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We propose efficient target localization methods for a passive radar system using time-of-
arrival (TOA) information of the signals received from multiple illuminators, where the
position of the receiver is subject to random errors. Since the maximum likelihood (ML)
formulation of this target localization problem is a non-convex optimization problem, semi-
definite relaxation (SDR)-based optimization methods in general do not provide satisfactory
performance. As a result, approximated ML optimization problems are proposed and solved
with SDR plus bisection methods. For the case without position error, it is shown that
the relaxation guarantees a rank-one solution. The optimization problem for the case with
position error involves only a relaxation of a scalar quadratic term. Simulation results show
that the proposed algorithms outperform existing methods and provide root mean-square
error performance very close to the Cramer–Rao lower bound.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, multi-static passive radar (MPR) systems,
which utilize multiple broadcast signals as sources of oppor-
tunity, have attracted significant interests due to their low
cost, covertness, and availability of rich illuminator sources
[1–4]. Compared to conventional active radar systems which
typically operate in a monostatic mode and emit stronger
signals with a wide signal bandwidth, MPR systems use
broadcast signals which in general are very weak and have
an extremely narrow bandwidth. These features make it
difficult to exploit a MPR system for accurate target position
estimation. In addition, MPR receivers may often be imple-
mented on aerial or ground moving vehicles. In this case, the
radar platform may only have inaccurate knowledge about
its own instantaneous position. This uncertainty is caused by
Zhang).
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the accuracy limitation of the positioning system as well as
multipath propagations.

Target localization is an important task that has received
extensive attention in various applications, such as wireless
communications, sensor networks, urban canyon, and through-
the-wall radar systems [5–8]. Specifically, multi-lateration tech-
niques utilize the range information observed at multiple
positions, which are distributed over a region, to uniquely
localize a target. Depending on the applications, range
information can be obtained using time-of-arrival (TOA),
time-delay-of-arrival (TDOA), and received signal strength
indicator (RSSI). On the other hand, the observation posi-
tions may be achieved using fixed receivers, or synthesized
using a single moving platform. In the latter case, the
receiver positions are subject to inaccuracy.

In all these applications, maximum likelihood (ML) esti-
mation is considered as a powerful method of estimating the
targets' location, which in general is a non-convex optimiza-
tion problem. When the measurement noise is sufficiently
small, the ML estimation problem may be solved using
linearized least squares (LLS) estimation methods [5,7]. The
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2 Algorithms for multiple and moving targets will be reported
elsewhere.
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key steps of the LLS estimation methods are linearizing the
objective function using Taylor's series expansion at some
initial guess of target position and updating it with the least
squares (LS) solution in an iterative approach. Like in many
iterative optimization techniques for non-convex problems,
however, the accuracy of the LLS estimator highly depends on
the initial guess of the target's location. This has motivated
researchers to consider more efficient designs. One such
approach is the semi-definite relaxation (SDR) technique
[6,9–11], which converts a non-convex optimization problem
into a convex one by relaxing certain rank constraints. It is
worth noting that SDR-based approaches outperform compu-
tationally efficient two-step weighted least squares method
proposed in [12], especially when the noise level is high and
the sensor positions are not perfectly known.

The accuracy (or tightness) of SDR techniques, however,
is problem specific, as shown in [13] for the TOA based
optimization problems. For example, in optimization
problems based on TDOA [9] and TOA [10], where an
unknown time instant of the source's signal transmission
is also optimized, SDR relaxations may not be tight and,
thus, the penalty function approach is introduced. This is
true also for robust designs where sensor positions are
subject to certain random errors [9,10]. In this context,
neglecting the second-order noise terms [12], the authors
in [14] proposed to use an approximate ML function in the
SDR-based source localization problem.

In this paper, we pursue approximated ML estimation
approach in developing efficient target localization algo-
rithms in a MPR system using TOA information of signals
received from multiple illuminators and the target. As
discussed above, the range resolution is poor because of
the narrow signal bandwidth and weak signal levels, and
the receiver position is subject to inaccurate knowledge of
its own position. Therefore, an optimization problem is
also formulated for the case where the receiver position is
subject to estimation error. The underlying optimization
problems are still non-convex, but can be reformulated
as convex problems using SDR and solved in conjunction
with the bisection method. When no position error is
present, the SDR provides a rank-one solution. With
position estimation error, the corresponding optimization
problem involves only a relaxation of a quadratic scalar
term.

