Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Target localization in a multi-static passive radar system through convex optimization

Batu K. Chalise^{a,1}, Yimin D. Zhang^{a,*}, Moeness G. Amin^a, Braham Himed^b

^a Wireless Communications and Positioning Laboratory, Center for Advanced Communications, Villanova University, Villanova, PA 19085, USA ^b Air Force Research Laboratory, AFRL/RYMD, Dayton, OH 45433, USA

ARTICLE INFO

Article history: Received 14 September 2013 Received in revised form 14 January 2014 Accepted 26 February 2014 Available online 5 March 2014

Keywords: Radar signal processing Passive radar Target localization Convex optimization Semi-definite relaxation

ABSTRACT

We propose efficient target localization methods for a passive radar system using time-ofarrival (TOA) information of the signals received from multiple illuminators, where the position of the receiver is subject to random errors. Since the maximum likelihood (ML) formulation of this target localization problem is a non-convex optimization problem, semidefinite relaxation (SDR)-based optimization methods in general do not provide satisfactory performance. As a result, approximated ML optimization problems are proposed and solved with SDR plus bisection methods. For the case without position error, it is shown that the relaxation guarantees a rank-one solution. The optimization problem for the case with position error involves only a relaxation of a scalar quadratic term. Simulation results show that the proposed algorithms outperform existing methods and provide root mean-square error performance very close to the Cramer–Rao lower bound.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, multi-static passive radar (MPR) systems, which utilize multiple broadcast signals as sources of opportunity, have attracted significant interests due to their low cost, covertness, and availability of rich illuminator sources [1–4]. Compared to conventional active radar systems which typically operate in a monostatic mode and emit stronger signals with a wide signal bandwidth, MPR systems use broadcast signals which in general are very weak and have an extremely narrow bandwidth. These features make it difficult to exploit a MPR system for accurate target position estimation. In addition, MPR receivers may often be implemented on aerial or ground moving vehicles. In this case, the radar platform may only have inaccurate knowledge about its own instantaneous position. This uncertainty is caused by

* Corresponding author.

http://dx.doi.org/10.1016/j.sigpro.2014.02.023 0165-1684 © 2014 Elsevier B.V. All rights reserved. the accuracy limitation of the positioning system as well as multipath propagations.

Target localization is an important task that has received extensive attention in various applications, such as wireless communications, sensor networks, urban canyon, and throughthe-wall radar systems [5–8]. Specifically, multi-lateration techniques utilize the range information observed at multiple positions, which are distributed over a region, to uniquely localize a target. Depending on the applications, range information can be obtained using time-of-arrival (TOA), time-delay-of-arrival (TDOA), and received signal strength indicator (RSSI). On the other hand, the observation positions may be achieved using fixed receivers, or synthesized using a single moving platform. In the latter case, the receiver positions are subject to inaccuracy.

In all these applications, maximum likelihood (ML) estimation is considered as a powerful method of estimating the targets' location, which in general is a non-convex optimization problem. When the measurement noise is sufficiently small, the ML estimation problem may be solved using linearized least squares (LLS) estimation methods [5,7]. The

E-mail address: yimin.zhang@villanova.edu (Y.D. Zhang).

¹ Currently with Arraycomm LLC, San Jose, CA 95110, USA.

key steps of the LLS estimation methods are linearizing the objective function using Taylor's series expansion at some initial guess of target position and updating it with the least squares (LS) solution in an iterative approach. Like in many iterative optimization techniques for non-convex problems, however, the accuracy of the LLS estimator highly depends on the initial guess of the target's location. This has motivated researchers to consider more efficient designs. One such approach is the semi-definite relaxation (SDR) technique [6,9–11], which converts a non-convex optimization problem into a convex one by relaxing certain rank constraints. It is worth noting that SDR-based approaches outperform computationally efficient two-step weighted least squares method proposed in [12], especially when the noise level is high and the sensor positions are not perfectly known.

The accuracy (or tightness) of SDR techniques, however, is problem specific, as shown in [13] for the TOA based optimization problems. For example, in optimization problems based on TDOA [9] and TOA [10], where an unknown time instant of the source's signal transmission is also optimized, SDR relaxations may not be tight and, thus, the penalty function approach is introduced. This is true also for robust designs where sensor positions are subject to certain random errors [9,10]. In this context, neglecting the second-order noise terms [12], the authors in [14] proposed to use an approximate ML function in the SDR-based source localization problem.

In this paper, we pursue approximated ML estimation approach in developing efficient target localization algorithms in a MPR system using TOA information of signals received from multiple illuminators and the target. As discussed above, the range resolution is poor because of the narrow signal bandwidth and weak signal levels, and the receiver position is subject to inaccurate knowledge of its own position. Therefore, an optimization problem is also formulated for the case where the receiver position is subject to estimation error. The underlying optimization problems are still non-convex, but can be reformulated as convex problems using SDR and solved in conjunction with the bisection method. When no position error is present, the SDR provides a rank-one solution. With position estimation error, the corresponding optimization problem involves only a relaxation of a quadratic scalar term.

The target localization problem and optimization technique described in this paper differs from the existing literature in a number of ways. In contrast to the optimization problems in [6,13], where the objective function is solely a function of monostatic range, the objective function in our case involves bistatic range, which makes accurate target position estimation much more challenging. Further, unlike [9,10], where SDR of several variables and a penalty function approach are employed, our approach involves SDR of only one variable. though in conjunction with the bisection approach. For these reasons, the proposed method outperforms methods in [9,10] and does not require refinement through local optimization. Moreover, although we employ ML approximation approach, the effect of the approximation renders our optimization problem to be different from [14] due to different system models. As a result, a new optimization method that solves relaxed SDR problem in conjunction with bisection method is

proposed for both cases where receiver position is perfectly and imperfectly known.

The rest of the paper is organized as follows. The system model of the MPR system is described in Section 2, whereas the proposed optimization methods for target localization are presented in Section 3.2. The computational complexity of the proposed method is compared with the approach of [9] in Section 4. Numerical results are provided in Section 5 and conclusions are drawn in Section 6.

Notations: Upper (lower) bold face letters will be used for matrices (vectors); $(\cdot)^T$, \mathbf{I}_n , $\|\cdot\|$, $tr(\cdot)$, $\mathbf{A} \ge 0$, diag (\cdot) denote transpose, $n \times n$ identity matrix, Euclidean norm, matrix trace operator, positive semi-definiteness of \mathbf{A} , and diagonal matrix, respectively.

2. System model

We consider a standard MPR system with M illuminators of opportunity, which can be broadcast stations for digitalvideo broadcasting - terrestrial (DVB-T) [15] or base stations for global system for mobile communications (GSM) [16]. Because the deployment scenario of these broadcast and base stations is publicly available, their numbers and locations are considered to be precisely known. A narrow-band multi-frequency (NBMF) transmission is considered, where the illuminators use well separated carrier frequencies f_i , i = 1, ..., M, and the bandwidths of their transmitted waveforms are much smaller than f_i , $\forall i$. The radar receiver observes the direct signals from all M illuminators and the reflected signal from a single target. The target is assumed to be stationary.² By virtue of NBMF transmission, separation of the different signals based on carrier frequencies (or equivalently illuminators) is feasible after demodulation and filtering [17]. It is worthwhile to note that this feature is in contrast to a multiple-input multiple-output (MIMO) radar system where transmitters use a same carrier frequency but coordinate to form orthogonal waveforms [18,19].

