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ABSTRACT
In this paper, we propose the use of a sparse uniform lin-
ear array to estimate the direction-of-arrival (DOA) of more
sources than the number of sensors by exploiting two con-
tinuous wave signals whose frequencies satisfy a certain co-
prime relationship. This extends the co-prime array and filter
concept, which was developed in either the spectral or spatial
domain, to a joint spatio-spectral domain, thereby achieving
high flexibility in array structure design to meet the degrees-
of-freedom and system complexity constraints. The DOA es-
timation is implemented in the difference co-array context to
avoid spatial undersampling, and group sparsity based com-
pressive sensing techniques are used to determine the direc-
tion of signal arrivals.

Index Terms— Co-prime array, sparse array, DOA esti-
mation, compressive sensing, group sparsity

1. INTRODUCTION

Co-array equivalence is an important concept in designing ar-
rays with reduced redundancy and achieving high degrees-
of-freedom (DOFs) [1, 2]. The minimum redundancy array
(MRA) is a well-known example of sparse linear array struc-
tures which, for a given number of elements, maximizes the
number of consecutive virtual elements in the resulting in dif-
ference co-array [3]. Among others, the co-prime array was
recently proposed as an attractive technique for sparse array
construction [4]. A co-prime array utilizes a co-prime pair of
uniform linear subarrays to achieve O(MN) DOFs by using
M + N − 1 physical sensors. The increased DOFs can be
exploited in direction-of-arrival (DOA) estimation and beam-
forming problems for improved performance [4]. In [5], the
co-prime MUSIC technique was developed for DOA estima-
tion of more uncorrelated sources than the number of physical
sensors. This technique was extended in [6] and [7] by using
sparsity-based techniques to consider the imperfect correla-
tion and to achieve more efficient use of the available DOFs.

In this paper, we propose the use of a sparse uniform lin-
ear array (ULA) to construct a virtual co-prime array, which is
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then used to estimate the DOA information of a significantly
higher number of sources than the number of sensors. This is
achieved by exploiting two continuous-wave (CW) sinusoids
whose frequencies satisfy a certain co-prime relationship. As
such, the ULA acts as two virtual subarrays at these two fre-
quencies, resulting in a similar structure to co-prime arrays.
This extends the co-prime array and filter concept, which was
developed in either the spectral or spatial domain, to a joint
spatio-spectral domain, thereby achieving high flexibility in
array structure design to meet the DOF and system complex-
ity constraints. Unlike co-prime arrays wherein the numbers
of elements and the interelement spacings have to satisfy the
co-prime relationship, only the two frequencies are required
to be co-prime in the proposed work. As a result, the pro-
posed technique provides greater flexibility in system design
and the capability of on-the-fly configuration adaptivity to the
application environments. We also emphasize that, while the
discussion in this paper is limited to two frequencies, the pro-
posed technique can be easily extended to multiple frequen-
cies to achieve even higher DOFs. Array processing exploit-
ing dual- or multi-frequency CW signals has been considered
for target localization by jointly estimating the target range
and DOA information (e.g., [8, 9]).

From DOA estimation perspective, the challenges of the
proposed structure lie in the fact that the reflection character-
istics at the two frequencies differ, due to the differences in
the propagation phase and possibly the target reflectivity. To
account for such differences, the problem is formulated as a
group (block) sparse problem where the targets, with differ-
ent reflection characteristics, are located at the same spatial
locations regardless of the operational frequencies. The group
LASSO algorithm [10] is then employed to utilize the group
sparsity for effective DOA estimation. Some wideband DOA
estimation techniques have used the group sparsity concept
(e.g., [11]). However, the primary objective therein was the
exploitation of diversity in different frequencies in order to
achieve improved robustness rather than higher DOFs.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes
the N × N identity matrix. (.)∗ denotes complex conjugate,
and (.)T and (.)H respectively denote the transpose and con-
jugate transpose of a matrix or vector, respectively. vec(·)
denotes the vectorization operator that turns a matrix into a
vector by concatenating all the columns, and diag(x) denotes
a diagonal matrix with the elements of x constituting the diag-



onal entries. ‖·‖2 denotes the Euclidean (l2) norm of a vector,
whereas || · ||1 denotes the l1 norm. E(·) denotes the statistical
expectation operator.

⊗
denotes the Kronecker product, and

�·� denotes the largest integer not exceeding the argument.

