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Abstract 

In this paper, we consider an integrated sensing and communications system assisted 
by a reconfigurable intelligent surface (RIS). A small number of sparsely placed active 
sensors are applied in the RIS to perform effective channels and, thereby, enable 
optimized beamforming for both communications and sensing objectives, namely, 
establishing reliable communication links with communication users (CUs) and effec-
tively localize targets. The time-varying multipath channels between the RIS and the 
CU as well as the time-varying channel between the RIS and the targets are estimated 
by exploiting an interpolated Hermitian and Toeplitz covariance matrix followed by 
direction-of-arrival estimation using the MUSIC algorithm. Based on such results, we 
jointly optimize the transmit beamformer at the base station and the unit-modulus 
RIS passive beamformer. The RIS beamformer is optimized to maximize its minimum 
beam-pattern gain towards the desired sensing angles subject to the minimum signal-
to-noise ratio requirement at the CU. Simulation results verify the effectiveness of the 
proposed approach, and the performance of different sparse array configurations is 
compared.

Keywords: Intelligent reflecting surface, Integrated sensing and communications, 
Sparse array, Structured matrix completion, Direction-of-arrival estimation

1 Introduction
Next-generation wireless communication systems are required to deliver information in 
an extremely fast, more trustworthy, low-latency, and secure manner. Recent communi-
cations networks have emerged to use the millimeter-wave (mmWave) frequency band 
to provide innovative features and enable high data rate applications, such as high-qual-
ity video transmission, vehicle-to-infrastructure communications, intra-, and inter-vehi-
cle messaging, device-to-device communications, and Internet of Things frameworks, 
and tactile Internet [1–4]. Similarly, modern radar systems use a wide frequency spec-
trum for a variety of applications such as air surveillance, long-range meteorological, 
and automobile radars.

The demand for higher data rates and higher sensing resolution in recent communica-
tion and sensing systems has rendered spectral congestion a critical problem. On the 
other hand, wireless sensing and communication systems are evolving to achieve wider 
frequency bands, larger antenna arrays, and reduced size. As a result, their hardware 

*Correspondence:   
ydzhang@temple.edu

1 Department of Electrical 
and Computer Engineering, 
Temple University, Philadelphia, 
USA
2 School of Electrical Engineering 
and Telecommunications, The 
University of New South Wales, 
Sydney, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-023-00977-5&domain=pdf
http://orcid.org/0000-0002-4625-209X


Page 2 of 22Asif Haider et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:20 

architectures, channel properties, and signal processing are becoming increasingly com-
plicated. An effective solution to reduce the hardware cost and save radio spectrum is to 
incorporate sensing capability into the wireless communication infrastructures, thereby 
allowing future wireless networks to provide ubiquitous sensing services in addition to 
the regular communication functions [5]. There has been a great interest in developing 
integrated sensing and communication (ISAC) techniques to enable shared spectrum 
access [6, 7]. ISAC can be implemented in several forms. For example, dual-function 
radar-communication (DRFC) systems share the same spectrum and hardware for both 
wireless communications and radar sensing, thereby achieving high spectral and cost 
efficiency [8–11].

Recently, reconfigurable intelligent surface (RIS) has emerged as a promising means for 
the next-generation wireless communication systems to boost the channel capacity and 
increase service coverage [12]. RIS is a metasurface made up of a large number of pas-
sive reflecting elements, typically in a rectangular shape, in which each element can be 
digitally controlled to adjust the amplitude and/or phase of the incident signal, thereby 
allowing optimized control of the propagation channels [13–15]. The capability of RIS 
to transform the wireless propagation environments which are traditionally considered 
unmanageable into controllable ones opens a new direction to change the paradigm of 
wireless communications and sensing with much higher capability and flexibility.

Naturally, RIS is found to be attractive in ISAC applications. For example, RIS can 
assist the base station (BS) to better communicate and detect communication users 
(CUs) and targets that are outside of the line-of-sight (LOS) region of the BS [16–23]. 
In [21], the authors describe a simplified RIS-assisted DFRC system to detect targets in 
crowded areas, and the output signal-to-noise ratio (SNR) of the radar signal is maxi-
mized to enhance the target Localization performance while ensuring the output SNR 
at the CU. It also considers the scenario that the targets are located in the non-line-
of-sight (NLOS) region of the BS and, thereby, target sensing and localization become 
much more challenging. It is shown in [19] that utilization of RIS transforms the NLOS 
targets from the BS into LOS ones from the RIS, thus enabling estimation of the targets’ 
direction-of-arrival (DOA) with respect to the RIS. In [16], the authors jointly optimize 
the transmit information and sensing beamforming at the BS and the reflective beam-
forming at the RIS to maximize the minimum beampattern gain of the RIS towards the 
desired sensing angles, subject to the minimum SNR requirement at the CU and the 
maximum transmit power constraint at the BS.

A conventional RIS system in which all elements are passive does not have the capa-
bility of estimating the individual  channel state information (CSI) involved with the 
RIS. Instead, only the cascade CSI is considered, thus bringing inaccuracies and higher 
complexity [24, 25]. An attractive alternative effective solution is to use a hybrid analog/
digital architecture [26–28]. By utilizing a small number of active elements in a RIS, it 
can achieve high-precision CSI estimation and, as a result, significantly facilitates sim-
pler and more effective optimization of the adaptive beamformers and system resources. 
Compare with the random deployment of RIS active elements, their deployment 
arranged in well-designed sparse array configurations provides better performance.