The target localization problem and optimization techni-
que described in this paper differs from the existing literature
in a number of ways. In contrast to the optimization problems
in [6,13], where the objective function is solely a function of
monostatic range, the objective function in our case involves
bistatic range, which makes accurate target position estima-
tion much more challenging. Further, unlike [9,10], where
SDR of several variables and a penalty function approach are
employed, our approach involves SDR of only one variable,
though in conjunction with the bisection approach. For these
reasons, the proposed method outperforms methods in [9,10]
and does not require refinement through local optimization.
Moreover, although we employ ML approximation approach,
the effect of the approximation renders our optimization
problem to be different from [14] due to different system
models. As a result, a new optimization method that solves
relaxed SDR problem in conjunction with bisection method is
proposed for both cases where receiver position is perfectly
and imperfectly known.

The rest of the paper is organized as follows. The system
model of the MPR system is described in Section 2, whereas
the proposed optimization methods for target localization
are presented in Section 3.2. The computational complexity
of the proposed method is compared with the approach of
[9] in Section 4. Numerical results are provided in Section 5
and conclusions are drawn in Section 6.

Notations: Upper (lower) bold face letters will be used
for matrices (vectors); ð�ÞT , In, J � J , trð�Þ, A≽0, diagð�Þ
denote transpose, n�n identity matrix, Euclidean norm,
matrix trace operator, positive semi-definiteness of A, and
diagonal matrix, respectively.
2. System model

We consider a standard MPR system with M illuminators
of opportunity, which can be broadcast stations for digital-
video broadcasting – terrestrial (DVB-T) [15] or base stations
for global system for mobile communications (GSM) [16].
Because the deployment scenario of these broadcast and
base stations is publicly available, their numbers and loca-
tions are considered to be precisely known. A narrow-band
multi-frequency (NBMF) transmission is considered, where
the illuminators use well separated carrier frequencies f i;
i¼ 1;…;M, and the bandwidths of their transmitted wave-
forms are much smaller than f i; 8 i. The radar receiver
observes the direct signals from all M illuminators and the
reflected signal from a single target. The target is assumed to
be stationary.2 By virtue of NBMF transmission, separation of
the different signals based on carrier frequencies (or equiva-
lently illuminators) is feasible after demodulation and filter-
ing [17]. It is worthwhile to note that this feature is in
contrast to a multiple-input multiple-output (MIMO) radar
system where transmitters use a same carrier frequency but
coordinate to form orthogonal waveforms [18,19].

The TOA of the direct signal from the ith illuminator at
the receiver, where 1r irM, is given by

τd;i ¼
1
c
Jti� ~r J ; ð1Þ

where c is the speed of light, ti and ~r are column vectors of
length n that represent, respectively, the coordinates of the
ith illuminator and the receiver. Depending on applica-
tions, n is 2 for a two-dimensional coordinate system and 3
for a three-dimension coordinate system. Note that fti; 8 ig
are assumed to be stationary and precisely known. The
TOA of the target reflected signal corresponding to the ith
illuminator is given by

τb;i ¼
1
c
fJti�pJþ J ~r�pJg; ð2Þ

where p is the n� 1 vector representing the location
information of the target. Because the passive radar exploits
non-cooperative illuminators, it does not know the exact
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timing of the signal emission at each illuminator.3 Rather,
the radar receiver reconstructs the direct path signal with
enough accuracy by applying demodulation and forward
error correction technique [20]. The estimated direct path
is used to correlate the reflected signal from the targets
to estimate the TDOA between these two paths, given by
τb;i�τd;i [21]. As a result, the effective TDOA between τd;i and
τb;i can be estimated as

τ i ¼ τb;i�τd;iþni ¼
1
c

Jti�pJþ J ~r�pJ� Jti� ~r J
� �þni;

ð3Þ
where ni is the zero-mean Gaussian estimation error due to
measurement noise. The Gaussian distribution reasonably
models the measurement noise [22] and is commonly
assumed in TDOA/TOA measurements (e.g., [9,10,13]). For
notational simplicity, we denote τi ¼ cτ i and ~ni ¼ cni. In this
case, the ML estimate of the target location is expressed as

p̂ ¼ arg min
p

∑
M

i ¼ 1
½~τ i� Jti�pJ� J ~r�pJ �2; ð4Þ

where

~τ i ¼ τiþ Jti� ~r J : ð5Þ
Note that the knowledge of the true position of the receiver,
~r, may be inaccurate. Denote the estimated receiver position
by r. The relationship between ~r and r is expressed as

~r ¼ rþe; ð6Þ
where e is the random estimation error for the receiver
position.