2. SYSTEM MODEL

We consider a DOA estimation problem by simultaneously
emitting two CW signals of frequencies f1 and f2 from a
single transmit antenna or a phased array. The signals re-
turned from K unknown far-field targets are received at an
L-element ULA, which has an interelement spacing of d.

For a CW waveform with frequency fi, where i is either
1 or 2, the return signal from the K far-field targets, located
at DOAs θk, k = 1, 2, ...,K, is expressed as

x̃i(t) = exp(j2πfit)
K∑

k=1

ρ
(k)
i (t)ai(θk) + ñi(t), (1)

where ρ
(k)
i (t) is the reflection coefficient which does not

vary with the receive antennas but is in general frequency-
dependent because the phase delay varies with the frequency,
and the target reflectivity may also differ at the two frequen-
cies. The target reflection coefficients are assumed to be
time-varying due to, e.g., target motion or radar cross section
(RCS) fluctuations, and are assumed to be uncorrelated for
different targets. In addition, ai(θk) is the steering vector
corresponding to θk, expressed as

ai(θk) =
[
1, e

−j 2πd
λi

sin(θk), ..., e
−j

2π(L−1)d
λi

sin(θk)
]T

, (2)

where λi = c/fi denotes the wavelength corresponding to fi,
and c is the velocity of wave propagation. Furthermore, ñi(t)
is the additive noise vector, whose elements are assumed to
be spatially and temporally white.

After converting the received signal vector to baseband
using the respective transmitted CW waveforms, followed by
low-pass filtering, we obtain

xi(t) =

K∑
k=1

ρ
(k)
i (t)ai(θk) + ni(t) = Aidi(t) + ni(t), (3)

where Ai = [ai(θ1), ..., ai(θK)] and di(t) = [ρ
(1)
i (t), ...,

ρ
(K)
i (t)]T . We denote the noise variance at the filter output as

σ
(i)
n .

In [12], a sufficient condition for alias-free DOA estima-
tion is achieved by choosing the two frequencies to be co-
prime, i.e., their ratio equals the ratio between two co-prime
numbers. In this paper, we consider the problem in the con-
text of co-prime arrays as described in [4]. As such, we as-
sume that d is an integer multiple of the half-wavelength at
both frequencies, i.e., Mi = 2d/λi are integers for i = 1, 2.
As such, the ULA is sparse (spatially undersampled) at each
frequency. M1 and M2 are chosen to be co-prime, i.e., their
greatest common divisor (GCD) is one. Without loss of gen-
erality, we assume M1 < M2. In this case, we can rewrite the

steering vectors in a frequency-independent form for better
clarity,

ai(θk) =
[
1, e−jMiπ sin(θk), ..., e−j(L−1)Miπ sin(θk)

]T
.

(4)
As such, the DOA estimation problem is similar to the co-
prime arrays considered in [5, 7]. Instead of a co-prime ar-
ray consisting of two physical subarrays, we use a ULA with
two sensing frequencies that satisfy a co-prime relationship.
In addition, unlike in [4, 5, 7] where the two uniform linear
subarrays have different numbers of array sensors, the two
uniform linear subarrays in the underlying problem have the
same L sensors. The co-array positions are listed as

S = {M1l1d0, 0 ≤ l1 ≤ L−1}∪{M2l2d0, 0 ≤ l2 ≤ L−1},
(5)

where d0 denotes half-wavelength in a normalized frequency
sense (i.e., no specific frequency is referred to). Note that
the two subarrays align in the zeroth position and whenever
l/M2 is an integer. Therefore, the total number of unique
array sensor positions is 2L− 1− �(L− 1)/M2�.

3. GROUP SPARSITY BASED DOA ESTIMATION

While the DOA estimation problem considered here appears
to be similar to that considered in [5, 7], the method developed
therein cannot be readily applied to the underlying problem.
A major distinction is that the target reflection coefficient,

ρ
(k)
i (t), generally differs at the two frequencies due to dif-

ferences in their propagation phase delay and target reflectiv-
ity. As such, the phase term of the cross-correlation between
x1(t) and x2(t) depends not only on the spatial angles, but
also on the unknown phase difference in the reflection coeffi-
cients. This unknown phase difference prohibits the construc-
tion of a difference co-array from the estimated covariance
matrix.