In this paper, we consider a wireless communication system that, assisted by a RIS, imple-
ments ISAC functions to deliver information to a CU with multipath propagation channels 
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and to localize targets that have LOS only with the RIS. To provide effective beamform-
ing optimization at both the BS and the RIS and achieve accurate target localization, we 
exploit a small number of active sensors in the RIS, whose majority of elements are passive, 
to enable estimation of the time-varying multipath channels between the RIS and the CU 
as well as that between the RIS and the targets. Modeling the elements in the RIS as a uni-
form rectangular array (URA), the active sensors are designed to form an L-shaped sparse 
array with each of the two subarrays in the horizontal (denoted as the x-axis) and elevation 
(denoted as the z-axis) directions. In order to effectively utilize the small number of active 
RIS sensors, these sensors should be sparsely placed. Sparse array configurations are known 
to offer many desirable advantages, such as extending the array aperture and providing a 
higher number of degrees-of-freedom [29–32]. In particular, we choose the recently devel-
oped hybrid optimized non-redundant array (ONRA) structure [33, 34] to deploy the active 
sparse RIS elements in each subarray because this structure achieves the highest number of 
unique difference lags and the flexible design capability of the array aperture. By performing 
sparse array interpolation and pairing between the azimuth and elevation angle estimates, 
we achieve CSI estimation associated with the CU multipath and targets in the two-dimen-
sional (2-D) coordinates. The estimated CSI is then used for the optimization of the BS and 
RIS beamformers for both communication information delivery and target localization 
objectives. The effectiveness of the proposed technique in terms of the beampattern gain 
and target localization accuracy is verified using simulation results.

The remainder of this paper is structured as follows. The models of the RIS-assisted 
ISAC system and signals are introduced in Sect. 2. In Sect. 3, we provide an interpolation 
technique for the channel estimation algorithm, an iterative method for maximizing active 
beamforming at BS and optimizing passive beamforming at RIS while simultaneously 
maintaining a minimum SNR for the communication user and detecting the targets at RIS 
from the RIS reflection beams. Section 4 assesses how well the suggested active RIS designs 
function across various array structures. Finally, conclusions are drawn in Sect. 5.
Notations: We use lower-case (upper-case) bold characters to denote vectors (matri-

ces). In particular, IN denotes the N × N  identity matrix. (·)∗ denotes complex conjugate, 
(.)T and (.)H respectively represent the transpose and the conjugate transpose of a matrix 
or a vector, and (·)† represents Moore-Penrose inverse of a matrix. In addition, � · �F and 
� · �∗ respectively denote the Frobenius norm and the nuclear norm of a matrix, ⊗ and ⊙ 
respectively denote the Kronecker product and the Hadamard product, and T (x) denotes 
the Hermitian and Toeplitz matrix with x as its first column. We use diag(a) to represent 
a diagonal matrix that uses the elements of vector a as its diagonal elements and tr(·) rep-
resents the trace operator. Furthermore, [A]u,v denotes the (u, v)-th element of matrix A , 
[A]:,v denotes the v-th column of matrix A , and A � 0 stands for matrix A to be positive 
semidefinite. E[·] is the statistical expectation operator.

2  System and signal models
2.1  System model

Consider a RIS-assisted ISAC system as shown in Fig. 1a, which consists of an M-sen-
sor BS in a vertical uniform linear array (ULA) structure, a CU with a single antenna, 
an N-element RIS in a URA structure, and multiple potential target locations at the 
NLOS areas of the BS. As shown in Fig. 1b, the rectangular RIS has Nx elements and 
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Nz elements in the azimuth and elevation dimensions, and the total number of RIS ele-
ments is N = Nx × Nz . The RIS elements are separated by d = �/2 in both dimensions, 
where � denotes the signal wavelength.

Among the N RIS elements, N̄  elements ( N̄ ≪ N  ) are active and are arranged in an 
L-shaped sparse array structure. We denote N̄x and N̄z as the numbers of active ele-
ments in the x- and z-axis subarrays, respectively. Because the element in the corner of 
the L-shape is shared by both subarrays, the total number of active elements in the RIS 
is N̄ = N̄x + N̄z − 1 . The positions of the active elements along the x- and the z-axes 
are represented by X = {p0, p1, · · · , pN̄x−1}�/2 and Z = {q0, q1, · · · , qN̄z−1}�/2 , respec-
tively, where pi and qi are integers for all i, and p0 = q0 = 0 is assumed. We also denote 
Wx = pN̄x−1 + 1 and Wz = pN̄z−1 + 1 as the numbers of active and passive elements 

Fig. 1 An RIS-enhanced ISAC system
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included within the respective apertures of the x- and z-axis subarrays. In this paper, we 
consider the hybrid ONRA structure [33, 34] in both subarrays.

The operation of the ISAC system consists of CSI estimation and optimized beam-
forming for data transmission and target sensing. When performing CSI estimation, 
the active RIS elements work to sense the signals and perform channel estimation [28, 
35]. The DOAs and channel gains associated with the channels are estimated at the BS 
and the RIS which collectively allow the BS to jointly optimize the BS beamformer and 
RIS reflecting coefficients under the maximum power constraints. On the other hand, 
when performing data transmission, all the active and passive elements work as passive 
reflectors.

