These algorithms include greedy-based
algorithms, such as block-OMP (BOMP) [14], and basis pursuit-
based ones, such as group Lasso [15]. Bayesian approaches form a
different class of sparse signal reconstruction algorithms, which gen-
erally yield improved performance. Sparse Bayesian learning algo-
rithms provide effective solutions to a large class of problems based
on a nonparametric Bayesian framework, and thus have the capa-
bility of inferring the sparsity parameter and avoiding the nuisance
parameters [16–18]. The multi-task compressive sensing (MT-CS)
algorithm [17] adopts a hierarchical Bayesian model for multi-task
recovery with group structure and a more general approach complex
multi-task Bayesian compressive sensing (CMT-BCS) [19] has been
proposed for the recovery of complex signals. The clustered multi-
task Bayesian compressive sensing algorithm further uses the intra-
task dependency to improve the reconstruction performance [20].

In this paper, a novel multi-task adaptive matching pursuit
method is proposed that exploits the signals structures for sparse
signal reconstruction in the hierarchical Bayesian framework. We
first extend a spike-and-slab prior to form a generalized multitask
model and induce the relationship between the tasks based on a
hierarchical model. Motivated by the kernel technique in the corre-
lation learning model [21, 22], we place a Toeplitz matrix to learn
the correlation between the elements within each group. A novel
greedy-based inference approach is then proposed for the non-
convex optimization model induced by the extended spike-and-slab
prior. Since the hierarchical Bayesian model allows the estimation of
the prior and the correlation parameters in an unsupervised manner,



the proposed algorithm has the capability of automatically inferring
the sparsity and learning both the group structure across tasks and
the intra-group correlation.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). f(w|a, b) is the conditional prob-
ability distribution function (pdf) of the variable w given a and b.
N (w|a, b) denotes that random variablew follows a Gaussian distri-
bution with mean a and variance b, IM denotes the M ×M identity
matrix, and I(w = 0) stands for an indicator function, which equals
to 1 if and only if w = 0, and is 0 otherwise. We use xi· to denote
the ith row of matrix X, and (.)T denotes the transpose of a matrix
or vector.

2. THE PROPOSED MODEL

2.1. Generative Model

In this subsection, we illustrate the proposed generative model.
Without loss of generality, the measurement vectors follow the
Gaussian distribution, i.e.,

Y|X, σ2 ∼
D∏
t=1

N (Atxt, σ
2IM ), (2)

where Y = [y1, · · · ,yt, · · · ,yD] ∈ RM×D is an observed mea-
surement matrix, X = [x1, · · · ,xt, · · · ,xD] ∈ RL×D denotes the
required reconstructed sparse matrix across D tasks, and σ2 repre-
sents the noise variance.

To encourage the group sparsity across all tasks and model the
correlation between the elements within each group, we place an
extended spike-and-slab prior with the structure exploitation, ex-
pressed as,

xl· ∼ γlN (0, σ2λ−1B) + (1− γl)I(xl· = 0), (3)

where λ is a scalar parameter related to the noise precision, and γl is
a binary indicator variable, which follows the Bernoulli distribution.
This prior implies that all the elements in the lth group share the
identical prior γl. When the value of γl is 1, all the elements in the
lth group are nonzero. On the other hand, when the value of γl is 0,
all the elements in this group will be zero. Therefore, we have the
Bernoulli distribution imposed on the vector γγγ = [γ1, · · · , γL]T as

γγγ|κκκ ∼
L∏
l=1

Bernoulli(γl|κl), (4)

where κκκ = [κ1, · · · , κL]T is a hyperparameter vector.
It has been shown that in many applications the multiple tasks

are often correlated, and the signal sparse reconstruction perfor-
mance can be significantly improved by exploiting this correla-
tion [23–25]. In addition, in many applications stronger correlation
exists between tasks nearby and weaker correlation exists between
tasks far away. Inspired by the kernel technique in the correlation
learning model [21, 22], we define matrix B ∈ RD×D as a positive
definite kernel matrix to capture the correlation of elements within
each group. To avoid overfitting, all L groups share the identical
B. A first-order auto-regressive (AR) process is often sufficient to
model intra-group correlation. In this case, a Toeplitz kernel matrix
is imposed to model the correlation between elements within each
group,