3. Proposed optimization approaches

The unconstrained minimization problem (4) is non-
convex. Thus, it is difficult to obtain the global optimum
solution with a reasonable complexity. The SDR-based
optimization methods applied in [9,10] may not be tight
enough in general and, thus, may often fail to provide
performance sufficiently close to CRLB. In this section,
and motivated by [12], we propose an alternative approach
that approximates the ML target localization problem.
However, this approximate ML problem is shown to be
less sensitive to the SDR and perform better than the
methods that solve the exact ML problem.

3.1. Optimization without receiver position error

We first consider the case where the receiver position
is exactly known, i.e., ~r ¼ ri. Denote τi ¼ τoi þ ~ni, where τoi is
the noise-free observation. Then, from (3), we have

τoi ¼ Jti�pJþ Jr�pJ� Jti�rJ ð7Þ
or equivalently

~τoi � Jr�pJ ¼ Jti�pJ : ð8Þ
3 This is also one of the important features that differentiates the
passive radar system from MIMO radar systems where the transmitters
and receivers are synchronized [18,19], i.e., the time of signal transmis-
sion is known at the MIMO radar receiver.
Squaring both sides of (8) and substituting ~τoi ¼ ~τ i� ~ni into
(8), we obtain

~τ2i �2ð~τ i�qÞ ~niþ ~n2
i �2~τ iqþ‖r‖2�‖ti‖2�2ðr�tiÞTp¼ 0;

ð9Þ
where q¼ Jr�pJ . Neglecting the second-order terms
of the noise, ~n2

i , and stacking (9) for all i, we obtain the
following expression:

u�Bz�D ~n; ð10Þ

where

u¼ ½‖r‖2�‖t1‖2þ ~τ21;…; ‖r‖2�‖tM‖2þ ~τ2M �T ;

B¼ 2

ðr�t1ÞT ~τ1

ðr�t2ÞT ~τ2
⋮ ⋮

ðr�tMÞT ~τM

2
66664

3
77775;

D¼ 2 diagð~τ1�q; ~τ2�q;…; ~τM�qÞ;
z¼ ½pT ; q�T ;
~n ¼ ½ ~n1; ~n2;…; ~nM�T : ð11Þ

By virtue of the underlying NBMF transmission, which
exploits non-overlapping spectra, it can be readily
assumed that the entries of ~n are statistically independent.
We further assume that the entries of ~n are identically
distributed, so that ~n is a vector of zero-mean i.i.d.
Gaussian random variables with covariance matrix s2nIM .
We maintain that approaches developed in this paper can
be easily extended to correlated and non-identically dis-
tributed Gaussian noise. From (10), the noise vector can be
approximated as

~n �D�1ðu�BzÞ: ð12Þ

As a result, the ML target localization problem can be
approximated as the following minimization problem:

min
z

1
s2n

ðu�BzÞTD�1D�1 u�Bzð Þ

s:t: q9zðnþ1Þ ¼ Jr�pJ ; ð13Þ

where zðnþ1Þ stands for the (nþ1)th element of z. After
omitting the constant scaling factor 1=s2n, (13) can be
expressed as

min
z

∑
M

i ¼ 1

ðui�bT
i zÞ2

ð~τ i�qÞ2

s:t: q¼ Jr�pJ ; ð14Þ

where ui is the ith element of u and bT
i is the ith row of B.

We define p9 ~z ¼ ½zð1Þ;…; zðnÞ�T , ~b
T
i ¼ ½bið1Þ;…; biðnÞ� and

vi ¼ biðnþ1Þ, where biðk) is the kth element of bT
i . The

objective function (13) can be expressed as

f ob ¼ ∑
M

i ¼ 1

ui

~τ i�q
�

~b
T
i ~z

~τ i�q
� viq

~τ i�q

" #2
; ð15Þ

which, after some manipulations, can be expressed as

f ob ¼ ½ ~zT ;1�GðqÞ½ ~zT ;1�T ð16Þ
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Fig. 1. ~f obðqÞ versus q.
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where the ðnþ1Þ � ðnþ1Þ matrix GðqÞ is given by