2.2  Signal model

In this subsection, we describe the signal models for both communication and tar-
get sensing subsystems. The communication subsystem involves the CU-RIS channel 
hr ∈ C

N×1 , the CU-BS channel hd ∈ C
M×1 , and the BS-RIS channel G ∈ C

N×M . It is 
assumed that the channel between the BS and the RIS is fixed and the CSI is known at 
the BS. On the other hand, the CU-RIS and CU-BS channels are time-varying and need 
to be periodically estimated. The sensing subsystem involves the same BS-RIS channel 
G ∈ C

N×M and the time-varying round-trip RIS-targets-RIS channel Ht ∈ C
N×N . We 

assume the time-division duplexing (TDD) protocol and, by taking advantage of channel 
reciprocity between the uplink and downlink transmissions, channel estimation is con-
sidered only in the uplinks.

We separately describe the channels in four separate parts given below.

2.2.1  CU‑RIS channel

Consider that the signal from a far-field CU impinges on the RIS with Lu uncorrelated 
multipath. Denote the 2-D DOA of the lu-th path from the CU and observed at the RIS 
as {θlu ,φlu} , lu = 1, · · · , Lu , where θlu ∈ [−π/2,π/2] and φlu ∈ [−π/2,π/2] are respec-
tively the elevation and the azimuth angles. The 2-D steering vector a(θlu ,φlu) at the RIS 
is expressed as [36]

where

Since the CU contains a single antenna, the channel of the CU-RIS link is expressed as

where βlu is the path gain. The signal vector received at the RIS corresponding to the x- 
and the z-axes are respectively given as [35, 36]

(1)a(θlu ,φlu) = az(θlu)⊗ ax(φlu),

(2)ax(φlu) =[1, e−j 2π
�
d sin(φlu ), . . . , e−j 2π

�
(Nx−1)d sin(φlu )]T,

(3)az(θlu) =[1, e−j 2π
�
d sin(θlu ), . . . , e−j 2π

�
(Nz−1)d sin(θlu )]T.

(4)hr =

Lu

lu=1

βlua(θlu ,φlu),
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where su(t) denotes the signal transmitted by the CU, s(t) = [β1,β2, · · · ,βLu ]
Tsu(t) , 

Ax = [ax(φ1), ax(φ2), · · · , ax(φLu)] , and Az = [az(θ1), az(θ2), · · · , az(θLu)] . In addition, 
nx(t) ∼ CN (0, σ 2

n INx ) and nz(t) ∼ CN (0, σ 2
n INz ) are the additive white Gaussian noise 

(AWGN) vectors observed at the x- and z-axis direction elements.
In the sensing mode, the signals are only observed at the two sparse subarrays respec-

tively consisting of N̄x and N̄z elements. We define binary mask matrices for the two 
subarrays, Ux ∈ C

Wx×Nx and Uz ∈ C
Wx×Nz , given as

Then, the observed signal vectors corresponding to the two subarrays become

Note that only N̄x and N̄z elements respectively in ỹx(t) and ỹz(t) corresponding to the 
active element positions are nonzero.

In Sect. 3, we will use the masked signals observed in the sparse subarrays to interpo-
late the missing elements within the respective subarray aperture and estimate the signal 
channels.

2.2.2  CU‑BS channel

Similar to the CU-RIS link, we consider that the signal transmitted from the CU arriving 
at the BS through Ld multipath. The time-varying channel between the BS and the CU is 
formulated as

where γld is the ld-th channel path gain and f(θld ) ∈ C
M×1 is the array steering vector at 

the BS for ld = 1, · · · , Ld . Note that we assume that the M antennas in the BS array are 
vertically placed so only the elevation components are considered.

2.2.3  BS‑RIS channel

The channel between the BS, in which the M antennas form a vertically aligned ULA, 
and the RIS is assumed to be fixed and thus is known at the BS. This channel between 
the BS and the RIS can be decomposed into Lb ≤ min(M,N) independent paths, given 
as

(5)yx(t) =

Lu∑

lu=1

βluax(φlu)su(t)+ nx(t) = Axs(t)+ nx(t),

(6)yz(t) =

Lu∑

lu=1

βluaz(θlu)su(t)+ nz(t) = Azs(t)+ nz(t),

(7)[Ux]g ,g =

{
1, gd ∈ X,
0, otherwise,

[Uz]g ,g =

{
1, gd ∈ Z,
0, otherwise.

(8)ỹx(t) = Uxyx(t) ∈ C
Wx×1, ỹz(t) = Uzyz(t) ∈ C

Wz×1.

(9)hd =

Ld∑

ld=1

γld f(θld ),



Page 7 of 22Asif Haider et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:20  

where, for the lb-th path, αb denotes the gain, a(θlr ,φlr ) = az(θlr )⊗ ax(φlr ) ∈ C
N×1 is the 

corresponding steering vector at the RIS, fH(θlb) ∈ C
M×1 is the steering vector at the 

BS, and αBI = [α1,α2, · · · ,αLb ]
T . The channel is decomposed into Lb independent paths 

with αb denoting the gain of the lb-th path.

2.2.4  RIS‑target‑RIS channel

To illustrate the offerings of RIS in providing localization of targets in the NLOS region 
of the BS, we consider potential target locations which have LOS to the RIS but not the 
BS. As such, the target locations are estimated based on signals observed at the RIS.