Toeplitz([1, c, · · · , cD−1]) =

 1 c · · · cD−1

...
...

cD−1 cD−2 · · · 1

 ,

where 0 ≤ c < 1 is the AR coefficient. Notice that the above kernel
matrix is real and symmetric, and all its entries take values within
[0, 1]. The diagonal entries take the value of unity, and the values
of the off-diagonal elements decrease, depending on their respective
distance from the main diagonal. When the scalar c is zero, this k-
ernel matrix reduces to the identity matrix, and thus it implies that
all the elements are independent. On the other hand, when c ap-
proaches to 1, it shows a strong correlation between elements within
groups. In the proposed model, the intra-group correlation will be
automatically learned by estimating the AR coefficient c.

Compared with the approaches in [26] and [27], the above gen-
erative model is more general because it takes the underlying group
structure into consideration and exploits intra-group correlation
learning to improve the reconstruction performance.

2.2. Optimization Problem

According to the generative model above, the posterior probability
distribution of latent random variables X, γγγ and c can be expressed
by

f(X, γγγ, c|Y, λ, σ2,κκκ) ∝ f(Y|X, γγγ, σ2)f(X|γγγ, σ2, λ, c)f(γγγ|κκκ).
(5)

A maximum a posteriori (MAP) estimation is performed, and the
optimal values of X∗, γγγ∗ and c∗ are given by [28]:

(X∗, γγγ∗, c∗) = arg max
X,γγγ,c

f(X, γγγ, c | Y,κκκ, λ, σ2). (6)

The above optimization problem is equivalent to the following min-
imization problem,

(X∗, γγγ∗, c∗) = arg min
X,γγγ,c

L(X, γγγ, c), (7)

where

L(X, γγγ, c) =

D∑
t=1

‖yt −Atxt‖22

+ λ

L∑
l=1

xl·B
−1xTl· +

L∑
l=1

ρlγl, (8)

and ρl = σ2 ln
(
(2π)D|σ2λ−1B| (1−κl)

2

κ2
l

)
.

Because it involves a binary indicator variable γγγ, this optimiza-
tion problem is non-convex and thus cannot be effectively solved
using conventional convex optimization algorithms. We propose a
greedy-based multi-task adaptive matching pursuit (MT-AMP) algo-
rithm to handle this non-convex problem and the alternative mini-
mization scheme [29] is adopted, as illustrated in Section 3.

3. MULTI-TASK ADAPTIVE MATCHING PURSUIT

3.1. Signal Recovery: Optimization for X and γγγ

In this subsection, given the parameter c, the optimization of X and
γγγ can be expressed as

(X∗, γγγ∗) = argmin
X,γγγ

D∑
t=1

‖yt −Atxt‖22

+ λ

L∑
l=1

xl·B
−1xTl· +

L∑
l=1

ρlγl. (9)



A greedy-based MT-AMP is proposed to effectively solve this prob-
lem by adding elements into or removing elements from the sup-
port set of X. It is clear that, given the support set of X, i.e.,
S = {l : γl 6= 0} for l ∈ {1, · · · , L}, the optimization problem
in Eq. (9) will reduce to

XS = argmin
XS

D∑
t=1

‖yt −ASt x
S
t ‖22 + λ

∑
l∈S

xl·B
−1xTl· , (10)

where XS (ASt ) is a sub-matrix of X (At) composed by the rows
(columns) of X (At) indexed by S. xSt is the vector containing only
the active elements of xt which are indexed by S. This optimization
problem can be easily solved using conventional convex optimiza-
tion algorithms. The bijection S ↔ XS implies that solving Eq. (9)
is equivalent to finding the support set S. This prompts us to utilize
a greedy-based method to find the support set S and then solve the
problem Eq.(10). In particular, we update S at each iteration by ei-
ther adding one of the unselected indices into S or removing one of
the existing indices from S. For a given S, we define

rSt = yt −ASt x
S
t , θS =

∑
l∈S

ρl (11)

and

g(S) = min
XS

D∑
t=1

‖yt −ASt x
S
t ‖22 + λ

∑
l∈S

xl·B
−1xTl· + θS . (12)