The TOA of the direct signal from the *i*th illuminator at the receiver, where $1 \le i \le M$, is given by

$$\tau_{\mathbf{d},i} = \frac{1}{c} \, \| \, \mathbf{t}_i - \tilde{\mathbf{r}} \, \|, \tag{1}$$

where *c* is the speed of light, **t**_i and $\tilde{\mathbf{r}}$ are column vectors of length *n* that represent, respectively, the coordinates of the *i*th illuminator and the receiver. Depending on applications, *n* is 2 for a two-dimensional coordinate system and 3 for a three-dimension coordinate system. Note that {**t**_i, $\forall i$ } are assumed to be stationary and precisely known. The TOA of the target reflected signal corresponding to the *i*th illuminator is given by

$$\tau_{\mathbf{b},i} = \frac{1}{c} \{ \| \mathbf{t}_i - \mathbf{p} \| + \| \tilde{\mathbf{r}} - \mathbf{p} \| \},$$
(2)

where **p** is the $n \times 1$ vector representing the location information of the target. Because the passive radar exploits non-cooperative illuminators, it does not know the exact

² Algorithms for multiple and moving targets will be reported elsewhere.

timing of the signal emission at each illuminator.³ Rather, the radar receiver reconstructs the direct path signal with enough accuracy by applying demodulation and forward error correction technique [20]. The estimated direct path is used to correlate the reflected signal from the targets to estimate the TDOA between these two paths, given by $\tau_{b,i} - \tau_{d,i}$ [21]. As a result, the effective TDOA between $\tau_{d,i}$ and $\tau_{b,i}$ can be estimated as

$$\overline{\tau}_{i} = \tau_{\mathbf{b},i} - \tau_{\mathbf{d},i} + \overline{n}_{i} = \frac{1}{c} \left[\|\mathbf{t}_{i} - \mathbf{p}\| + \|\tilde{\mathbf{r}} - \mathbf{p}\| - \|\mathbf{t}_{i} - \tilde{\mathbf{r}}\| \right] + \overline{n}_{i},$$
(3)

where \overline{n}_i is the zero-mean Gaussian estimation error due to measurement noise. The Gaussian distribution reasonably models the measurement noise [22] and is commonly assumed in TDOA/TOA measurements (e.g., [9,10,13]). For notational simplicity, we denote $\tau_i = c\overline{\tau}_i$ and $\tilde{n}_i = c\overline{n}_i$. In this case, the ML estimate of the target location is expressed as

$$\hat{\mathbf{p}} = \arg\min_{\mathbf{p}} \sum_{i=1}^{M} [\tilde{\tau}_i - \|\mathbf{t}_i - \mathbf{p}\| - \|\tilde{\mathbf{r}} - \mathbf{p}\|]^2,$$
(4)

where

$$\tilde{\tau}_i = \tau_i + \|\mathbf{t}_i - \tilde{\mathbf{r}}\|.$$
(5)

Note that the knowledge of the true position of the receiver, $\tilde{\mathbf{r}}$, may be inaccurate. Denote the estimated receiver position by \mathbf{r} . The relationship between $\tilde{\mathbf{r}}$ and \mathbf{r} is expressed as

$$\tilde{\mathbf{r}} = \mathbf{r} + \mathbf{e},\tag{6}$$

where \mathbf{e} is the random estimation error for the receiver position.

3. Proposed optimization approaches

The unconstrained minimization problem (4) is nonconvex. Thus, it is difficult to obtain the global optimum solution with a reasonable complexity. The SDR-based optimization methods applied in [9,10] may not be tight enough in general and, thus, may often fail to provide performance sufficiently close to CRLB. In this section, and motivated by [12], we propose an alternative approach that approximates the ML target localization problem. However, this approximate ML problem is shown to be less sensitive to the SDR and perform better than the methods that solve the exact ML problem.

3.1. Optimization without receiver position error

We first consider the case where the receiver position is exactly known, i.e., $\tilde{\mathbf{r}} = \mathbf{r}_i$. Denote $\tau_i = \tau_i^o + \tilde{n}_i$, where τ_i^o is the noise-free observation. Then, from (3), we have

$$\tau_i^{\rm o} = \|\mathbf{t}_i - \mathbf{p}\| + \|\mathbf{r} - \mathbf{p}\| - \|\mathbf{t}_i - \mathbf{r}\|$$
(7)

or equivalently

$$\tilde{\tau}_i^0 - \|\mathbf{r} - \mathbf{p}\| = \|\mathbf{t}_i - \mathbf{p}\|.$$
(8)

$$\tilde{\tau}_{i}^{2} - 2(\tilde{\tau}_{i} - q)\tilde{n}_{i} + \tilde{n}_{i}^{2} - 2\tilde{\tau}_{i}q + \|\mathbf{r}\|^{2} - \|\mathbf{t}_{i}\|^{2} - 2(\mathbf{r} - \mathbf{t}_{i})^{T}\mathbf{p} = 0,$$
(9)

where $q = \|\mathbf{r} - \mathbf{p}\|$. Neglecting the second-order terms of the noise, \tilde{n}_i^2 , and stacking (9) for all *i*, we obtain the following expression:

$$\mathbf{u} - \mathbf{B}\mathbf{z} \approx \mathbf{D}\tilde{\mathbf{n}},\tag{10}$$

where

$$\mathbf{u} = [\|\mathbf{r}\|^2 - \|\mathbf{t}_1\|^2 + \tilde{\tau}_1^2, \dots, \|\mathbf{r}\|^2 - \|\mathbf{t}_M\|^2 + \tilde{\tau}_M^2]^T,$$

$$\mathbf{B} = 2 \begin{bmatrix} (\mathbf{r} - \mathbf{t}_1)^T & \tilde{\tau}_1 \\ (\mathbf{r} - \mathbf{t}_2)^T & \tilde{\tau}_2 \\ \vdots & \vdots \\ (\mathbf{r} - \mathbf{t}_M)^T & \tilde{\tau}_M \end{bmatrix},$$

$$\mathbf{D} = 2 \operatorname{diag}(\tilde{\tau}_1 - q, \tilde{\tau}_2 - q, \dots, \tilde{\tau}_M - q),$$

$$\mathbf{z} = [\mathbf{p}^T, q]^T,$$

$$\tilde{\mathbf{n}} = [\tilde{n}_1, \tilde{n}_2, \dots, \tilde{n}_M]^T.$$
(11)

By virtue of the underlying NBMF transmission, which exploits non-overlapping spectra, it can be readily assumed that the entries of $\tilde{\mathbf{n}}$ are statistically independent. We further assume that the entries of $\tilde{\mathbf{n}}$ are identically distributed, so that $\tilde{\mathbf{n}}$ is a vector of zero-mean i.i.d. Gaussian random variables with covariance matrix $\sigma_n^2 \mathbf{I}_M$. We maintain that approaches developed in this paper can be easily extended to correlated and non-identically distributed Gaussian noise. From (10), the noise vector can be approximated as

$$\tilde{\mathbf{n}} \approx \mathbf{D}^{-1} (\mathbf{u} - \mathbf{B} \mathbf{z}). \tag{12}$$

As a result, the ML target localization problem can be approximated as the following minimization problem:

$$\min_{\mathbf{z}} \quad \frac{1}{\sigma_{n}^{2}} (\mathbf{u} - \mathbf{B}\mathbf{z})^{T} \mathbf{D}^{-1} \mathbf{D}^{-1} (\mathbf{u} - \mathbf{B}\mathbf{z})$$
s.t. $q \triangleq z(n+1) = \|\mathbf{r} - \mathbf{p}\|,$ (13)

where z(n+1) stands for the (n+1)th element of **z**. After omitting the constant scaling factor $1/\sigma_n^2$, (13) can be expressed as

$$\min_{\mathbf{z}} \quad \sum_{i=1}^{M} \frac{(u_i - \mathbf{b}_i^T \mathbf{z})^2}{(\tilde{\tau}_i - q)^2}$$

s.t. $q = \|\mathbf{r} - \mathbf{p}\|,$ (14)

where u_i is the *i*th element of **u** and \mathbf{b}_i^T is the *i*th row of **B**. We define $\mathbf{p} \triangleq \tilde{\mathbf{z}} = [z(1), ..., z(n)]^T$, $\tilde{\mathbf{b}}_i^T = [b_i(1), ..., b_i(n)]$ and $v_i = b_i(n+1)$, where $b_i(k)$ is the *k*th element of \mathbf{b}_i^T . The objective function (13) can be expressed as

$$f_{\rm ob} = \sum_{i=1}^{M} \left[\frac{u_i}{\tilde{\tau}_i - q} - \frac{\tilde{\mathbf{b}}_i^T \tilde{\mathbf{z}}}{\tilde{\tau}_i - q} - \frac{v_i q}{\tilde{\tau}_i - q} \right]^2, \tag{15}$$

which, after some manipulations, can be expressed as

$$f_{\rm ob} = [\tilde{\mathbf{z}}^T, 1] \mathbf{G}(q) [\tilde{\mathbf{z}}^T, 1]^T$$
(16)

³ This is also one of the important features that differentiates the passive radar system from MIMO radar systems where the transmitters and receivers are synchronized [18,19], i.e., the time of signal transmission is known at the MIMO radar receiver.