The RIS reflects the impinging signals from the BS to the targets and receives the sig-
nal reflected from the target. We assume Lt targets in the scene. The direction of the lt-th 
target observed at the RIS is denoted as (θlt ,φlt ) , which is shared for both the outgoing 
RIS-target path and the returning target-RIS path. The round-trip channel of the RIS-
target-RIS link is modeled as

where δlt combines the round-trip path gain and the target radar cross section (RCS), 
b(θlt ,φlt ) = bz(θlt )⊗ bx(φlt ) ∈ C

N×1 denotes the array steering vector of the RIS from 
the target, and δTI = [δ1, δ2, · · · , δLt ]

T corresponding to the lt-th target for lt = 1, · · · , Lt.
Similar to the CU-RIS channel considered in Sect. 2.2.1, the RIS only observes masked 

signals at the sparsely placed active element positions. The observed channel matrix 
corresponding to the signal received on the z-axis subarray denoted as the RIS-targets-
RIS(z) link, is described as

where only N̄z rows are nonzero. Similarly, the RIS-targets-RIS(x) link is expressed as

where only N̄x rows are nonzero.

3  Channel estimation, joint beamforming, and target localization
In this section, we consider the channel estimation, joint beamforming at the BS and 
the RIS, and the target localization in terms of 2-D DOA estimation. These objectives 
are addressed in the following three phases. The first phase estimates the time-varying 
channel between the CU and the RIS using the L-shaped sparse subarrays at the RIS. 
In the second phase, we maximize the minimum beampattern gain of the RIS towards 
the desired sensing directions while ensuring the minimum SNR requirement at the 

(10)G =

Lb∑

lb=1

αba(θlr ,φlr )f
H(θlb) = Alrdiag(αBI)F

H
lr
∈ C

N×M ,

(11)Ht =

Lt∑

lt=1

δltb(θlt ,φlt )b
H(θlt ,φlt ) = Btdiag(δTI)B

H
t ∈ C

N×N ,

(12)Htz =

Lt∑

lt=1

δltUzb(θlt )b
H(θlt ,φlt ) = B̃tzdiag(δTI)B

H
t ∈ C

Wz×N ,

(13)Htx =

Lt∑

lt=1

δltUxb(φlt )b
H(θlt ,φlt ) = B̃txdiag(δTI)B

H
t ∈ C

Wx×N ,
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CU under the maximum transmit power constraint at the BS. The objective of the third 
phase is to determine the target 2-D DOAs by the sparse active elements at the RIS.

3.1  Phase I: CU‑RIS channel estimation

In the first phase, the signal vectors ỹx(t) and ỹz(t) observed at the two active subarrays of 
the RIS are used to estimate the uplink multipath channels between the CU and the RIS. 
The interpolation technique is applied to obtain the full covariance matrices of vectors 
yx and yz corresponding to all elements spanned by the active subarray aperture, namely, 
for elements located at positions p0, p0 + 1, · · · ,Wx − 1 and q0, q0 + 1, · · · ,Wz − 1.

3.1.1  Covariance matrix interpolation

Assuming that the noise is uncorrelated to the signals, the covariance matrices of ỹx(t) is 
expressed as:

where Rs = diag(σ 2
1 , σ

2
2 , · · · , σ

2
Lu
) is the source covariance matrix, σ 2

lu
= β2

lu
σ 2
u represents 

the power of the lu-th path signal, σ 2
u = E(|su(t)|

2) is the source signal power. Because 
of the sparse placement of the active RIS elements, the covariance matrices R̃x contain 
missing holes. We exploit the matrix interpolation of R̃x to obtain an estimate of the 
interpolated covariance matrices Rx ∈ C

Wx×Wx.
The matrix interpolation for the x-axis subarray is formulated as the following nuclear 

norm minimization problem [37]:

where T (w) ∈ C
Wx×Wx denotes the Hermitian and Toeplitz matrix with w ∈ C

Wx×1 as 
its first column, �T (w)�∗ = tr(

√
T H(w)T (w)) is the nuclear norm of T (w) , and ζ is 

a tunable regularization parameter. In addition, Qx = UxU
T
x  is the binary mask of the 

sparse covariance matrix. The obtained T (w) becomes the estimate of Rx , denotes as R̂x . 
We can similarly perform matrix interpolation at the z axis and obtain the estimate of 
the interpolated covariance matrix Rz , denoted as R̂z.

As the interpolated covariance matrices are full rank, subspace-based methods, such 
as multiple signal classification (MUSIC), can be applied to R̂x to obtain the azimuth 
DOAs of the multipath signals. The elevation angles must be paired with the estimated 
azimuth angles and their estimation is discussed below.

3.1.2  Pair‑matched 2‑D DOA estimation

When there are multiple paths between the CU and the RIS, it is important to deter-
mine the correct pairing between the estimated azimuth and elevation angles. The array 
manifold matrix corresponding to the estimated azimuth angles φ̂1, φ̂2, · · · , φ̂Lu can be 
constructed as Âx = [ax(φ̂1), ax(φ̂2), · · · , ax(φ̂Lu)] . We will estimate the manifold matrix 
Az of the z-axis subarray from the following cross-covariance matrix between ỹx(t) and 
ỹz(t):

