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Performance Analysis of Subband Arrays∗
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SUMMARY Several subband array methods have been pro-
posed as useful means to perform joint spatio-temporal equal-
ization in digital mobile communications. These methods can
be applied to mitigate problems caused by the inter-symbol in-
terference (ISI) and co-channel interference (CCI). The subband
array methods proposed so far can be classified into two major
schemes: (1) a centralized feedback scheme and (2) a localized
feedback scheme. In this paper, we propose subband arrays with
partial feedback scheme, which generalize the above two feed-
back schemes. The main contribution of this paper is to derive
the steady-state mean square error (MSE) performance of sub-
band arrays implementing these three different feedback schemes.
Unlike the centralized feedback scheme which can be designed to
provide the optimum equalization performance, the subband ar-
rays with localized and partial feedback schemes are in general
suboptimal. The performance of these two suboptimal feedback
schemes depends on the channel characteristics, the filter banks
employed, and the number of subbands.
key words: subband array, space-time adaptive processing,

adaptive array, multirate signal processing, mobile communica-

tions

1. Introduction

Mobile communication systems are developing toward
higher-speed digital wireless networks. Their applica-
tions are rapidly expanding from voice transmission to
a wide class of multimedia information. In the new
wireless networks, the communication channels are of-
ten frequency-selective, which makes the inter-symbol
interference (ISI) to be highly pronounced. Another
important problem in mobile communication is the co-
channel interference (CCI), which is the result of fre-
quency reuse in cellular systems.
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Adaptive arrays implementing spatial or spatio-
temporal equalizations prove useful in suppressing both
ISI and CCI, leading to improved communication
quality and increased communication capacity [1]–[4].
Specifically, space-time adaptive processing (STAP)
techniques are power tools to achieve spatio-temporal
equalizations. The high complexity and slow conver-
gence, however, are key issues in practical implementa-
tion of STAP systems.

Recently, subband adaptive array methods have
been proposed as alternative tools for spatio-temporal
equalization. The authors have proposed in [5]–[8]
to use subband arrays to realize joint spatio-temporal
equalizations. This concept has also been extended to
subband STAP schemes [9], [10]. Compared with con-
ventional STAP systems, subband adaptive arrays offer
amenability to parallel implementations [8], rapid con-
vergence [11], [12], and a reduction of processing com-
plexity [13], [14]. Subband processing is cast in [15] as
an elegant and computationally efficient solution to the
needs for increased bandwidth in array processing ap-
plications.

The subband array methods proposed so far can
be classified, in terms of the definition of error signals
used to control the weight updation, into two major
classes: (1) a centralized feedback scheme and (2) a
localized feedback scheme. A subband array with the
localized feedback scheme allows parallel subband pro-
cessing with greatly reduced computations at each sub-
band, accompanied with improved convergence. These
features are vert attractive in STAP implementations,
as the system complexity increases sharply when either
or all of the data rate, delay profile, and the number of
array sensors increase.

We propose in this paper the partial feedback
scheme, which generalizes the above two feedback
schemes. The proposed partial feedback scheme per-
mits more flexibility in trading-off the system complex-
ity, convergence, and the steady-state mean square er-
ror (MSE) performance.

Our main contribution in this paper is analysis of
the MSE performance of subband arrays with the three
different feedback schemes. For simplicity of analysis
and comparison, it is assumed that the reference sig-
nal is available. For the centralized feedback schemes,
reference [16] has shown that frequency domain array
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processing provides the same steady-state MSE per-
formance as that offered by the STAP system, using
tapped delay-lines (TDL). Reference [17] provides im-
portant comparison results between the centralized and
localized feedback schemes. However, such comparison
was limited to the simulation results, and analytical
support was not presented.

In this paper, we consider the analytical results
of MSE performance of subband arrays with the three
different feedback schemes. To the best of our knowl-
edge, such results for the localized and partial feedback
schemes have not yet been produced. It is shown in the
following discussion that, unlike the centralized feed-
back subband array, which gives the optimum spatio-
temporal equalization performance, the MSE perfor-
mance provided by the localized and partial feedback
subband arrays are generally suboptimal. The perfor-
mance of these two suboptimal feedback schemes de-
pends on the channel characteristics, the filter banks
employed, and the number of subbands.