where the $(n+1) \times (n+1)$ matrix **G**(*q*) is given by

$$\mathbf{G}(q) = \begin{bmatrix} \sum_{i=1}^{M} \frac{\tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{T}}{(\tilde{\tau}_{i} - q)^{2}} & \sum_{i=1}^{M} \frac{\tilde{\mathbf{b}}_{i} (v_{i} q - u_{i})}{(\tilde{\tau}_{i} - q)^{2}} \\ \sum_{i=1}^{M} \frac{\tilde{\mathbf{b}}_{i}^{T} (v_{i} q - u_{i})}{(\tilde{\tau}_{i} - q)^{2}} & \sum_{i=1}^{M} \frac{(v_{i} q - u_{i})^{2}}{(\tilde{\tau}_{i} - q)^{2}} \end{bmatrix}.$$
(17)

Thus, the minimization problem (14) is given by

$$\min_{\tilde{\boldsymbol{z}},q} \operatorname{tr}\left\{ \begin{bmatrix} \boldsymbol{z} \\ 1 \end{bmatrix} [\tilde{\boldsymbol{z}}^{T}, 1] \mathbf{G}(q) \right\}$$

s.t. $q^{2} = \|\mathbf{r} - \mathbf{p}\|^{2} \longleftrightarrow q^{2} = \operatorname{tr}\left\{ \begin{bmatrix} \tilde{\boldsymbol{z}} \\ 1 \end{bmatrix} [\tilde{\boldsymbol{z}}^{T}, 1] \begin{bmatrix} \mathbf{I}_{n} & -\mathbf{r} \\ -\mathbf{r}^{T} & \mathbf{r}^{T}\mathbf{r} \end{bmatrix} \right\},$ (18)

which is clearly a non-convex optimization problem. We define $\tilde{\mathbf{Z}} = \tilde{\mathbf{z}}\tilde{\mathbf{z}}^T$, which is relaxed as $\tilde{\mathbf{Z}} \ge \tilde{\mathbf{z}}\tilde{\mathbf{z}}^T$, i.e., $\tilde{\mathbf{Z}} - \tilde{\mathbf{z}}\tilde{\mathbf{z}}^T$ is positive semi-definite. This yields the following optimization problem:

$$\min_{\tilde{\mathbf{z}},\tilde{\mathbf{z}},q} \operatorname{tr} \left\{ \begin{bmatrix} \tilde{\mathbf{Z}} & \tilde{\mathbf{z}} \\ \tilde{\mathbf{z}}^{T} & 1 \end{bmatrix} \mathbf{G}(q) \right\}$$
s.t. $q^{2} = \operatorname{tr} \left\{ \begin{bmatrix} \tilde{\mathbf{Z}} & \tilde{\mathbf{z}} \\ \tilde{\mathbf{z}}^{T} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{n} & -\mathbf{r} \\ -\mathbf{r}^{T} & \mathbf{r}^{T}\mathbf{r} \end{bmatrix} \right\},$

$$\begin{bmatrix} 1 & \tilde{\mathbf{z}}^{T} \\ \tilde{\mathbf{z}} & \tilde{\mathbf{Z}} \end{bmatrix} \ge 0.$$
(19)

For a given q, (19) is a convex optimization problem w.r.t. \tilde{z} and $\tilde{\mathbf{Z}}$. However, the joint optimization problem (w.r.t. q, $\tilde{\mathbf{z}}$ and $\tilde{\mathbf{Z}}$) is not convex. On the other hand, since *q* is a scalar (also positive), it is still easy to find the global optimum solution of (19) by using an exhaustive search over a, where (19) is solved over a fine grid of q and \tilde{z} is selected for which the objective function is minimum. To reduce the complexity of solving the optimum value of *q*, we propose to employ a line search (e.g., bisection search) over q for solving the optimization problem (19). Since it is very difficult to analytically prove that the bisection search guarantees the global minimum for (19), we pursue a numerical approach. Let $[\tilde{\mathbf{z}}_i^*, \tilde{\mathbf{Z}}_i^*]$ be an optimal solution of (19) for a given $q = q_i$, where $j = \{1, ..., J\}$. Let $\tilde{f}_{ob}(q) = \{f_{ob}(\tilde{\mathbf{z}}_{j}^{*}, \tilde{\mathbf{Z}}_{j}^{*}, q_{j})\}_{i=1}^{J}$ be the resulting function w.r.t. $\{q_i\}$. In the considered simulation scenario (see Fig. 2 of Section 5) with perfectly known receiver position and an arbitrary noise realization, it can be observed from Fig. 1 that $\tilde{f}_{ob}(q)$ is a unimodal function. This suggests that the bisection approach accurately finds the global minimum in (19).

Assume that the optimum q lies in the interval $[q_1, q_u]$. It is obvious in the underlying problem that $q_1 = 0$. The algorithm (Algorithm 1) for solving (19) is then provided below.

- (1) Initialize q_l , q_u and set $\epsilon > 0$.
- (2) Solve (19) with $q = q_1$ and $q = q_u$.
- (3) If $f_{ob}(q_1) < f_{ob}(q_u)$, set $q_u = (q_1 + q_u)/2$; otherwise set $q_1 = (q_1 + q_u)/2$.
- (4) Go to step 2 until $|q_u q_l| \le \epsilon$.

Remark 1. Let $[\tilde{\mathbf{z}}^*, \tilde{\mathbf{Z}}^*, q^*]$ be an optimal solution of the problem (19). Notice that the number of equality constraints is L=1. According to the Shapiro–Barvinok–Pataki

(SBP) result [23], there exists an optimal solution $\tilde{\mathbf{Z}}^*$ such that rank($\tilde{\mathbf{Z}}^*$)(rank($\tilde{\mathbf{Z}}^*$)+1) $\leq 2L$. Since L=1 in (19) and rank($\tilde{\mathbf{Z}}^*$) $\neq 0$, we find that $\tilde{\mathbf{Z}}^*$ is rank-one.

The CRLB for the case without receiver position error is given by (see Appendix A.1)

$$CRB = tr(\mathbf{F}^{-1}), \tag{20}$$

where

$$\mathbf{F} = \frac{1}{\sigma_n^2} \frac{\partial \tilde{\mathbf{s}}^I}{\partial \mathbf{p}} \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial \mathbf{p}^T}, \frac{\partial \tilde{\mathbf{s}}^I}{\partial \mathbf{p}} = \left[\frac{\mathbf{r} - \mathbf{p}}{\|\|\mathbf{r} - \mathbf{p}\|}, \frac{\mathbf{t}_1 - \mathbf{p}}{\|\|\mathbf{t}_1 - \mathbf{p}\|}, ..., \frac{\mathbf{t}_M - \mathbf{p}}{\|\|\mathbf{t}_M - \mathbf{p}\|} \right],$$
$$\tilde{\mathbf{s}} = [q = \|\|\mathbf{r} - \mathbf{p}\|, s_1 = \|\|\mathbf{t}_1 - \mathbf{p}\|, ..., s_M = \|\|\mathbf{t}_M - \mathbf{p}\|]^T,$$
$$\mathbf{E} = [\mathbf{1}_M, \mathbf{I}_M].$$
(21)

3.2. Optimization with receiver position error

In the presence of random position error (i.e., $\tilde{\mathbf{r}} = \mathbf{r} + \mathbf{e}$), we can express the measured range difference for the signal of *i*th illuminator as

$$\tau_i^{\mathbf{r}} = \|\mathbf{t}_i - \mathbf{p}\| + \|(\mathbf{r} + \mathbf{e}) - \mathbf{p}\| - \|(\mathbf{r} + \mathbf{e}) - \mathbf{t}_i\| + \tilde{n}_i.$$
(22)

We consider that **e** is small when compared to $(\mathbf{r}-\mathbf{p})$ and $(\mathbf{r}-\mathbf{t}_i), \forall i$, i.e., $\|\mathbf{e}\| \ll \|\mathbf{r}-\mathbf{p}\|, \|\mathbf{r}-\mathbf{t}_i\|, \forall i$. Using Taylor's series expansion, we get

$$\|(\mathbf{r}+\mathbf{e})-\mathbf{p}\| = \|\mathbf{r}-\mathbf{p}\| + \mathbf{e}^{T} \frac{\mathbf{r}-\mathbf{p}}{\|\mathbf{r}-\mathbf{p}\|} + \mathcal{O}(\|\mathbf{e}\|),$$

$$\|(\mathbf{r}+\mathbf{e})-\mathbf{t}_{i}\| = \|\mathbf{r}-\mathbf{t}_{i}\| + \mathbf{e}^{T} \frac{\mathbf{r}-\mathbf{t}_{i}}{\|\mathbf{r}-\mathbf{t}_{i}\|} + \mathcal{O}(\|\mathbf{e}\|),$$
 (23)

where $\mathcal{O}(\|\mathbf{e}\|)$ stands for higher-order terms of $\|\mathbf{e}\|$. Substituting (23) into (22), we obtain

$$\tau_i^r \approx \|\mathbf{t}_i - \mathbf{p}\| + \|\mathbf{r} - \mathbf{p}\| - \|\mathbf{r} - \mathbf{t}_i\| + \mathbf{e}^T \left[\frac{\mathbf{r} - \mathbf{p}}{\|\mathbf{r} - \mathbf{p}\|} - \frac{\mathbf{r} - \mathbf{t}_i}{\|\mathbf{r} - \mathbf{t}_i\|} \right] + \tilde{n}_i.$$
(24)