(14)R̃x = E[ỹx(t)ỹ
H
x (t)] = UxAxRsA

H
x U

T
x + σ 2

nUxU
H
x ,

(15)min
w

∥∥∥T (w)Qx − R̃x

∥∥∥
2

F
+ ζ�T (w)�∗

s.t. T (w)�0,
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Performing the eigendecomposition of the covariance matrices R̂x and R̂z yields in

and

where V̂xs and V̂zs denote the estimated signal subspaces for the two linear arrays, 
whereas �̂xs and �̂zs are the diagonal matrices containing the eigenvalues corresponding 
to the signal subspaces. As the position of the active elements for x and z-axis are iden-
tical, we can write Wx = Wz and I = IWx = IWz ∈ C

Wx×Wx . Exploiting the relationship 
between the components spanning the signal subspace in the above formulations, Rs can 
be estimated as [38]

Thus, an estimate of the array manifold matrix, 
Âz = [az(θ̂1), az(θ̂2), · · · , az(θ̂Lu)] ∈ C

Wz×Lu , can be obtained from (16) as

Note that matrix R̃xz is not a Hermitian and Toeplitz matrix and thus cannot be directly 
interpolated using interpolation techniques utilizing such properties. Instead, we indi-
rectly obtain the interpolated Rxz from the following operations:

As a result, we can rewrite (20) as

For the lu-th path, lu = 1, 2, · · · , Lu , the elevation angle can be estimated as

From the paired azimuth and elevation angle estimation, we can generate the array man-
ifold matrix for the CU-RIS channel as Â =

[
a(θ̂1, φ̂1), · · · , a(θ̂Lu , φ̂Lu)

]
∈ C

N×Lu.

3.1.3  Path gain estimation

Because the path gains are identical for the x- and z-axis subarrays, computation in one of 
these two subarrays will suffice. To estimate the path gain of the CU-RIS channel, the CU 
transmits pilot signal su(t) to the RIS. At the RIS, the received signal at the x-axis elements 
is given as

where g = [β1,β2, · · · ,βLu ]
T represents the path gains and can be estimated from

(16)R̃xz = E[ỹx(t)ỹ
H
z (t)].

(17)R̂x = ÂxR̂sÂ
H
x + σ 2

n IWx = V̂xs(�̂xs − σ 2
n I)V̂

H
xs + σ 2

n IWx ,

(18)R̂z = ÂzR̂sÂ
H
z + σ 2

n IWx = V̂zs(�̂zs − σ 2
n I)V̂

H
zs + σ 2

n IWz ,

(19)R̂s = Â†
xV̂xs(�̂s − σ 2

n I)V̂
H
xs(Â

†
x)

H.

(20)Âz =(R̂−1
s Â†

xR̃xz)
H.

(21)R̂xz = V̂xs(�̂xs − σ 2
n I)

1
2 (�̂zs − σ 2

n I)
1
2 V̂H

zs .

(22)Âz =(R̂−1
s Â†

xR̂xz)
H.

(23)θ̂ lu = argmax
θ

aHz (θ)[Âz]:,lu .

(24)yx(t) = Axgsu(t)+ nx(t),
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where ȳx = E{yx(t)s
∗
u(t)} . From the above DOAs and path gain estimation, we can 

reconstruct the CU-RIS multipath channel hr.
Similarly, we can estimate the CU-BS channel at the BS which, however, does not 

require interpolation because all BS antennas are active. The normalized root-mean-
square error (RMSE) of the CU-RIS channel at the RIS is estimated as

where Kcu is the number of independent trials.

3.2  Phase II: joint BS and RIS beamforming optimization

In phase II, our objective is to maximize the minimum beampattern gain of the 
RIS towards the desired sensing angles, while ensuring the minimum SNR require-
ment at the CU under the maximum transmit power constraint at the BS. Let 
v = [ejψ1 , · · · , ejψN ]T ∈ C

N×1 denote the reflective phase shift vector at the RIS where 
� = diag(v) . By combining the signals transmitted through the direct BS-CU link and 
the reflected BS-RIS-CU link, the received signal at the CU is expressed as

where w ∈ C
M×1 denotes the transmit beamforming vector at the BS, s(t) ∼ CN (0, σ 2

s,BS) 
is the transmitted random symbol, and nc(t) ∼ CN (0, σ 2

n,CU) represents the AWGN at 
the CU. The received SNR at the CU is computed as

Next, we consider the radar sensing towards the potential target locations which are 
assumed to be at the NLOS areas of the BS. In this case, we use the virtual LOS links cre-
ated by the RIS reflection to sense the targets. The beampattern gain of the RIS towards 
the desired sensing angles are used as the sensing performance metric. The beampattern 
gain from the RIS towards the target angel (θlt ,φlt ) is given as

We are interested in sensing the prospective targets at Lt directions observed at the RIS. 
To achieve the aforementioned objective, i.e., maximizing the minimum beampattern 
gain at these Lt angles while ensuring the minimum SNR requirement at the CU under 
the maximum transmit power constraint at the BS, we formulate the following SNR-
constrained minimum beampattern gain maximization problem, 

(25)ĝ =
1

σ 2
s

(AH
x Ax)

−1AH
x ȳx,

(26)Normalized RMSE �

√√√√ 1

Kcu

Kcu∑

k=1

�ĥr − hr�
2
F

�hr�
2
F

,

(27)yCU (t) = (hHr �G+ hHd )ws(t)+ nc(t),

(28)SNRCU =
σ 2
s,BS

σ 2
n,CU

|(hHr �G+ hHd )w|2.