This paper is organized as follows. In Sect. 2, we
introduce the signal model, and the steady-state MSE
performance of the STAP systems is described. In
Sect. 3, the subband decomposition is introduced, and
the steady-state MSE performance of the centralized
feedback subband array is derived and shown to be
equivalent to the optimum STAP results. Section 4
analyzes the steady-state MSE performance of local-
ized feedback subband arrays. In Sect. 5, the partial
feedback scheme is proposed and its steady-state MSE
performance is analyzed. Section 6 provides simulation
examples for the covariance matrices of the original and
the subband signals. The MSE results are compared for
different feedback schemes.

2. Signal Model

We consider a base station that uses an antenna array
of N sensors with P users, where P < N . The signal
of interest is denoted by s1(l), l ∈ (−∞,∞), whereas
the signals from the other users are denoted by sp(l),
p = 2, ..., P . Accordingly, the received signal vector
	x(l) at the array, expressed in discrete form, is given
by

	x(l) =
P∑

p=1

∞∑
m=−∞

sp(m)	hp(l − m) +	b(l) (1)

where
sp(l): information symbol of the pth user,
	hp(l): channel response vector of the pth user,
	b(l): additive noise vector.

In this paper, we restrict the discussion to T -
spaced equalization (i.e., sampled at the symbol rate)
for simplicity. We make the following assumptions.

(A1) The user signals sp(l), p = 1, 2, ..., P , are

wide-sense stationary and independent and identically
distributed (i.i.d.) with E[sp(l)s∗p(l)] = 1, where the
superscript ∗ denotes complex conjugate.

(A2) All channels 	hp(l), p = 1, 2, ..., P , are linear
time-invariant and of a finite duration within [0, Dp].
That is, 	hp(l) = 0, p = 1, 2, ..., P , for l > Dp and l < 0.

(A3) The noise vector	b(l) is zero-mean, temporally
and spatially white with

E[	b(l)	bT (l)] = 0, and E[	b(l)	bH(l)] = σIN ,

where the superscripts T and H denote transpose and
conjugate transpose, respectively, σ is the noise power,
and IN is the N × N identity matrix.

Considering M successive snapshots, we have

x(l) =
P∑

p=1

Hpsp(l) + b(l) (2)

where

x(l) = [	xT (l) 	xT (l − 1) · · · 	xT (l − M + 1) ]T

(3)

Hp =




	hp(0) · · · 	hp(Dp) 0 · · · · · · 0
0 	hp(0) · · · 	hp(Dp) 0 · · · 0
...

...
0 · · · · · · 0 	hp(0) · · · 	hp(Dp)




(4)

sp(l) = [sp(l) sp(l − 1) · · · sp(l − M − Dp + 1)]T

(5)

and

b(l) = t[	bT (l) 	bT (l − 1) · · ·	bT (l − M + 1)]T . (6)

Denote 	w(m) as the weight vector of the STAP
system corresponding to 	x(l − m), and define w(l) =[
	wT (l), · · · , 	wT (l − M + 1)

]T . Then, the output of the
STAP becomes

y(l) = wT (l)x(l) =
M−1∑
m=0

	wT (m)	x(l − m). (7)

Using the minimum mean square error (MMSE) crite-
rion,

min
w

E |y(l)− s1(l − v)|2

= min
w

E
∣∣wTx(l)− s1(l − v)

∣∣2 (8)

where 0 ≤ v ≤ M + D1 − 1 is an appropriate time
delay which minimizes the MSE [10], then the optimum
weight vector is given by the Weiner-Hopf solution

wopt = R−1r (9)
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where

R = E[x∗(l)xT (l)] (10)

is the correlation matrix of x(l), and

r = E[x∗(l)s1(l − v)] (11)

is the cross-correlation vector between x(l) and the
training signal, which is assumed to be an ideal replica
of s1(l). The superscript ∗ denotes complex conjugate.
Substituting (2) to (11) yields

r = E

[(
P∑

p=1

Hpsp(l) + b(l)