At each step, the choice of the index and the action of adding/removing
elements are decided by computing the two valuesUS and VS , where

US = min
l/∈S

g(S ∪ {l})− g(S), (13)

is the reduction in the cost function if adding one of the unselected
indices into S, and

VS = min
j∈S

g(S\{j})− g(S) (14)

is the reduction of cost function if removing one of the existing in-
dices from S. If both US and VS are greater than or equal to 0, we
stop the algorithm since no further improvement is obtained and this
suggests the algorithm has converged. Otherwise, we compare US
and VS to update S by adding l to S (if US < VS ) or removing j
from S (if US > VS ), whichever further reduces the cost function.

Nevertheless, the cost of precisely computing the values of US
and VS is very expensive, making this idea hardly practical. To solve
this problem, instead of directly estimating the values of US and VS ,
we compute their upper bounds, respectively denoted asUS and V S ,
to reduce the computational cost. In particular, the values of US and
V S can be computed by

US = min
l/∈S
{ρl − φTl (ID + λB−1)−1φl},

V S = min
j∈S
{2xj·φj + xj·(ID − λB−1)xTj· − ρj},

where φi = [aTi1r
S
1 , · · · ,aTiDrSD]T . Based on these approximated

values, an updated S is acquired. Given the updated S, the new
values of XS and rSt can be calculated precisely before moving to
the new iteration.

Besides US and V S , the initialization of S can also significantly
influence the convergence of MT-AMP. A beneficial initialization
guidance is provided in the following proposition.

Proposition 1. If ρl < 0, then l ∈ Sopt, where Sopt is the optimal
support set.

Proof. Assume that l /∈ Sopt and ρl < 0, then

g (Sopt ∪ l) ≤
D∑
t=1

‖rSoptt − altxlt‖22 + λxl·B
−1xTl·

+ λ
∑
i∈Sopt

xi·B
−1xTi· + θSopt + ρl

= g (Sopt) + xl·x
T
l· − 2

D∑
t=1

aTltr
Sopt
t xlt

+ λxl·B
−1xTl· + ρl.

Let

p(xl·) = xl·x
T
l· − 2

D∑
d=1

aTldr
Sopt
d xld + λxl·B

−1xTl· + ρl, (15)

where p(·) : R1×D → R. As the matrix B is a positive definite
matrix, it is obvious that as all the elements of xl· approaches to
positive infinity, p(xl·) will equal to positive infinity. In addition,
p(0) = ρl < 0 and p(xl·) is continuous. Thus there exists x̂l·
whose all elements are nonzero such that ρl < p(x̂l·) < 0. Then we
can obtain

g (Sopt ∪ l) ≤ g (Sopt) + p(x̂l·) ≤ g (Sopt) , (16)

which suggests that adding l into Sopt can decrease the cost function.
However, it is contradict to the assumption l /∈ Sopt. This implies
that if ρl < 0, then l ∈ Sopt.

According to Proposition 1 we can initialize S0 = {l : ρl < 0}.

3.2. Intra-Group Correlation Learning: Optimization for c

Given XS and S, the updating step of c is performed at each itera-
tion. We empirically calculate the value of c by c , m1

m0
[22], where

m0 is the average of elements along the main diagonal of matrix B,
whereas m1 represents that along the main sub-diagonal. The learn-
ing rule of matrix B is obtained by setting ∂L(X,γγγ,c)

∂B
= 0, which

results in the following closed-form solution

B =
λ
∑
l∈S x

T
l·xl·

σ2
∑
l∈S γl

. (17)

Then parameter c can be updated using the new matrix B. There-
fore, the intra-group correlation will be automatically learned and
estimated.

3.3. Summary of the Proposed Algorithm

The entire optimization procedure is summarized in Algorithm 1.
Since the updating step of US and V S guarantees the reduction of
objective function after each iteration, the algorithm can converge
within finite steps.