(29)
ρ(θlt ,φlt ) = E(|aH(θlt ,φlt )�Gws(t)|2)

= aH(θlt ,φlt )�GwwHGH
�

Ha(θlt ,φlt ).
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 where L = {1, 2, · · · , Lt} , P0 is the maximum power allowed at the BS, and Ŵ is the 
required SNR by the CU. vn is the n-th element of v and the constraint |vn| = 1 ensures 
that the RIS weights are unit modulus, thereby achieving phase-only beamforming 
which is desired for convenience RIS implementations [39]. This problem is highly non-
convex and thus is difficult to be directly solved. It can be solved, however, by using the 
techniques of alternating optimization and semidefinite relaxation (SDR) [16]. The BS 
beamforming weight vector w is first optimized with an initial value of the � and then 
optimize the RIS reflecting beamforming matrix � with optimized w . These procedures 
are described in the following two subsections.

3.2.1   Transmit beamforming optimization at BS

First, we optimize the transmit beamformer w in the above problem under a presumed 
reflective beamformer � . This problem is formulated as 

 To perform SDR, we introduce W = wwH with W � 0 and rank(W) = 1 . Let 
h = GH

�
Hhr + hd denote the combined channel vector from the BS to the CU account-

ing for both BS-CU and BS-IRA-CU channels. Then, the transmit beamforming optimi-
zation in problem (31) is reformulated as, 

(30a)max
w,�

min
lt∈L

aH(θlt ,φlt )�GwwHGH
�

Ha(θlt ,φlt )

(30b)s.t. |(hHr �G+ hHd )w|2 ≥ Ŵσ 2
n,CU,

(30c)�w�22 ≤ P0,

(30d)� = diag(ejψ1 , · · · , ejψN ),

(30e)|vn| = 1, ∀n = 1, 2, · · · ,N ,

(31a)max
w

min
lt∈L

aH(θlt ,φlt )�GwwHGH
�

Ha(θlt ,φlt )

(31b)s.t. (30b), (30c).

(32a)max
w

min
lt∈L

aH(θlt ,φlt )�GWGH
�

Ha(θlt ,φlt )

(32b)s.t. tr(hhHW) ≥ Ŵσ 2
n,CU,

(32c)tr(W) ≤ P0,

(32d)W � 0,

(32e)rank(W) = 1.
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 However, this problem is still nonconvex due to the rank-one constraint on W in 
(32e). Relaxing this rank-one constraint renders the SDR version of the problem (32), 
expressed as 

 This problem is a semidefinite programming (SDP) that can be efficiently solved using 
convex solvers, such as CVX. Once the optimal solution of W is solved from (32) and 
denoted as Wopt , the optimized transit beamforming vector at the BS, w , is obtained as 
[16]

3.2.2  Reflective beamforming optimization at RIS

Next, we optimize the reflective beamformer � in problem (30) when the transmit 
beamformer of the BS is obtained from (33) and (34). Then, the sensing beampattern 
gain from the RIS towards angle {θlt ,φlt } is given as

where

Define

Then, by substituting (37) into (35), we have ρ(θlt ,φlt ) = v̄HR2(θlt ,φlt )v̄.
Let H = diag(hHr )G ∈ C

N×M . The received signal power at the CU can be written 
as |(hHr �G+ hHd )w|2 = |(vHH+ hHd )w|2 . Then, the output SNR constraint in (30b) is 
reformulated as,

which is equivalent to

with

As a result, the optimization of � in problem (30) becomes the optimization of v̄ in the 
following problem: 

(33a)max
w

min
lt∈L

aH(θlt ,φlt )�GWGH
�

Ha(θlt ,φlt )

(33b)s.t. (32b), (32c), (32d).

(34)ŵ = (hHWopth)−
1
2Wopth.

(35)ρ(θlt ,φlt ) = vHR1(θlt ,φlt )v,

(36)R1(θlt ,φlt ) = diag(aH(θlt ,φlt ))GWGHdiag(a(θlt ,φlt )).

(37)R2(θlt ,φlt ) =

[
R1(θlt ,φlt ) 0N×1

01×N 0

]
; v̄ =

[
v
1

]
.

(38)(Hv + hd)
HW(Hv + hd) ≥ Ŵσ 2

n,CU,

(39)v̄HR3v̄ + hHd Whd ≥ Ŵσ 2
n,CU

(40)R3 =

[
HWHH HWhd
hHd WHH 0

]
.
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To solve v̄ using SDR, we define V̄ = v̄v̄H with V̄ � 0 and diag(V̄) = 1 . Noting 
v̄HR2(θlt ,φlt )v̄ = tr(R2(θlt ,φlt )V̄) and v̄HR3v̄ = tr(R3V̄) , the reflective beamforming 
optimization in problem (41) is reformulated as 

 Similarly, we relax the rank-one constraint and accordingly obtain the SDR version of 
the problem (42) as 

 Let V̄opt denote the obtained optimal solution to V̄ from problem (43). When it has 
a high rank, Gaussian randomization can be used to construct an approximate rank-
one solution. At any iteration, if the updated gain is higher than the prior gain, the tar-
gets’ beampattern gain and v are updated at the same time. If not, v is again randomly 
generated.

It is noted that, with a sufficient number of randomizations, the objective value after 
solving the problem (42) will be monotonically non-decreasing [15]. As a result, the con-
vergence of the proposed alternating optimization-based algorithm for solving the prob-
lem (30) is ensured.