In this section, we first address the effect of the unknown
phase difference in Section 3.1. In Section 3.2, we formulate
the DOA estimation problem as a group sparsity based sig-
nal recovery problem, which is then solved using the group
LASSO algorithm [10].

3.1. Effect of Different Reflection Coefficients

Denote x(t) = [xT
1 (t), xT

2 (t)]
T . The covariance matrix of

data vector x(t) is expressed as

Rxx = E[x(t)xH(t)] =

[
R

(1)
xx R

(1,2)
xx

R
(2,1)
xx R

(2)
xx

]
, (6)

which, in practice, is obtained by the sample average. In (6),

R
(i)
xx = E[xi(t)x

H
i (t)] = AiR

(i)
ss A

H
i + σ(i)

n IL

=
K∑

k=1

σ
(i)
k ai(θk)a

H
i (θk) + σ(i)

n IL,
(7)



and
R

(i,l)
xx = E[xi(t)x

H
l (t)] = AiR

(i,l)
ss AH

l

=
K∑

k=1

σ
(i,l)
k ai(θk)a

H
l (θk),

(8)

for 1 ≤ i �= l ≤ 2. In the above expressions, R
(i)
ss =

E[di(t)d
H
i (t)] = diag([σ

(i)
1 , ..., σ

(i)
K ]) is the source covari-

ance matrix where σ
(i)
k is real and positive, whereas R

(i,l)
ss =

E[di(t)d
H
l (t)] = diag([σ

(i,l)
1 , ..., σ

(i,l)
K ]). Note that σ

(i,l)
k is in

general a complex number. As such, the elements of R
(i,l)
xx ,

i �= l, do not provide the phase progression information which
is associated with the signal DOAs and the array configura-
tion. Since phase progression information is a key require-
ment in constructing the difference co-array as in the co-prime
arrays considered in [4, 5, 7], existing techniques cannot be
directly applied for the estimation of signal DOAs in the un-
derlying problem.

3.2. Proposed Technique

Vectorizing R
(i)
xx in (7) yields an L2 × 1 vector

z(i) = vec(R(i)
xx) = Ã(i)b(i) + σ(i)

n i, (9)

where Ã(i) = [ãi(θ1), ..., ãi(θK)], ãi(θk) = a∗i (θk)
⊗

ai(θk),

b(i) = [σ
(i)
1 , ..., σ

(i)
K ]T , and i = vec(IL). Note that ãi(θk)

provides phase information of θk for array sensor lags that
are integer multiples of Mid0, where i = 1, 2.

Similarly, vectorizing R
(i,l)
xx in (8), we obtain

z(i,l) = vec(R(i,l)
xx ) = Ã(i,l)b(i,l), (10)

where Ã(i,l) = [ãi,l(θ1), ..., ãi,l(θK)], ãi,l(θk) = a∗i (θk)
⊗

al(θk), b
(i,l) = [σ

(i,l)
1 , ..., σ

(i,l)
K ]T . ãi,l(θk) provides phase

information of θk for array sensor lags that are not necessar-
ily integer multiples of Mid0 for i = 1, 2. As we described

earlier, the elements of b(i,l) generally take complex values.

Also note that only R
(1,2)
xx is considered in the sequel because

R
(2,1)
xx = [R

(1,2)
xx ]∗.

In (9) and (10), the elements of b(i) and b(i,l) take differ-
ent values but the two vectors have a common support corre-
sponding to the K targets that are sparsely located in space.
The DOA estimation problem, therefore, can be considered
as a group sparse problem of locating the non-zero entries of

b(i) and b(i,l) in the space. A number of methods, such as the
group LASSO [10] and the block orthogonal matching pur-
suit (BOMP) [13], have been developed to solve this type of
problem. In this paper, the group LASSO is used.

Stacking vectors z(1), z(2), and z(1,2) as z = [(z(1))T ,
(z(2))T , (z(1,2))T ]T , we combine (9) and (10) into a single
expression as,

z = Ãb+ Ĩσn , (11)

where b = [(b(1))T , (b(2))T , (b(1,2))T ]T , Ã is a block diag-

onal matrix consisting of Ã(1), Ã(2), and Ã(1,2). In addition,

σn = [σ
(1)
n , σ

(2)
n ]T , and Ĩ is a 3L2 × 2 matrix whose first col-

umn is [iT ,0T ,0T ]T , where 0 denotes the all zero vector of
dimension L2 × 1, and the second column is [0T , iT ,0T ]T .