G qð Þ ¼
∑
M

i ¼ 1

~b i
~b
T
i

ð~τ i�qÞ2
∑
M

i ¼ 1

~b iðviq�uiÞ
ð~τ i�qÞ2

∑
M

i ¼ 1

~b
T
i ðviq�uiÞ
ð~τ i�qÞ2

∑
M

i ¼ 1

ðviq�uiÞ2
ð~τ i�qÞ2

2
666664

3
777775: ð17Þ

Thus, the minimization problem (14) is given by

min
~z ;q

tr
~z
1

� �
½ ~zT ;1�GðqÞ

� �

s:t: q2 ¼ ‖r�p‖2⟷q2 ¼ tr
~z
1

� �
½ ~zT ;1� In �r

�rT rTr

� �� �
; ð18Þ

which is clearly a non-convex optimization problem. We
define ~Z ¼ ~z ~zT , which is relaxed as ~Z≽ ~z ~zT , i.e., ~Z� ~z ~zT is
positive semi-definite. This yields the following optimiza-
tion problem:

min
~z ; ~Z ;q

tr
~Z ~z
~zT 1

" #
GðqÞ

( )

s:t: q2 ¼ tr
~Z ~z
~zT 1

" #
In �r
�rT rTr

� �( )
;

1 ~zT

~z ~Z

" #
≽0: ð19Þ

For a given q, (19) is a convex optimization problem w.r.t. ~z
and ~Z. However, the joint optimization problem (w.r.t. q, ~z
and ~Z) is not convex. On the other hand, since q is a scalar
(also positive), it is still easy to find the global optimum
solution of (19) by using an exhaustive search over q, where
(19) is solved over a fine grid of q and ~z is selected for which
the objective function is minimum. To reduce the complexity
of solving the optimum value of q, we propose to employ a
line search (e.g., bisection search) over q for solving the
optimization problem (19). Since it is very difficult to
analytically prove that the bisection search guarantees the
global minimum for (19), we pursue a numerical approach.

Let ½ ~zn

j ;
~Z
n

j � be an optimal solution of (19) for a given q¼ qj,

where j¼ f1;…; Jg. Let ~f obðqÞ ¼ ff obð ~zn

j ;
~Z
n

j ; qjÞg
J

j ¼ 1
be the

resulting function w.r.t. fqjg. In the considered simulation
scenario (see Fig. 2 of Section 5) with perfectly known
receiver position and an arbitrary noise realization, it can

be observed from Fig. 1 that ~f obðqÞ is a unimodal function.
This suggests that the bisection approach accurately finds the
global minimum in (19).

Assume that the optimum q lies in the interval ½ql; qu�. It is
obvious in the underlying problem that ql ¼ 0. The algorithm
(Algorithm 1) for solving (19) is then provided below.
(1)
 Initialize ql, qu and set ϵ40.

(2)
 Solve (19) with q¼ ql and q¼ qu.

(3)
 If f obðqlÞo f obðquÞ, set qu ¼ ðqlþquÞ=2; otherwise set

ql ¼ ðqlþquÞ=2.

(4)
 Go to step 2 until jqu�qljrϵ.
Remark 1. Let ½ ~zn; ~Z
n

; qn� be an optimal solution of the
problem (19). Notice that the number of equality con-
straints is L¼1. According to the Shapiro–Barvinok–Pataki
(SBP) result [23], there exists an optimal solution ~Z
n

such
that rankð ~ZnÞðrankð ~ZnÞþ1Þr2L. Since L¼1 in (19) and
rankð ~ZnÞa0, we find that ~Z

n

is rank-one.

The CRLB for the case without receiver position error is
given by (see Appendix A.1)

CRB¼ trðF�1Þ; ð20Þ
where

F¼ 1
s2n

∂~sT

∂p
ETE

∂~s
∂pT ;

∂~sT

∂p
¼ r�p

Jr�pJ
;

t1�p
Jt1�pJ

;…;
tM�p

JtM�pJ

� �
;

~s ¼ ½q¼ Jr�pJ ; s1 ¼ Jt1�pJ ;…; sM ¼ JtM�pJ �T ;
E¼ ½1M ; IM �: ð21Þ
3.2. Optimization with receiver position error

In the presence of random position error (i.e., ~r ¼ rþe),
we can express the measured range difference for the
signal of ith illuminator as

τri ¼ Jti�pJþ J ðrþeÞ�pJ� J ðrþeÞ�ti Jþ ~ni: ð22Þ
We consider that e is small when compared to ðr�pÞ and
ðr�tiÞ; 8 i, i.e., JeJ{Jr�pJ ; Jr�ti J ; 8 i. Using Taylor's
series expansion, we get

J rþeð Þ�pJ ¼ Jr�pJþeT
r�p

Jr�pJ
þO JeJð Þ;

J rþeð Þ�ti J ¼ Jr�ti JþeT
r�ti

Jr�ti J
þO JeJð Þ; ð23Þ

where OðJeJ Þ stands for higher-order terms of JeJ . Sub-
stituting (23) into (22), we obtain