Algorithm 1 Multi-Task Adaptive Matching Pursuit

Input: A,y, λ, σ2.
1: Initialize c and S
2: while true do
3: Update XS by Eq. (10)
4: Calculate: [US , l] and [V S , j]
5: if min(US , V S) > 0 then break while
6: else if US < V S then S = S ∪ {l}
7: else S = S\{j}
8: end if
9: Update B by Eq. (17)

10: Update c : c = m1
m0

11: end while
Output: X and c.
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Fig. 1. Performance comparison. (a) MSE versus the number of
measurements. (b) MSE versus the sparsity level.

4. SIMULATIONS AND EXPERIMENTS

In this section, experiments on both synthetic data and real data sets
are performed to verify the effectiveness of the proposed method. In
the simulations, λ = 0.001, σ = 0.1 and all the elements of vectorκκκ
are set as 0.5 in the entire experiments so that the binary variable vec-
tor γ is active in the initialization. Two competitive state-of-the-art
methods, including MT-CS [17] and block sparse Bayesian learn-
ing (BSBL) [22], are compared, and the mean square error (MSE)
is used as the performance index. All experimental results were ob-
tained by average of 100 trials.

4.1. One-Dimensional Synthetic Data

In this subsection, the following parameters are used in the synthetic
data: The length of each task is L = 64 with 5 nonzero elements,
D = 8 tasks share the identical nonzero positions, but take ran-
dom values following a Gaussian distribution with zero mean and
the variance of 1. The measurement matrices At ∈ R20×64 for
t = {1, · · · , D} are randomly generated Gaussian matrices. With
loss of generality, a Gaussian noise with zero mean is considered,
and the signal-to-noise ratio (SNR) is 3dB.

The performance comparisons versus the number of measure-
ments and the sparsity level are shown in Fig. 1(a) and Fig. 1(b), re-
spectively. It is observed that the reconstructed MSE decreases with
the increase of the measurement number, and the proposed method
has the smallest MSE across all the level of measurement number
in Fig. 1(a), compared to these in MT-CS and BSBL. On the oth-
er hand, performance comparison versus the sparsity level is also
shown in Fig. 1(b). It is clear that the proposed method achieves the
best reconstruction performance, which benefits from the spike-and-
slab prior with the structure exploitation.
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Fig. 3. Reconstructed images from MNIST data set. The numbers
appeared next to each method is the average MSE.

Fig. 2(a) shows the performance comparison versus SNR. It is
observed that the MSE decreases with the increase of SNR, and the
MSE obtained by the proposed method is less than these in other two
methods, and thus is more robust to SNR. To verify the accuracy of
intra-group correlation learning of the proposed method, we show
the estimated value of correlation parameter c, as shown in Fig. 2(b).
It can be found that the estimated values of MT-AMP are closer to
the true values, compared to the estimated value in the BSBL method
with the true value of the correlation varying from 0 to 0.9.

4.2. Real Image Recovery

In this subsection, real data sets of handwritten digit images from
the MNIST data set [30] are used for performance comparison. The
reconstructed results using 7 tasks are shown in Fig. 3. All original
images have the size 28 × 28. The experiment parameter setting is
similar to the first set of examples, and the number of measurements
is 350. It is observed that the sparsity support and values across 7
tasks are highly correlated. As shown in Fig. 3, the images recov-
ered by the MT-AMP are closest to the original images and have
the smallest MSE by exploiting the group structure across tasks and
intra-group correlation learning, compared to those obtained by the
MT-CS and BSBL methods.

5. CONCLUSION

In this paper, a novel multi-task adaptive matching pursuit (MT-
AMP) method has been proposed for sparse recovery in a hierar-
chical Bayesian framework. To encourage the group sparsity, we
impose an extended spike-and-slab prior to model the group struc-
ture across all the tasks. In addition, a Toeplitz matrix structure is
used to model the correlation between the elements within groups.
According to the proposed generative model, a greedy based adap-
tive matching pursuit is then proposed to perform the inference for
this non-convex optimization problem. Simulations and experimen-
tal results demonstrate the superiority of the proposed algorithm over
other existing state-of-the-art algorithms.
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