Define $\tilde{\tau}_i^r = \tau_i^r + \|\mathbf{r} - \mathbf{t}_i\|$, $\mathbf{w} = (\mathbf{r} - \mathbf{p})/\|\mathbf{r} - \mathbf{p}\|$, $\mathbf{w}_i = (\mathbf{r} - \mathbf{t}_i)/\|\mathbf{r} - \mathbf{t}_i\|$ and $\tilde{\mathbf{w}}_i = \mathbf{w} - \mathbf{w}_i$. Then, (24) can be expressed as

$$(\tilde{\tau}_i^{\mathrm{r}} - \tilde{n}_i) - \|\mathbf{r} - \mathbf{p}\| - \mathbf{e}^T \tilde{\mathbf{w}}_i \approx \|\mathbf{t}_i - \mathbf{p}\|.$$
(25)

Squaring both sides of (25) and after some derivations, we get

$$\begin{aligned} \tilde{\boldsymbol{\tau}}_{i}^{\mathrm{r}} \boldsymbol{\boldsymbol{\beta}}^{2} + \|\mathbf{r}\|^{2} - \|\mathbf{t}_{i}\|^{2} - 2(\mathbf{r}_{i} - \mathbf{t})^{\mathrm{T}} \mathbf{p} - 2\tilde{\boldsymbol{\tau}}_{i}^{\mathrm{r}} q + \tilde{\boldsymbol{n}}_{i}^{2} + 2\tilde{\boldsymbol{n}}_{i} \mathbf{e}^{\mathrm{T}} \tilde{\mathbf{w}}_{i} \\ + \mathbf{e}^{\mathrm{T}} \tilde{\mathbf{w}}_{i} \tilde{\mathbf{w}}_{i} \mathbf{e} \approx 2\tilde{\boldsymbol{n}}_{i} (\tilde{\boldsymbol{\tau}}_{i}^{\mathrm{r}} - q) + 2(\tilde{\boldsymbol{\tau}}_{i}^{\mathrm{r}} - q) \mathbf{e}^{\mathrm{T}} \tilde{\mathbf{w}}_{i}. \end{aligned}$$
(26)

Neglecting the second order terms of noise and the crossorder term between noise and position error, for i = 1, ...,M, (26) can be expressed in the vector form as

$$\mathbf{u} - \mathbf{B}\mathbf{z} \approx \mathbf{D}\tilde{\mathbf{n}} + \mathbf{C}\mathbf{e},$$
 (27)

where

$$\mathbf{C} = 2 \begin{bmatrix} (\tilde{\boldsymbol{\tau}}_{1}^{r} - \boldsymbol{q}) \tilde{\mathbf{w}}_{1}^{T} \\ (\tilde{\boldsymbol{\tau}}_{2}^{r} - \boldsymbol{q}) \tilde{\mathbf{w}}_{2}^{T} \\ \vdots \\ (\tilde{\boldsymbol{\tau}}_{M}^{r} - \boldsymbol{q}) \tilde{\mathbf{w}}_{M}^{T} \end{bmatrix}.$$
(28)

Notice that (27) can be expressed as

$$\mathbf{D}^{-1}(\mathbf{u} - \mathbf{B}\mathbf{z}) \approx \tilde{\mathbf{n}} + \mathbf{D}^{-1}\mathbf{C}\mathbf{e}.$$
 (29)

Assume that the position error \mathbf{e} is Gaussian distributed with zero-mean and covariance matrix \mathbf{Q} . Since \mathbf{e} and $\tilde{\mathbf{n}}$ are independent, we obtain

$$E\{(\tilde{\mathbf{n}} + \mathbf{D}^{-1}\mathbf{C}\mathbf{e})(\tilde{\mathbf{n}} + \mathbf{D}^{-1}\mathbf{C}\mathbf{e})^{T}\} = \sigma_{n}^{2}\mathbf{I}_{M} + \mathbf{D}^{-1}\mathbf{C}\mathbf{Q}\mathbf{C}^{T}(\mathbf{D}^{-1})^{T}.$$
(30)

Particularly, under the assumption $\mathbf{Q} = \sigma_e^2 \mathbf{I}_n$, where σ_e^2 is the variance of the elements of **e**, the ML localization problem can be approximately expressed as

$$\min_{\mathbf{z}} \{ (\mathbf{u} - \mathbf{B}\mathbf{z})^T \mathbf{D}^{-1} (\sigma_n^2 \mathbf{I}_M + \sigma_e^2 \mathbf{D}^{-1} \mathbf{C} \mathbf{C}^T \mathbf{D}^{-1})^{-1} \mathbf{D}^{-1} (\mathbf{u} - \mathbf{B}\mathbf{z}) \}$$

s.t. $q \triangleq z(n+1) = \|\mathbf{r} - \mathbf{p}\|.$ (31)

The objective function of the optimization problem (31) can be simplified to

$$f_{\text{rob}} = \frac{1}{4} (\mathbf{u} - \mathbf{B}\mathbf{z})^T (\sigma_n^2 \mathbf{D} \mathbf{D}^T + \sigma_e^2 \mathbf{C} \mathbf{C}^T)^{-1} (\mathbf{u} - \mathbf{B}\mathbf{z}),$$
(32)

where

$$\mathbf{D}\mathbf{D}^{T} = \text{diag}((\tilde{\tau}_{1}^{r} - q)^{2}, (\tilde{\tau}_{2}^{r} - q)^{2}, ..., (\tilde{\tau}_{M}^{r} - q)^{2}),$$
(33)

and

$$\mathbf{C}\mathbf{C}^{\mathrm{T}} = \begin{bmatrix} (\tilde{\boldsymbol{\tau}}_{1}^{\mathrm{T}} - q)^{2} \tilde{\mathbf{w}}_{1}^{\mathrm{T}} \tilde{\mathbf{w}}_{1} & (\tilde{\boldsymbol{\tau}}_{1}^{\mathrm{T}} - q)(\tilde{\boldsymbol{\tau}}_{2}^{\mathrm{T}} - q)\tilde{\mathbf{w}}_{1}^{\mathrm{T}} \tilde{\mathbf{w}}_{2} & \dots & (\tilde{\boldsymbol{\tau}}_{1}^{\mathrm{T}} - q)(\tilde{\boldsymbol{\tau}}_{M}^{\mathrm{T}} - q)\tilde{\mathbf{w}}_{1}^{\mathrm{T}} \tilde{\mathbf{w}}_{M} \\ (\tilde{\boldsymbol{\tau}}_{2}^{\mathrm{T}} - q)(\tilde{\boldsymbol{\tau}}_{1}^{\mathrm{T}} - q)\tilde{\mathbf{w}}_{2}^{\mathrm{T}} \tilde{\mathbf{w}}_{1} & (\tilde{\boldsymbol{\tau}}_{2}^{\mathrm{T}} - q)^{2} \tilde{\mathbf{w}}_{2}^{\mathrm{T}} \tilde{\mathbf{w}}_{2} & \dots & (\tilde{\boldsymbol{\tau}}_{2}^{\mathrm{T}} - q)(\tilde{\boldsymbol{\tau}}_{M}^{\mathrm{T}} - q)\tilde{\mathbf{w}}_{2}^{\mathrm{T}} \tilde{\mathbf{w}}_{M} \\ \vdots & \vdots & \vdots & \vdots \\ (\tilde{\boldsymbol{\tau}}_{M}^{\mathrm{T}} - q)(\tilde{\boldsymbol{\tau}}_{1}^{\mathrm{T}} - q)\tilde{\mathbf{w}}_{M}^{\mathrm{T}} \tilde{\mathbf{w}}_{1} & (\tilde{\boldsymbol{\tau}}_{M}^{\mathrm{T}} - q)(\tilde{\boldsymbol{\tau}}_{2}^{\mathrm{T}} - q)\tilde{\mathbf{w}}_{M}^{\mathrm{T}} \tilde{\mathbf{w}}_{2} & \dots & (\tilde{\boldsymbol{\tau}}_{M}^{\mathrm{T}} - q)^{2} \tilde{\mathbf{w}}_{M}^{\mathrm{T}} \tilde{\mathbf{w}}_{M} \end{bmatrix} .$$
(34)