)∗

s1(l − v)

]

= E [H∗
1s

∗
1(l)s1(l − v)] = H∗

1ev+1, (12)

where ev+1 = [0 · · · 0 1 0 · · · 0]T is a vector whose
elements are zero except that at the v+1 element being
1. It is obvious that r is the (v + 1)-th column of H∗

1.
Since R is Hermitian, then the MMSE is given by

MMSE = E
∣∣wT

optx(l)− s1(l)
∣∣2

= E
∣∣rT (R−1)Tx(l)− s1(l)

∣∣2
= rT (R−1)T E[x(l)xH(l)](R−1)∗r∗

− rT (R−1)T E[x(l)s∗1(l)]
+ E[s1(l)s∗1(l)]
− rHR−1E[x∗(l)s1(l)]

= 1− rHR−1r. (13)

3. Subband Arrays

3.1 Subband Decomposition

Subband decomposition is performed by exploiting a set
of analysis and synthesis filters. Discrete Fourier trans-
form (DFT) and modified-QMF filter banks are exam-
ples of perfect reconstructed (PR) and near-perfect re-
construction (NPR) filter banks, respectively [8]. Dec-
imation can be applied between the analysis filters and
the synthesis filters to reduce the processing data rate.
The decimation rate should not exceed the number of
subbands. Such decimation, however, often reduces the
steady state system performance due to aliasing. We
maintain that, the PR and NPR properties can be eas-
ily destroyed if adaptive techniques are employed be-
tween the analysis filters and the synthesis filters be-
cause of the changes in the aliasing characteristics. In
this paper, no decimation is performed for subband sig-
nal components. In this case, the synthesis filters are
either not necessary, or can be integrated at the analy-
sis filters.

Let the subband decomposition divide the data se-
quence at the output of ith virtual channel, x̃i(l), into
Q subband sequences, x(1)

i (l), · · · , x(Q)
i (l), where the su-

perscript (m) denotes the signal component at the mth

subband. We define

xT (l) =
[(

	x
(1)
T (l)

)T

, · · · ,
(
	x

(Q)
T (l)

)T
]T

as the signal vector for the subband arrays with

	x
(m)
T (l) =

[
x

(m)
1 (l), x(m)

2 (l) · · · , x(m)
N (l)

]T
.

As a general expression, we can relate xT (l) and x(l)
by a QN × MN transform matrix as

xT (l) = Tx(l). (14)

We only consider the specific cases where T is
square (i.e., Q = M) and unitary (i.e., TTH = THT =
IMN ). That is, the number of subbands is set equal to
the number of the snapshots at each array sensor. This
kind of subband processing is also known as real-time
transform-domain processing [18].

A good example of such transform is the DFT filter
bank, where the transform matrix T can be expressed
in the form

T = PT (IN ⊗To)P (15)

where ⊗ denotes Kronecker product, and

To =
1√
M

·




W 0
M W 0

M W 0
M · · · W 0

M

W 0
M W 1

M W 2
M · · · WM−1

M
...

...
W 0

M WM−1
M W

2(M−1)
M · · · W

(M−1)2

M



(16)

with WM = exp
(−2πj

M

)
. In (15), P is a permutation

matrix to change the order of the elements of vector
x(l) such that the M samples at each array sensor align
together.

The DFT filter bank satisfies the PR condition [19]
because the only non-zero sum of the column vectors
(i.e., the coefficients of the analysis filters for different
subbands) of To appears at the first column.

3.2 Subband Array with Centralized Feedback

In this part, we consider the subband array with
centralized feedback scheme, as illustrated in Fig. 1.
Weighting xT (l) by the weight vector wT =[
(w(1)

T )T (w(2)
T )T · · · (w(M)

T )T
]T
, the output of the

transform domain array system becomes

yT (l) = wT
TxT (l) = wT

TTx(l). (17)

Again, using the MMSE creterion

min
wT

E |yT (l)− s1(l − v)|2
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Fig. 1 Subband array with centralized feedback.