The expression in (11) can be replaced by the sparse sig-
nal representation in the following equivalent format,

z = B̃r+ Ĩσn = B̃oro, (12)

where r is a 3Q× 1 vector with Q denoting the size of search

grid in spatial angles, and B̃ is a counterpart of Ã with an
expanded dimension corresponding to the entire search grid.
Note that r has only 3K non-zero entries which correspond to

the elements of σ
(1)
k , σ

(2)
k , and σ

(1,2)
k at their respective posi-

tions, representing the target DOAs. The elements of r satisfy
a group sparse model, i.e., the non-zero entries corresponding
to the different frequency combinations share the same sup-

port. In addition, Bo = [B̃, Ĩ] and ro = [rT , σT
n ]

T were used
in the above expression for notational simplicity.

The estimation of r is obtained as the first 3Q elements of
ro by solving the following minimization problem,

r̂o = argmin
ro

||ξ(ro)||1 s.t. ||z−Boro||2 < ε, (13)

where ε is a user-specific bound, and ξ(.) is an operation that
obtains the l2 norm of the three-element entries corresponding
to each spatial position. As such, ξ(ro) returns a Q×1 vector.
Equivalently, the above expression can be reformulated as

r̂o = argmin
ro

[
1

2
||z−Boro||2 + λt||ξ(ro)||1

]
, (14)

where λt is a regularization parameter. The group LASSO
algorithm finds the group sparse solution by solving the min-
imization problem in (14).

4. SIMULATION RESULTS

We use a set of parameters that resemble those in [7]. Two
co-prime subarrays with 5 and 6 sensors, respectively, were
used in [7], resulting in a total number of 10 physical array
sensors in the co-prime array. In this paper, we consider a
ULA of L = 6 antenna sensors, and M1 = 5 and M2 = 6 are
assumed. K = 17 targets, which are uniformly distributed
between −50◦ and 50◦, are assumed. The noise power at
the two frequencies are assumed to be the same, and the in-
put SNRs for all sources are assumed to be identical. The
number of snapshots is 500, and the grid size for space an-
gle search is 0.1o. The phase difference between the received
signal corresponding to the two frequencies is independently
and uniformly distributed over [0, 2π].

We first show the estimated spatial spectrum using the
technique described in [7] based on conventional LASSO.
The input SNR is 0 dB. It is clear that the 17 targets are re-
solved only when there is no phase difference between the
signals observed at the two frequencies. The estimated spa-
tial spectrum becomes very poor when such phase difference
does exist.

The estimated spectrum from the group LASSO algorithm
is shown in Fig. 2, where the input SNR levels of −10 dB and



0 dB are considered. It is seen that all 17 sources are correctly
or closely identified. However, spurious peaks are observed,
particularly at low SNR, due to the sidelobe effect as the result
of the sparsity. This problem is inherent to the co-prime array
and was also observed in [7]. Some approaches for sidelobe
reduction in co-prime arrays have been reported (e.g., [14]).

While the parameters are similar to those considered in
[7], the array considered here has slightly higher DOFs be-
cause 6 physical sensors are shared by both co-prime subar-
rays (whereas in [7] the two subarrays respectively have 5 and
6 elements). In addition, we used all of the available differ-
ence lags for DOA estimation, whereas only the consecutive
lags were used in [7].

In the proposed technique, co-prime arrays are not explic-
itly reconstructed as in [5, 7]. Nevertheless, it is important to
note the importance of using co-prime frequencies to maxi-
mize the DOFs. To demonstrate this fact, we show in Fig. 3
the results when we choose M1 and M2 not to be co-prime.
Specifically, M1 = 4 and M2 = 6 are used in this example,
where the input SNR is 0 dB, and the other parameters are
kept unchanged. It is clear from Fig. 3 that this configuration
yields poor estimates of the spatial spectrum.

5. CONCLUSION

We have proposed the use of a sparse uniform linear array for
effective DOA estimation by exploiting two continuous-wave
sinusoids with co-prime frequencies. The difference co-array
concept is used to avoid the spatial undersampling effect. The
group LASSO algorithm is used to estimate the spatial signal
spectrum under common support of the target reflection coef-
ficients at different frequencies. The superior performance of
the proposed technique is verified using simulation results.
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Fig. 2. Spatial spectrum estimated using group LASSO.
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