Since
$$\mathbf{w}^T \mathbf{w} = 1$$
 and $\mathbf{w}_i^T \mathbf{w}_i = 1$, $\forall i$, we have

$$\tilde{\mathbf{w}}_{i}^{T}\tilde{\mathbf{w}}_{i} = 2\left[1 - \frac{(\mathbf{r} - \mathbf{p})^{T}}{q}\mathbf{w}_{i}\right], \forall i$$
$$\tilde{\mathbf{w}}_{i}^{T}\tilde{\mathbf{w}}_{k} = 1 - \frac{(\mathbf{r} - \mathbf{p})^{T}}{q}(\mathbf{w}_{i} + \mathbf{w}_{k}) + \mathbf{w}_{i}^{T}\mathbf{w}_{k}, \forall i, k, i \neq k.$$
(35)

Introducing an auxiliary variable $\gamma > 0$ and defining

$$\tilde{\mathbf{B}} \triangleq \mathbf{B}_{[1:M,1:n]}, \tilde{\mathbf{b}} \triangleq \mathbf{B}_{[1:M,n+1]}, \mathbf{p} \triangleq \tilde{\mathbf{z}},$$
(36)

(31) can be expressed as

$$\min_{\{\tilde{\boldsymbol{z}},q,\gamma\}} \gamma$$

s.t. $\gamma \ge (\mathbf{u} - \tilde{\mathbf{B}}\tilde{\boldsymbol{z}} - \tilde{\boldsymbol{b}}q)^T (\sigma_n^2 \mathbf{D} \mathbf{D}^T + \sigma_e^2 \mathbf{C} \mathbf{C}^T)^{-1} (\mathbf{u} - \tilde{\mathbf{B}}\tilde{\boldsymbol{z}} - \tilde{\boldsymbol{b}}q),$
 $q^2 = \mathbf{r}^T \mathbf{r} - 2\mathbf{r}^T \tilde{\boldsymbol{z}} + \tilde{\boldsymbol{z}}^T \tilde{\boldsymbol{z}}.$ (37)

Using the Schur-complement theorem [24], the inequality constraint of (37) can be expressed as

$$\begin{bmatrix} \sigma_n^2 \mathbf{D} \mathbf{D}^T + \sigma_e^2 \mathbf{C} \mathbf{C}^T & (\mathbf{u} - \tilde{\mathbf{B}} \tilde{\mathbf{z}} - \tilde{\mathbf{b}} q) \\ (\mathbf{u} - \tilde{\mathbf{B}} \tilde{\mathbf{z}} - \tilde{\mathbf{b}} q)^T & \gamma \end{bmatrix} \ge 0.$$
(38)

Defining $\overline{z} = \tilde{z}^T \tilde{z}$ and using the relaxation $\overline{z} \ge \tilde{z}^T \tilde{z}$, the optimization problem (37) can be expressed as

$$\begin{split} & \underset{\left[\tilde{\boldsymbol{z}}, q, \gamma, \bar{\boldsymbol{z}}\right]}{\min \gamma} \\ & \text{s.t.} \begin{bmatrix} \sigma_n^2 \mathbf{D} \mathbf{D}^T + \sigma_e^2 \mathbf{C} \mathbf{C}^T & (\mathbf{u} - \tilde{\mathbf{B}} \tilde{\boldsymbol{z}} - \tilde{\mathbf{b}} q) \\ (\mathbf{u} - \tilde{\mathbf{B}} \tilde{\boldsymbol{z}} - \tilde{\mathbf{b}} q)^T & \gamma \end{bmatrix} \geqslant 0 \\ & q^2 = \mathbf{r}^T \mathbf{r} - 2 \mathbf{r}^T \tilde{\boldsymbol{z}} + \overline{\boldsymbol{z}}, \\ & \begin{bmatrix} \mathbf{I}_n & \tilde{\boldsymbol{z}} \\ \tilde{\boldsymbol{z}}^T & \overline{\boldsymbol{z}} \end{bmatrix} \geqslant 0. \end{split}$$
(39)

For a given q, the optimization problem (39) is convex. The joint optimization is then solved in conjunction with the bisection search over q. The algorithm (Algorithm 1), as shown for the case without position errors, can then be applied to solve (39).

When the assumed receiver position is subject to errors, the CRLB can be expressed as (see Appendix A.2)

$$C\tilde{R}B = \operatorname{tr}((\mathbf{F}_{\mathbf{p}} - \mathbf{F}_{\mathbf{p}\tilde{\mathbf{r}}} \mathbf{F}_{\mathbf{\tilde{r}}}^{-1} \mathbf{F}_{\mathbf{p}\tilde{\mathbf{r}}}^{T})^{-1})$$
(40)

where $\mathbf{F}_{\mathbf{p}} = \mathbf{F}$,

$$\begin{aligned} \mathbf{F}_{\mathbf{p}\tilde{\mathbf{r}}} &= \frac{1}{\sigma_{n}^{2}} \frac{\partial \tilde{\mathbf{s}}^{T}}{\partial \mathbf{p}} \mathbf{E}^{T} \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial \tilde{\mathbf{r}}^{T}}, \\ \mathbf{F}_{\tilde{\mathbf{r}}} &= \frac{1}{\sigma_{n}^{2}} \frac{\partial \tilde{\mathbf{s}}^{T}}{\partial \tilde{\mathbf{r}}} \mathbf{E}^{T} \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial \tilde{\mathbf{r}}^{T}}, \\ \frac{\partial \tilde{\mathbf{s}}^{T}}{\partial \tilde{\mathbf{r}}} &= \left[\frac{\tilde{\mathbf{r}} - \mathbf{p}}{\|\tilde{\mathbf{r}} - \mathbf{p}\|}, \mathbf{0}_{1 \times n}, ..., \mathbf{0}_{1 \times n} \right]. \end{aligned}$$
(41)

$$\begin{bmatrix} (\tau_1 - q)(\tau_M - q)\mathbf{w}_1\mathbf{w}_M \\ (\tilde{\tau}_2^r - q)(\tilde{\tau}_M^r - q)\mathbf{\tilde{w}}_2^T\mathbf{\tilde{w}}_M \\ \vdots \\ (\tilde{\tau}_M^r - q)^2\mathbf{\tilde{w}}_M^T\mathbf{\tilde{w}}_M \end{bmatrix} .$$

$$(34)$$

4. Complexity analysis

We present the computational complexity of the proposed optimization algorithms using the approach in [25]. For a given *q*, the number of iterations required for solving (19) is upper bounded by $\tilde{\mathcal{O}}((n+1)^{1/2})$, whereas the work load per iteration is upper bounded by $\tilde{O}((n^2+n)^2(n+1)^2)$. The bisection search w.r.t. *q* requires $\overline{L} = \log_2((q_u - q_l)/\epsilon)$ iterations. This means that the overall complexity for the case without position errors is approximately $\tilde{O}(n^{6.5}\overline{L})$. It is interesting to note that the complexity of Algorithm 1 does

Table 1Comparison of complexity between different methods.