= min
wT

E
∣∣wT

TxT (l)− s1(l − v)
∣∣2 , (18)

the optimum weight vector becomes

wT,opt = R−1
T rT = (TT )−1wopt (19)

where

RT = E[x∗
T (l)x

T
T (l)] = T∗RTT (20)

is the correlation matrix of xT (l), and

rT = E[x∗
T (l)s1(l − v)] = T∗r (21)

is the cross-correlation vector between xT (l) and s1(l−
v). When the optimum weight vectors are used for both
STAP and the subband array, it is straightforward to
show

yT (l) = wT
T,optTx(l) = wT

optx(l) = y(l), (22)

and that the MSE of the subband array equals to the
MMSE of the STAP systems

MSECF = E |yT (l)− s1(l − v)|2

= E |y(l)− s1(l − v)|2

= MMSE. (23)

4. Subband Array with Localized Feedback

4.1 Structure

Subband arrays with the localized feedback scheme are
often used for reduced system complexity and improved
convergence performance. The basic idea behind the lo-
calized feedback is that the signal correlation between
signals at different subbands are often small due to the
decorrelation function of the subband decomposition.
Therefore, the signals at different subbands can be pro-
cessed separately. A subband array with localized feed-
back scheme is illustrated in Fig. 2.

Fig. 2 Subband array with localized feedback.

In the localized feedback scheme, the reference sig-
nal is decomposed into its subband version

s
(m)
1 (l − v) =

1√
M

T(m)
o 	s1(l − v), (24)

which is then used as the reference signal at the mth
subband, where

T(m)
o =

1√
M

[W 0
M Wm

M · · · W
(M−1)m
M ] (25)

is the mth row of the matrix To, and

	s1(l − v) = [s1(l − v) s1(l − v − 1)
· · · s1(l − v − M + 1)]T

is the M samples of the reference signal used for the
subband decomposition. The factor 1/

√
M used in (24)

is to normalize the power of the reference signal at each
subband because

M−1∑
m=0

T(m)
o 	s1(l − v)

=

[
M−1∑
m=0

W 0
M

M−1∑
m=0

W 0
M · · ·

M−1∑
m=0

W 0
M

]
	s1(l − v)

=
√

Ms1(l − v). (26)

The N × 1 weight vector at the mth subband,
independent of other subbands, can be obtained
from the N × N correlation matrix R(m)

T =

E
[
x(m)

T (l)(x(m)
T (l))H

]
and the N × 1 correlation vec-

tor r(m)
T = E

[(
x(m)

T (l)
)∗

s
(m)
1 (l − v)

]
as

w′(m)
T = (R(m)

T )−1r(m)
T . (27)
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4.2 Performance Analysis

Denote

R′
T =



R(1)

T 0 · · · 0
0 R(2)

T · · · 0
...

...

0 0
... R(M)

T


 (28)

and

r′T =
[(
r(1)

T

)T (
r(2)

T

)T

· · ·
(
r(M)

T

)T
]T

. (29)

Using the following property of block-diagonal matrix

(R′
T )

−1

=



(R(1)

T )−1 0 · · · 0
0 (R(2)

T )−1 · · · 0
...

...

0 0
... (R(M)

T )−1


 , (30)

the weight vector of the localized feedback subband ar-
ray can be expressed as

w′
T =




(R(1)
T )−1r(1)

T

(R(2)
T )−1r(2)

T
...