3.3  Phase III: NLOS target localization

In this section, using the reflected RIS signal, we estimate the target 2-D DOA. The RIS 
has a sparse placement of the L-shaped active elements to allow for independent deter-
mination of the targets’ azimuth and elevation angles. Here, we demonstrate the esti-
mation of the elevation angles of the targets using the RIS z-axis subarray. The signals 
received at the azimuth subarray can be similarly formulated and the azimuth angles of 

(41a)max
v̄

min
lt∈L

v̄HR2(θlt ,φlt )v̄

(41b)s.t. v̄HR3v̄ + hHd Whd ≥ Ŵσ 2
n,CU,

(41c)|vn| = 1, ∀n ∈ {1, · · · ,N + 1}.

(42a)max
V̄

min
l∈L

tr(R2(θlt ,φlt )V̄)

(42b)s.t. tr(R3V̄)+ hHd Whd ≥ Ŵσ 2
n,CU,

(42c)[V]n,n = 1 ∀n ∈ {1, · · · ,N + 1},

(42d)V̄ � 0,

(42e)rank(V̄) = 1.

(43a)max
V̄

min
l∈L

tr(R2(θlt ,φlt )V̄)

(43b)s.t. (42b), (42c), (42d).
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the targets can be similarly computed using the matrix interpolation and pair-matched 
MUSIC processes.

The echo channel reflected from the target over the RIS-reflected link, denoted as BS-
RIS-targets-RIS(z), is given by

As such, the received signals at the vertical RIS subarray sensors are given by

For the estimation of the target directions, the received signal from the BS, Gws(t) in the 
above expression, act as interference. Because G is fixed and known, we can remove this 
component and obtain the interference-free target echo signal as

As the active elements on the RIS are in a sparse structure, similar to (15), we can per-
form matrix completion to fill in the missing elements and generate the interpolated 
covariance matrix R̂Z . Bt at RIS can be obtained by following the same procedures of the 
pair-matched MUSIC algorithm and gain estimation as described in Sect. 3.1.1.

The normalized RMSE of the target response at the RIS is estimated as

where Kt is the number of independent trials.

4  Simulation results
In this section, we provide simulation results to demonstrate the effectiveness of the 
proposed active RIS-assisted ISAC scheme and the superiority of the L-shaped hybrid 
ONRA-based sparse array structure over other L-shaped structures. The RIS con-
tains Nx = Nz = 23 elements in each dimension, rendering a total number of N = 529 
elements.

We use a small number of N̄ = 11 active elements in all L-shaped sparse arrays and 
examine the channel estimation and target DOA estimation performance. Figure 2 shows 
the structures of different sparse active subarrays in a single axis. Each array uses 6 antenna 
elements. Both the x and z-axis directions use the same subarrays and they together 
form L-shape sparse active arrays. Note that the two subarrays share the element located 
at the 0-th position. For the hybrid ONRA configuration, the positions of the active ele-
ments along the x and the z axes are X = Z = {0, 3, 7, 12, 20, 22}�/2 . It yields 16 nonneg-
ative lags located as DX

self = D
Z
self = {0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 19, 20, 22}�/2 . It 

achieves the largest array aperture which coincides with the size of the RIS, rendering 
Wx = Nx = Wy = Ny = 23 in this case.

(44)
Gr(t) = Htz�G

= B̃tzdiag(δTI)B
H
t �Alrdiag(αBI)F

H
lr
.

(45)y0(t) = (Gr(t)+G)ws(t)+ n0(t).

(46)
y(t) = Grws(t)+ n0(t)

= B̃tzdiag(δTI)B
H
t �Alrdiag(αBI)F

H
lr
ws(t)+ n0(t).

(47)Normalized RMSE �

√√√√ 1

Kt

Kt∑

k=1

�B̂t − Bt�
2
F

�Bt�
2
F

,
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For comparison, we compare the performance of the L-shaped hybrid ONRA-based 
sparse array structure with L-shaped arrays consisting of orthogonally placed ULA 
structures and popularly used sparse array structures, including the coprime array 
[30], nested array [29], coprime array with minimum lag redundancies (CAMLR) 
[40], and super nested array (SNA) [41]. These five sparse array configurations being 
compared respectively achieve 5, 9, 12, 12, and 12 unique nonnegative co-array lags 
and have smaller array apertures as shown in Fig. 2 [34]. The transmit array of the BS 
is equipped with a vertically placed ULA with M = 4 antennas.

The large-scale path loss for a CU-RIS path with distance r is given as 
PL(r)[dB] = 10 log10(4π fc/c)

2 + 10α log10(r/r0) , where fc , α , and r0 are the carrier 
frequency, the path loss exponent, and the reference distance, respectively [42]. In 
this paper, fc = 28 GHz and r0 = 1 m are assumed.

The BS and the RIS have a fixed distance of dBI = 10.2 m, and the distance between 
the RIS and the CU is dIC = 120 m. There are two targets and their 2-D angels with 
respect to the RIS are respectively [ 10◦, 30◦ ] and [ 30◦, 10◦ ]. The two-way complex-val-
ued path gain is δlt =

√
�2k/(64π3d4IT) denotes the signal attenuation caused by the 

propagation from RIS to the target and then from the target to RIS. We assumed that 
both targets are equally distant from the RIS, where dIT = 10.2 m is the distance 
between the RIS and target, and k = 7 dBm denotes the radar cross-section.