Method	Туре	Complexity $(n < M)$
Proposed SDP Proposed SDP	Without errors, problem (19) Without errors [9] With errors, problem (39) With errors [9]	$ \begin{split} \tilde{\mathcal{O}}(n^{6.5}\overline{L}) \\ \tilde{\mathcal{O}}(M^{6.5}) + \tilde{\mathcal{O}}(\epsilon^{-2}) \\ \tilde{\mathcal{O}}(M^{2.5}n^{2}\overline{L}) \\ \tilde{\mathcal{O}}(M^{6.5}) + \tilde{\mathcal{O}}(\epsilon^{-2}) \end{split} $

not depend on *M*. In a similar manner, for a given *q*, we can show that the complexity of (39) in terms of number of iterations is $\tilde{\mathcal{O}}((n+M+2)^{1/2})$, whereas the complexity per iteration is $\tilde{\mathcal{O}}((n+2)^2((n+1)^2+(M+1)^2))$. This means that the total complexity of (39) is approximately $\tilde{\mathcal{O}}((n+M)^{0.5}n^2)$ $(n^2 + M^2)$). For the case without position errors, the SDP approach (before local optimization) of [9] requires $\tilde{O}((n+$ $(M+3)^{1/2}$) iterations, where the complexity per-iteration is given by $\tilde{\mathcal{O}}(((M+1)^2+M+n+2)^2((M+2)^2+(n+1)^2))$. For a gradient-based local optimization, such as steepest-descent method, $\tilde{\mathcal{O}}(\epsilon^{-2})$ iterations are required to keep the norm of the gradient below ϵ [26]. Thus, the total complexity is given by $\tilde{\mathcal{O}}((n+M)^{0.5}(M^2+M+n)^2(M^2+n^2))$ plus $\tilde{\mathcal{O}}(\epsilon^{-2})$. On the other hand, for the case with position errors, the SDP approach (before local optimization) in [9] requires $\tilde{O}((n+1+$ $2(M+2)^{1/2}$ iterations. The corresponding computational complexity of each iteration is given by $\tilde{\mathcal{O}}(((M+1)^2 + M +$ $(n+4)^{2}(2(M+2)^{2}+(n+1)^{2}))$, which results in a total complexity of $\tilde{\mathcal{O}}((n+2M)^{0.5}(M^2+M+n)^2 (2M^2+n^2)) + \tilde{\mathcal{O}}(\epsilon^{-2})$. Note that in practice $n \ll M$. For this case, the total complexity between the proposed and SDP methods is compared in Table 1.

It can be observed from this table that, as long as $\overline{L} \leq (M/n)^{6.5}$ for the case without errors and $\overline{L} \leq (M^2/n)^2$ for the case with errors, the complexity of the proposed method does not exceed that of the SDP.

5. Numerical results

Computer simulations are conducted to demonstrate the effectiveness of the proposed method. The stationary target and receiver are located at positions $\mathbf{p} = [600, 550]^T$ meters and $\mathbf{r} = [-200, 10]$ meters, respectively. The illuminators are located at the following positions:

[800	900	1000	1100	1100	1100	1100	meters.
200	200	200	200	300	400	500	

A two-dimensional coordinate system for the locations of the target, illuminators and receiver is shown in Fig. 2.

The CVX toolbox [27] is used to solve the convex optimization problems (19) and (39). These optimization problems are solved within a framework of bisection algorithm outlined in Algorithm 1. We run Algorithm 1 and corresponding algorithm for (39) by taking $q_1 = 2$ m, $q_u = 1000$ m and e = 1 m. Note that smaller values of e can be taken for improving convergence accuracy, whereas larger values of q_u can be taken if we do not have even a coarse knowledge of the target-receiver range. Both settings in general result in higher computational complexity, since the bisection search requires more iterations. We compare the proposed method with both the SDP method

Fig. 2. Scene of the simulations.

that employs local optimization [9] and the LLS method. Notice that the SDP method [9] without local optimization gives very poor results in our simulation scenarios, and thus, only the results after local optimization are shown. As suggested in [9], the penalty parameter for this method is varied between 10^{-3} and 10^{-7} . The solution of the LLS method at a given estimate \mathbf{p}_0 is given by

$$\mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T (\boldsymbol{\tau}^{\mathrm{mo}} - \mathbf{h}), \tag{42}$$

where

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1}^{T} \triangleq \frac{(\mathbf{p}_{0} - \mathbf{t}_{1})^{T}}{\|\mathbf{p}_{0} - \mathbf{t}_{1}\|} + \frac{(\mathbf{p}_{0} - \tilde{\mathbf{r}})^{T}}{\|\mathbf{p}_{0} - \mathbf{r}\|} \\ \vdots \\ \mathbf{a}_{M}^{T} \triangleq \frac{(\mathbf{p}_{0} - \mathbf{t}_{M})^{T}}{\|\mathbf{p}_{0} - \mathbf{t}_{M}\|} + \frac{(\mathbf{p}_{0} - \tilde{\mathbf{r}})^{T}}{\|\mathbf{p}_{0} - \mathbf{r}\|} \end{bmatrix},$$

$$\mathbf{h} = \begin{bmatrix} \|\mathbf{p}_{0} - \mathbf{t}_{1}\| + \|\mathbf{p}_{0} - \tilde{\mathbf{r}}\| - \|\mathbf{t}_{1} - \tilde{\mathbf{r}}\| + \mathbf{p}_{0}^{T}\mathbf{a}_{1} \\ \vdots \\ \|\mathbf{p}_{0} - \mathbf{t}_{M}\| + \|\mathbf{p}_{0} - \tilde{\mathbf{r}}\| - \|\mathbf{t}_{M} - \tilde{\mathbf{r}}\| + \mathbf{p}_{0}^{T}\mathbf{a}_{M} \end{bmatrix},$$

$$\mathbf{\tau}^{\text{mo}} = [\tau_{1}, ..., \tau_{M}]^{T} \quad \text{or} \ [\tau_{1}^{r}, ..., \tau_{M}^{r}]^{T}.$$
(43)

For the LLS method, we take an initial estimate as $\mathbf{p}_0 = [10, 10]^T \text{ m}$,⁴ determine \mathbf{p} using (42), and update \mathbf{p}_0 iteratively until $\|\mathbf{p} - \mathbf{p}_0\| \le 1$ m. We first consider the case in which the observed data set is contaminated by measurement noise, whereas the receiver position is perfectly known. The measurement noise follows a zero-mean Gaussian distribution with a variance of σ_n^2 . All results are obtained from N=200 independent realizations of noise and position error.

Fig. 3 shows the root mean-square error (RMSE) of the estimated target position as a function of σ_n . The RMSE is defined as

RMSE =
$$\sqrt{\frac{1}{N} \sum_{n=1}^{N} \|\hat{\mathbf{p}}^{(n)} - \mathbf{p}\|^2},$$
 (44)

where $\hat{\mathbf{p}}^{(n)}$ is the estimated target position for the *n*th simulation and **p** is the actual target position. The performance of the proposed method is compared with the SDP

⁴ We also tested the LLS method with other values of \mathbf{p}_0 but found that the performance does not improve with respect to other methods, especially at higher values of noise.

Fig. 3. RMSE performance versus noise variance (no position error).

Fig. 4. RMSE performance versus noise variance with uniformly distributed receiver position error d = 12 m.

method that refines its solution with local optimization. The RMSE performance of the LLS method is also shown in Fig. 3. It is observed from this figure that the proposed method outperforms both SDP and LLS methods and provides performance very close to the CRLB. For $\sigma_n \geq 38$ m, the performance of the LLS approach deviates much faster from CRLB than the other two methods.

In Fig. 4, the performance of the proposed robust method is depicted for the case where the receiver position is subject to a position error, the elements of which are independent and uniformly distributed between -d m and +d m. As in the case without position error, RMSE of the LLS method starts to rise rapidly for $\sigma_n \ge 38$ m, whereas that of the proposed method and SDP (with local optimization) remain stable. It can be observed from Fig. 4 that the proposed method and overall performance very close to the CRLB. It is important to emphasize that the results for SDP method without local optimization are not shown since such approach fails to produce reasonable

results for both the cases with and without the receiver position error.

6. Conclusions

We considered the problem of localizing a target using time-of-arrival information measured at a receiver from the signals of multiple illuminators in a multistatic passive radar system. The localization problems are formulated using an approximate maximum likelihood estimate of the target location. The resulting non-convex problems are reformulated as convex problems using the semi-definite relaxation approach and solved in a framework of bisection algorithm. The optimization problems are examined for the cases when only measurement errors are present and when both the measurement and receiver position errors are present. Simulation results verify the superior performance of the proposed method over the semidefinite programming method based on exact maximum likelihood estimate of the target location.

Acknowledgments

The work of B. K. Chalise, Y. D. Zhang, and M. G. Amin was supported in part by a subcontract with Dynetics, Inc. for research sponsored by the Air Force Research Laboratory (AFRL) under Contract FA8650-08-D-1303, and by a subcontract with Defense Engineering Corporation for research sponsored by the AFRL under Contract FA8650-12-D-1376.