(R(M)
T )−1r(M)

T


 = (R′

T )
−1r′T . (31)

As implied from (28), R′
T is the block-diagonal approx-

imation of RT by ignoring its off-block-diagonal ele-
ments. On the other hand, the cross-correlation vector
between the received signal vector and the reference
signal at the mth subband is

r(m)
T = E

[(
x(m)

T (l)
)∗

s
(m)
1 (l − v)

]
= E

[(
T(m)x(l)

)∗
s

(m)
1 (l − v)

]

= E

[(
T(m)

)∗( P∑
p=1

Hpsp(l) + b(l)

)∗

× 1√
M

T(m)
o 	s1(l − v)

]

=
1√
M

[
T(m)H1

]∗
E
[
s∗1(l)	s

T
1 (l − v)

] [
T(m)

o

]T
=

1√
M

[
T(m)H1

]∗
Jv

[
T(m)

o

]T
, (32)

where T(m) is the N ×MN submatrix of the matrix T
corresponding to the mth subband, Jv is an (M +D1−
1) × M matrix expressed as, provided that we choose
v < D1,

Jv = E
[
s∗1(l)	s

T
1 (l − v)

]
= [0T

v IM 0T
D1−1−v]

T , (33)

where 0v denotes the zero matrix of size v × M .
Therefore, the MSE of the localized feedback sub-

band array is given by

MSELF = E
∣∣∣s1(l)−w′T

TxT (l)
∣∣∣2

= 1 + r′HT (R′
T )

−1RT (R′
T )

−1r′T

− 2Re
[
r′HT (R′

T )
−1rT

]
. (34)

Equation (34) implies that the localized feedback sub-
band array approach is suboptimal, and, its per-
formance depends on the significance of the cross-
correlation between signals at different subbands. It
is clear from (20) and (34) that the off-block-diagonal
elements of matrix RT depends on both the transform
matrix T and the channels Hp, p = 1, 2, ..., P .

5. Partial Feedback Scheme of Subband Arrays

In the previous section, we discussed the subband ar-
ray with the localized feedback scheme as an approxi-
mation of the subband array with the centralized feed-
back scheme. The former scheme has an independent
weight update loop at each subband, at the cost of per-
formance degradation, since the cross-correlations be-
tween different subbands are neglected in the weight
estimation.

To provide more flexibility in trading-off the sys-
tem performance and the complexity, we introduce sub-
band arrays with the partial feedback scheme. As will
be depicted, the partial feedback scheme is indeed a
generalization of the centralized and localized feedback
schemes, both can be considered as two extreme cases
of the partial feedback scheme.

A subband array with partial feedback scheme is
shown in Fig. 3, where the total M subbands are dev-
ided into K groups. The number of subbands in kth
group is Mk, k = 1, 2, ...,K, with M1+M2+· · ·+MK =
M . In this paper, we consider the simple case of
M1 = M2 = · · · = MK = M/K.

In this case, the signal covariance matrix RT is
approximated by a new block-diagonal matrix R′′

T with
a larger block size M1N , expressed as

R′′
T =



R(G1)

T 0 · · · 0
0 R(G2)

T · · · 0
...

...

0 0
... R(GK)

T


 (35)

where

R(Gk)
T =



(RT )(k−1)M1N+1,(k−1)M1N+1 · · ·

...
(RT )kM1N,(k−1)M1N+1 · · ·
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Fig. 3 Subband array with partial feedback.

· · · (RT )(k−1)M1N+1,kM1N

...
· · · (RT )kM1N,kM1N


 (36)

and (RT )i,j is the (i, j)-th element of matrixRT . When
M1 > 1, since fewer off-block-diagonal elements are ig-
nored inR′′

T as compared withR′
T , the partial feedback

scheme should provide more accurate optimum weights
estimation and subsequently better MSE results than
those of the localized feedback scheme.

Similar to (30), we have

(R′′
T )

−1

=



(R(G1)

T )−1 0 · · · 0
0 (R(G2)

T )−1 · · · 0
...

...

0 0
... (R(GK)

T )−1


 .

(37)

Therefore, the weight vector in the partial feedback
scheme is given by

w′′
T = (R′′

T )
−1r′′T =



(R(G1)

T )−1r(G1)
T

(R(G2)
T )−1r(G2)

T
...