For the CU, we assume Lu = 2 paths for the CU-RIS channel hr.
We consider two distinct scenarios. In the first scenario, we intend to evaluate how 

well the different array structures would function, and the multipath is chosen to be 
closely spaced with the LOS and their DOA separation observed at the RIS is only 
2◦ in both azimuth and elevation. In the second scenario, we consider well separated 
multipath whose azimuth and elevation angles both deviate from the LOS by 20◦ . The 

Fig. 2 Single-axis array structures of different types sparse arrays under consideration
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near and far spacing between this multipath can be used to determine the perfor-
mance advantages of the hybrid ONRA array construction.

Figure 3 considers the first case with closely spaced multipath and compares the nor-
malized RMSE performance of the estimated channels with respect to the number of 
snapshots for different array configurations. In this case, the CU’s transmit power is 
10 dBm, whereas the noise power is −80 dBm. The outcomes clearly demonstrate that 
the RIS with L-shaped hybrid ONRA active elements achieves noticeably higher chan-
nel estimation accuracy than other sparse array structures utilizing the same number of 
active elements ( N̄ = 11 ). In Fig. 4, we increase the transmit power from the CU to 20 
dBm, and it is observed that the RMSE performance of all array configurations improves 
due to the increased transmit power.

In Fig. 5, we consider the second scenario with well separated multipath signals. With 
a 20◦ separation in both azimuth and elevation, the normalized RMSE of all sparse 
structures is much lower and the differences between different array configurations are 
smaller.

Figure 6 depicts the CU-RIS channel estimation results for different angular separa-
tions between the CU-IRS multipath, where the transmit power from the CU is 10 dBm 
and the number of snapshots is 5000. When the difference between the two azimuth 
angles and the two elevation angles was only 0.1◦ , the channel estimation accuracy was 
very poor for all array configurations in this figure. For all array designs, channel esti-
mation performance improves with increasing multipath separation, but for ONRA 
structures, channel estimation performance is exceptionally accurate even with a 1◦ sep-
aration when compared to other structures. This figure further highlights the superior 
estimate performance of the hybrid ONRA over the other array architectures.

Figure 7 depicts the normalized RMSE performance of the estimated CU-RIS chan-
nels as the transmit power varies between 0 dBm and 30 dBm, where the number of 
snapshots is fixed to 5000, and the two paths are closely spaced with 2◦ separation 
in both azimuth and elevation. It is observed that the normalized RMSE generally 
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Fig. 3 RMSE of the CU-RIS channel versus the number of snapshots when the paths are closely spaced 
(transmit power = 10 dBm)
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reduces as the transmit power increases and, for this closely spaced multipath sce-
nario, the hybrid ONRA-based active RIS configuration performs much better than 
other sparse array structures.

In Fig. 8, we compare the normalized RMSE of the estimated CU-RIS channel ver-
sus the separation between the CU and the IRS. The number of snapshots is 5000, the 
transmit power is 10 dBm, and the angular separation is 2◦ in both azimuth and eleva-
tion. It is observed that, as the distance increases, the signal is more attenuated, yield-
ing higher normalized RMSE results. The ONRA structure consistently outperforms 
the other array configurations.
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Fig. 4 RMSE of the CU-RIS channel versus the number of snapshots when the paths are closely spaced 
(transmit power = 20 dBm)
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Fig. 5 RMSE of the CU-RIS channel versus the number of snapshots when the paths are well separated 
(transmit power = 10 dBm)
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Figure  9 shows the convergence performance of the minimum beampattern gain 
obtained in phase II based on the alternating optimization-based algorithm. Here, the 
transmit power from BS is 40 dBm, the noise power is −80 dBm, and Ŵ = 10 dB is 
assumed. Because the convergence performance depends on randomization, the plot-
ted results are obtained by averaging over 5 independent trials. For comparison, we 
also plotted the result with true CSI of the BS-RIS channel, BS-CU channel, and CU-
RIS channel to be perfectly known at the BS during optimization. We can observe 
that most of the array configurations achieve convergence in 6–8 iterations. Sparse 
subarrays using the ONRA structure achieve the highest minimum beampattern gain 
which is very close to that obtained under the assumption that accurate CSI is known.
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Fig. 6 RMSE of the CU-RIS channel versus the angular separation of the multipath (transmit power = 10 
dBm)
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Fig. 7 RMSE of the CU-RIS channel versus different transmit power of CU
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In phase III, we determine the target reflected signals. Figure  10 demonstrates the 
normalized RMSE performance versus the number of snapshots, where the trans-
mit power from the BS is 40 dBm and the noise power is −109 dBm. It is again veri-
fied that the hybrid ONRA structure offers better performance than other sparse array 
configurations.

5  Conclusion
In this paper, we presented an ISAC system assisted by a RIS with partial active ele-
ments. L-shaped sparse arrays are used for channel estimation and target DOA estima-
tion. A nuclear norm-based interpolation technique was used to fill in the gaps in the 
covariance matrix and achieve improved channel estimation and target DOA estimation 
performance. The array and RIS gains are optimized to concurrently maintain a specific 
SNR requirement toward the communication user and beampattern gains toward the 
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Fig. 8 RMSE of the CU-RIS channel versus the distance between CU and RIS (Transmit power = 10 dBm)
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targets which are assumed to have LOS only with the RIS. Simulation findings demon-
strate that our proposed hybrid ONRA RIS structure performs better than other con-
temporary RIS structures.
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