Appendix A

A.1. Derivation of CRLB when receiver position is perfectly known

The log-likelihood function can be expressed as

$$L(\mathbf{p}) = -\frac{1}{2\sigma_{n}^{2}} \sum_{i=1}^{M} (\tilde{\tau}_{i} - (q+s_{i}))^{2}, s_{i} \triangleq \|\mathbf{t}_{i} - \mathbf{p}\|, \forall i,$$

$$(45)$$

$$L(\mathbf{p}) = -\frac{1}{2\sigma_n^2} \{ \|\tilde{\boldsymbol{\tau}}\|^2 - 2\overline{\boldsymbol{\tau}}^T \tilde{\mathbf{s}} + \tilde{\mathbf{s}}^T \mathbf{E}^T \mathbf{E} \tilde{\mathbf{s}} \},$$
(46)

where

$$\tilde{\boldsymbol{\tau}} = [\tilde{\boldsymbol{\tau}}_1, ..., \tilde{\boldsymbol{\tau}}_M]^T, \overline{\boldsymbol{\tau}}^T = \left[\sum_i \tilde{\boldsymbol{\tau}}_i, \tilde{\boldsymbol{\tau}}^T\right], \\ \tilde{\boldsymbol{s}} = [q, s_1, ..., s_M]^T, \mathbf{E} = [\mathbf{1}_M, \mathbf{I}_M].$$
(47)

The Fisher information matrix is given by

$$\mathbf{F} = -\begin{bmatrix} E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{1}^{2}}\right\} & E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{1}\partial p_{2}}\right\} & \dots & E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{1}\partial p_{n}}\right\} \\ E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{2}\partial p_{1}}\right\} & E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{2}^{2}}\right\} & \dots & E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{2}\partial p_{n}}\right\} \\ \vdots & \vdots & \vdots & \vdots \\ E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{n}\partial p_{1}}\right\} & E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{n}\partial p_{2}}\right\} & \dots & E\left\{\frac{\partial^{2}L(\mathbf{p})}{\partial p_{n}^{2}}\right\} \end{bmatrix},$$
(48)

where p_l denotes the *l*th element of **p**. Since

$$\frac{\partial L(\mathbf{p})}{\partial p_l} = -\frac{1}{\sigma_n^2} \left\{ -\overline{\tau}^T \frac{\partial \tilde{\mathbf{s}}}{\partial p_l} + \tilde{\mathbf{s}}^T \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial p_l} \right\},\tag{49}$$

we have

$$\frac{\partial^2 L(\mathbf{p})}{\partial p_l^2} = -\frac{1}{\sigma_n^2} \left\{ \left(\frac{\partial^2 \tilde{\mathbf{s}}}{\partial p_l^2} \right)^T \left(\mathbf{E}^T \mathbf{E} \tilde{\mathbf{s}} - \overline{\boldsymbol{\tau}} \right) + \left(\frac{\partial \tilde{\mathbf{s}}}{\partial p_l} \right)^T \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial p_l} \right\}, \\ \frac{\partial^2 L(\mathbf{p})}{\partial p_j \partial p_l} = -\frac{1}{\sigma_n^2} \left\{ \left(\frac{\partial^2 \tilde{\mathbf{s}}}{\partial p_j \partial p_l} \right)^T \left(\mathbf{E}^T \mathbf{E} \tilde{\mathbf{s}} - \overline{\boldsymbol{\tau}} \right) + \left(\frac{\partial \tilde{\mathbf{s}}}{\partial p_j} \right)^T \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial p_l} \right\}.$$
(50)

Notice that it can be readily shown that $E\{\mathbf{E}^T\mathbf{E}\tilde{\mathbf{s}}-\overline{\boldsymbol{\tau}}\}=0$. Thus, we get

$$E\left\{\frac{\partial^2 L(\mathbf{p})}{\partial p_l^2}\right\} = -\frac{1}{\sigma_n^2} \left(\frac{\partial \tilde{\mathbf{s}}}{\partial p_l}\right)^T \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial p_l}, \\
 E\left\{\frac{\partial^2 L(\mathbf{p})}{\partial p_j \partial p_l}\right\} = -\frac{1}{\sigma_n^2} \left(\frac{\partial \tilde{\mathbf{s}}}{\partial p_j}\right)^T \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial p_l}, \tag{51}$$

where

$$\frac{\partial \tilde{\mathbf{s}}}{\partial p_l} = \left[\frac{\partial q}{\partial p_l}, \frac{\partial s_1}{\partial p_l}, \dots, \frac{\partial s_M}{\partial p_l}\right]^T$$
$$= \left[\frac{p_l - r_l}{\|\mathbf{p} - \mathbf{r}\|}, \frac{t_{1,l} - p_l}{\|\mathbf{p} - \mathbf{t}_1\|}, \dots, \frac{t_{M,l} - p_l}{\|\mathbf{p} - \mathbf{t}_M\|}\right]^T.$$
(52)

Note that $t_{i,l}$ is the *l*th element of \mathbf{t}_i . Substituting (52) and (51) into (48), **F** is obtained. This completes the derivation of the CRLB when there are no errors in receiver position.

A.2. Derivation of CRLB when receiver position is imperfectly known

When receiver position is erroneous, let $\boldsymbol{\beta} = [\mathbf{p}^T, \tilde{\mathbf{r}}^T]^T$ denote the estimated parameter. Assume that the TDOA and receiver position measurements are independent. The corresponding log-likelihood function can be expressed as

$$L(\boldsymbol{\beta}) = -\left\{\frac{1}{2\sigma_{n}^{2}}\left[\|\tilde{\boldsymbol{\tau}}\|^{2} - 2\overline{\boldsymbol{\tau}}^{T}\tilde{\boldsymbol{s}} + \tilde{\boldsymbol{s}}^{T}\boldsymbol{E}^{T}\boldsymbol{E}\tilde{\boldsymbol{s}}\right] + \frac{1}{2\sigma_{e}^{2}}\|\boldsymbol{r} - \tilde{\boldsymbol{r}}\|^{2}\right\}.$$
 (53)

The Fisher information matrix is given by

$$\mathbf{F}_{\boldsymbol{\beta}} = \begin{bmatrix} \mathbf{F}_{\mathbf{p}} & \mathbf{F}_{\mathbf{p}\tilde{\mathbf{r}}}^T \\ \mathbf{F}_{\mathbf{p}\tilde{\mathbf{r}}} & \mathbf{F}_{\tilde{\mathbf{r}}} \end{bmatrix},\tag{54}$$

where

$$\begin{split} \mathbf{F}_{\mathbf{p}} &= -\mathbf{E} \left\{ \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \mathbf{p} \partial \mathbf{p}^T} \right\}, \\ \mathbf{F}_{\mathbf{p}\tilde{\mathbf{r}}} &= -\mathbf{E} \left\{ \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \mathbf{p} \partial \tilde{\mathbf{r}}^T} \right\}, \\ \mathbf{F}_{\tilde{\mathbf{r}}} &= -\mathbf{E} \left\{ \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \tilde{\mathbf{r}} \partial \tilde{\mathbf{r}}^T} \right\}. \end{split}$$
(55)

It is clear from Appendix A.1 that $\mathbf{F}_{\mathbf{p}} = \mathbf{F} = (1/\sigma_n^2)(\partial \tilde{\mathbf{s}}^T / \partial \mathbf{p})$ $\mathbf{E}^T \mathbf{E} \partial \tilde{\mathbf{s}} / \partial \mathbf{p}^T$. On the other hand, differentiation of $L(\boldsymbol{\beta})$ w.r.t. to $\tilde{\mathbf{r}}$ gives

$$\frac{\partial L(\boldsymbol{\beta})}{\partial \tilde{\mathbf{r}}^{T}} = -\left[\frac{1}{\sigma_{n}^{2}}\left(-\overline{\boldsymbol{\tau}}^{T}\frac{\partial \tilde{\mathbf{s}}}{\partial \tilde{\mathbf{r}}^{T}} + \tilde{\mathbf{s}}^{T}\mathbf{E}^{T}\mathbf{E}\frac{\partial \tilde{\mathbf{s}}}{\partial \tilde{\mathbf{r}}^{T}}\right) + \frac{1}{\sigma_{e}^{2}}(\tilde{\mathbf{r}}-\mathbf{r})^{T}\right].$$
 (56)

It follows that the derivative of $\partial L(\boldsymbol{\beta}) / \partial \tilde{\mathbf{r}}^T$ with respect to **p** is given by

$$\frac{\partial^2 L(\boldsymbol{\beta})}{\partial \boldsymbol{p} \partial \tilde{\boldsymbol{r}}^T} = -\frac{1}{\sigma_n^2} \left[\left(\tilde{\boldsymbol{s}}^T \boldsymbol{E} \boldsymbol{E}^T - \overline{\boldsymbol{\tau}}^T \right) \frac{\partial^2 \tilde{\boldsymbol{s}}}{\partial \boldsymbol{p} \partial \tilde{\boldsymbol{r}}^T} + \frac{\partial \tilde{\boldsymbol{s}}^T}{\partial \boldsymbol{p}} \boldsymbol{E}^T \boldsymbol{E} \frac{\partial \tilde{\boldsymbol{s}}}{\partial \tilde{\boldsymbol{r}}^T} \right].$$
(57)