(R(GK)
T )−1r(GK)

T


 (38)

where

r(Gk)
T = E

[(
x(Gk)

T (l)
)∗

s
(Gk)
1 (l)

]
, (39)

Table 1 Parameters of the signal of user 1.

h1 AOA (deg)
τ = 0 0.7016 + j0.0000 33.54
τ = T 0.1188 + j0.0570 18.06
τ = 2T −0.1353 + j0.3165 38.26

τ = 3T −0.2231 − j0.1808 5.89
τ = 4T 0.1476 + j0.2898 34.79
τ = 5T −0.3106 − j0.2945 30.78

Table 2 Parameters of the signal of user 2.

h2 AOA (deg)
τ = 0 0.6787 + j0.0000 47.77
τ = T 0.1561 − j0.0592 54.82
τ = 2T −0.2173 + j0.3342 68.07

τ = 3T −0.2801 + j0.1987 55.60
τ = 4T −0.1119 + j0.2950 39.89
τ = 5T −0.3122 + j0.1938 44.11

r′′T =
[(
r(G1)

T

)T

· · ·
(
r(GK)

T

)T
]T

, (40)

s
(Gk)
1 is the reference signal at the kth group, and

x(Gk)
T (l)

=
[(
x((k−1)M1+1)

T (l)
)T

· · ·
(
x(kM1)

T (l)
)T
]T

.

(41)

The MSE of the partial feedback subband array is
therefore

MSEPF

= E
∣∣∣s1(l)−w′′T

TxT (l)
∣∣∣2

= 1 + r′′HT (R′′
T )

−1RT (R′′
T )

−1r′′T

− 2Re
[
r′′HT (R′′

T )
−1rT

]
. (42)

6. Simulation Results

A three-element linear array with half wavelength inter-
element spacing is considered. Two user signals are
illuminating the array (P=2), each has a maximum de-
lay spread of 5 symbols (D = D1 = D2 = 5). Six
multipaths are randomly generated for each user whose
detailed parameters are given in Tables 1 and 2, respec-
tively. The input signal-to-noise ratio (SNR) is 20 dB
for both signals.

Figures 4(a) and (b) show the magnitude of the
correlation matrices R and RT , where M=8. In
Fig. 4(a), −60 dB is used to represent zero values so
as to avoid errors in decibel calculation. In Figs. 5(a)
and (b), we show similar results for M=32. It is clear
that, while the value of R for different taps would be
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(a) R

(b) RT

Fig. 4 Magnitudes of elements of R and RT (M=8).

large depending on the channel coefficients, the value of
RT between different subbands becomes much smaller.
However, the cost is increased floor values of the cor-
relation matrix. The sidelobe effect is reduced as the
number of subbands increases, as evident when compar-
ing Fig. 4 and Fig. 5. This reduction is responsible for
improving the MSE performance and pushing it closer
to the optimum MMSE.

Figure 6 shows the MSE performance for different
feedback schemes. The number of subbands M changes
from 4 to 32, and the MSE performance at different
values of M1 are evaluated. The dashed line shows the
asymptotical lower bound of the MSE as M increases
towards infinity. It is shown in Fig. 6 that the difference
between different feedback schemes is large when M is
relatively small (M is 4 or 8 in this figure) and small for
large value of M (M is 16 or 32). Therefore, the sub-
band array with localized or partial feedback schemes

(a) R

(b) RT

Fig. 5 Magnitudes of elements of R and RT (M=32).

Fig. 6 MSE performance versus M and M1.
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can closely approach the optimum MMSE performance
when increasing the number of subbands.

7. Conclusion

We have analyzed the performance of subband arrays
with different types of feedback schemes, and the ex-
pressions of the steady-state mean square error (MSE)
have been derived. It has been shown that subband
arrays with localized and partial feedback schemes are
generally suboptimal, and their performance depends
on the channel characteristics, the filter banks em-
ployed, and the number of subbands. The proposed
partial feedback scheme generalizes the subband arrays
with centralized and localized feedback schemes, and
provides more flexibility in trading-off the system com-
plexity with the MSE performance.
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