Since $E{\{\tilde{\mathbf{s}}^T \mathbf{E} \mathbf{E}^T - \overline{\tau}^T\}} = 0$, it is clear that

$$\mathbf{F}_{\mathbf{p}\tilde{\mathbf{r}}} = -\mathbf{E} \left\{ \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \boldsymbol{p} \partial \tilde{\mathbf{r}}^T} \right\} = \frac{1}{\sigma_n^2} \frac{\partial \tilde{\mathbf{s}}^T}{\partial \boldsymbol{p}} \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial \tilde{\mathbf{r}}^T},$$
(58)

where $n \times (M+1)$ matrix $\partial \tilde{\mathbf{s}}^T / \partial \tilde{\mathbf{r}}$ is given by

$$\frac{\partial \tilde{\mathbf{s}}^{T}}{\partial \tilde{\mathbf{r}}} = \left[\frac{\mathbf{r} - \mathbf{p}}{\|\,\mathbf{r} - \mathbf{p}\,\|}, \mathbf{0}_{n \times 1}, \dots, \mathbf{0}_{n \times 1}\right].$$
(59)

Moreover, the derivative of $\partial L(\beta) / \partial \tilde{\mathbf{r}}^T$ with respect to $\tilde{\mathbf{r}}$ is given by

$$\frac{\partial^2 L(\boldsymbol{\beta})}{\partial \tilde{\boldsymbol{r}} \partial \tilde{\boldsymbol{r}}^T} = -\left\{ \frac{1}{\sigma_n^2} \left[\left(\tilde{\boldsymbol{s}}^T \mathbf{E} \mathbf{E}^T - \overline{\boldsymbol{\tau}}^T \right) \frac{\partial^2 \tilde{\boldsymbol{s}}}{\partial \tilde{\boldsymbol{r}} \partial \tilde{\boldsymbol{r}}^T} + \frac{\partial \tilde{\boldsymbol{s}}^T}{\partial \tilde{\boldsymbol{r}}} \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\boldsymbol{s}}}{\partial \tilde{\boldsymbol{r}}^T} \right] + \frac{1}{\sigma_n^2} \frac{\partial \tilde{\boldsymbol{r}}^T}{\partial \tilde{\boldsymbol{r}}} \right\}$$
(60)

which means that

$$\mathbf{F}_{\tilde{\mathbf{r}}} = -\mathbf{E} \left\{ \frac{\partial^2 L(\boldsymbol{\beta})}{\partial \tilde{\mathbf{r}} \partial \tilde{\mathbf{r}}^T} \right\} = \frac{1}{\sigma_n^2} \frac{\partial \tilde{\mathbf{s}}^T}{\partial \tilde{\mathbf{r}}} \mathbf{E}^T \mathbf{E} \frac{\partial \tilde{\mathbf{s}}}{\partial \tilde{\mathbf{r}}^T} + \frac{1}{\sigma_e^2} \mathbf{I}_n.$$
(61)

The derivation of CRLB for the case with receiver position error is then complete.

References

- H.D. Griffiths, N.R.W. Long, Television-based bistatic radar, Proceedings of the IEE – Radar Sonar Navigation, vol. 133 (7), December 1986, pp. 649–657.
- [2] V. Koch, R. Westphal, New approach to a multistatic passive radar sensor for air/space defense, IEEE Aerosp. Electron. Syst. Mag. 10 (November (11)) (1995) 24–32.
- [3] H.D. Griffiths, C.J. Baker, Passive coherent location radar systems. Part 1: performance prediction, Proceedings of the IEE – Radar Sonar Navigation, vol. 152 (June 3), 2005, pp. 153–159.
- [4] C.J. Baker, H.D. Griffiths, I. Papoutsis, Passive coherent location radar systems. Part 2: waveform properties, Proceedings of the IEE-Radar Sonar Navigation vol. 152 (June 3), 2005, pp. 160–168.
- [5] Y. Huang, J. Benesty, G.W. Elko, R.M. Mersereati, Real-time passive source localization: a practical linear correction least-squares approach, IEEE Trans. Speech Audio Proc. 9 (November (8)) (2001) 943–956.
- [6] K.W. Cheung, W.-K. Ma, H.C. So, Accurate approximation algorithm for TOA-based maximum likelihood mobile location using semidefinite programming, in: Proceedings of the IEEE ICASSP, Montreal, Canada, May 2004.
- [7] D. Li, Y.H. Hu, Least square solutions of energy based acoustic source localization problems, in: Proceedings of the International Conference on Parallel Proceedings, 2004, pp. 443–446.
- [8] Y. Zhang, M.G. Amin, A. Fauzia, Localization of inanimate moving targets using dual-frequency synthetic aperture radar and timefrequency analysis, in: Proceedings of the IEEE International Geoscience Remote Sensing Symposium, Boston, MA, July 2008, pp. 33–36.
- [9] K. Yang, G. Wang, Z.-Q. Luo, Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals, IEEE Trans. Sig. Proc. 57 (July (7)) (2009) 2775–2784.
- [10] E. Xu, Z. Ding, S. Dasgupta, Source localization in wireless sensor networks from signal time-of-arrival measurements, IEEE Trans. Sig. Proc. 59 (June 6) (2011) 2887–2897.
- [11] Y. Zhang, K. Yang, M.G. Amin, Robust target localization in moving radar platform through semi-definite relaxation, in: Proceedings of the IEEE ICASSP, Taipei, Taiwan, April 2009, pp. 2209–2212.
- [12] K.C. Ho, X. Lu, L. Kovavisaruch, An accurate algebraic solution for moving source location using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution, IEEE Trans. Sig. Proc. 55 (February (2)) (2007) 684–696.
- [13] A. Beck, P. Stoica, J. Li, Exact and approximate solutions of source localization problems, IEEE Trans. Sig. Proc. 56 (May (5)) (2008) 1770–1778.
- [14] G. Wang, Y. Li, N. Ansari, A semidefinite relaxation method for source localization using TDOA and FDOA measurements, IEEE Trans. Veh. Tech. 62 (February (2)) (2013) 853–862.

- [15] X. Yin, T. Pedersen, P. Blattnig, A. Jaquier, B.H. Fleury, A single-stage target tracking algorithm for multistatic DVB-T passive radar systems, in: Proceedings of the IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop Marco Island, FL, 2009, pp. 518–523.
- [16] U. Nickel, "System considerations for passive radar with GSM illuminators, in: Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, 2010, pp. 189–195.
- [17] J.J. Zhang, A. Papandreou-Suppappola, MIMO radar with frequency diversity, in: Proceedings of the International Conference on Waveform Diversity and Design, Kissimmee, FL, February 2009, pp. 208–212.
- [18] N.H. Lehmann, E. Fishler, A.M. Haimovich, R.S. Blum, L.J. Cimini, R.A. Valenzuela, Evaluation of transmit diversity in MIMO-radar direction finding, IEEE Trans. Signal Proc. 55 (May (5)) (2007) 2215–2225.
- [19] E. Fishler, A. Haimovich, R.S. Blum, LJ. Cimini, D. Chizhik, R.A. Valenzuela, Spatial diversity in radar-models and detection performance, IEEE Trans. Signal Proc. 54 (March (3)) (2006) 823–838.
- [20] C. Berger, B. Demissie, J. Heckenbach, P. Willett, S. Zhou, Signal processing for passive radar using OFDM waveforms, IEEE J. Sel. Topics Signal Proc. 4 (February (1)) (2010) 226–238.

- [21] Y.D. Zhang, B. Himed, Moving target parameter estimation and SFN ghost rejection in multistatic passive radar, in: Proceedings of the IEEE Radar Conference, Ottawa, Canada, April 2013.
- [22] G.R. Curry, Radar System Performance Modeling, Artech House, Boston, MA, USA, 2004.
- [23] Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems: from its practical deployments and scope of applicability to key theoretical results, IEEE Sig. Proc. Mag. 27 (May (3)) (2010) 20–34.
- [24] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
- [25] M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone programming, Linear Algebra Appl. 284 (1998) 193–228.
- [26] C. Cartis, N.I.M. Gould, Ph.L. Toint, On the complexity of steepest descent, Newton's and regularized Newton's methods for non-convex unconstrained optimization problems, SIAM J. Optim. 20 (6) (2009) 2833–2852.
- [27] M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, (http://stanford.edu/~boyd/cvx).