τri � Jti�pJþ Jr�pJ� Jr�ti JþeT
r�p

Jr�pJ
� r�ti

Jr�ti J

� �
þ ~ni:

ð24Þ
Define ~τri ¼ τri þ Jr�ti J , w¼ ðr�pÞ=Jr�pJ , wi ¼ ðr�tiÞ=
Jr�ti J and ~w i ¼w�wi. Then, (24) can be expressed as

ð~τri � ~niÞ� Jr�pJ�eT ~w i � Jti�pJ : ð25Þ
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Squaring both sides of (25) and after some derivations,
we get

ð~τri Þ2þ‖r‖2�‖ti‖2�2ðri�tÞTp�2~τri qþ ~n2
i þ2 ~nieT ~w i

þeT ~w i ~w ie� 2 ~nið~τri �qÞþ2ð~τri �qÞeT ~w i: ð26Þ
Neglecting the second order terms of noise and the cross-
order term between noise and position error, for i¼ 1;…;

M, (26) can be expressed in the vector form as

u�Bz�D ~nþCe; ð27Þ
where

C¼ 2

ð~τr1�qÞ ~wT
1

ð~τr2�qÞ ~wT
2

⋮
ð~τrM�qÞ ~wT

M

2
666664

3
777775: ð28Þ

Notice that (27) can be expressed as

D�1ðu�BzÞ � ~nþD�1Ce: ð29Þ
Assume that the position error e is Gaussian distributed
with zero-mean and covariance matrix Q . Since e and ~n
are independent, we obtain

Efð ~nþD�1CeÞð ~nþD�1CeÞT g ¼ s2nIMþD�1CQCT ðD�1ÞT :
ð30Þ

Particularly, under the assumption Q ¼ s2eIn, where s2e is
the variance of the elements of e, the ML localization
problem can be approximately expressed as

min
z

fðu�BzÞTD�1ðs2nIMþs2eD
�1CCTD�1Þ�1D�1ðu�BzÞg

s:t: q9zðnþ1Þ ¼ Jr�pJ : ð31Þ
The objective function of the optimization problem (31)
can be simplified to

f rob ¼ 1
4 ðu�BzÞT ðs2nDDT þs2eCC

T Þ�1 u�Bzð Þ; ð32Þ
where

DDT ¼ diagðð~τr1�qÞ2; ð~τr2�qÞ2;…; ð~τrM�qÞ2Þ; ð33Þ
and
CCT ¼

ð~τr1�qÞ2 ~wT
1 ~w1 ð~τ r1�qÞð~τr2�qÞ ~wT

1 ~w2 … ð~τr1�qÞð~τrM�qÞ ~wT
1 ~wM

ð~τr2�qÞð~τr1�qÞ ~wT
2 ~w1 ð~τr2�qÞ2 ~wT

2 ~w2 … ð~τr2�qÞð~τrM�qÞ ~wT
2 ~wM

⋮ ⋮ ⋮ ⋮
ð~τrM�qÞð~τr1�qÞ ~wT

M ~w1 ð~τ rM�qÞð~τr2�qÞ ~wT
M ~w2 … ð~τrM�qÞ2 ~wT

M ~wM

2
666664

3
777775: ð34Þ
Since wTw¼ 1 and wT
i wi ¼ 1; 8 i, we have

~wT
i ~w i ¼ 2 1� ðr�pÞT

q
wi

" #
; 8 i

~wT
i ~wk ¼ 1� ðr�pÞT

q
wiþwkð ÞþwT

i wk; 8 i; k; iak: ð35Þ

Introducing an auxiliary variable γ40 and defining
~B9B½1:M;1:n�; ~b9B½1:M;nþ1�;p9 ~z; ð36Þ
(31) can be expressed as

min
f ~z ;q;γg

γ

s:t: γZðu� ~B ~z� ~bqÞT ðs2nDDT þs2eCC
T Þ�1ðu� ~B ~z� ~bqÞ;

q2 ¼ rTr�2rT ~zþ ~zT ~z: ð37Þ
Using the Schur-complement theorem [24], the inequality
constraint of (37) can be expressed as

s2nDD
T þs2eCC

T ðu� ~B ~z� ~bqÞ
ðu� ~B ~z� ~bqÞT γ

" #
≽0: ð38Þ

Defining z ¼ ~zT ~z and using the relaxation zZ ~zT ~z, the
optimization problem (37) can be expressed as

min
f ~z ;q;γ;zg

γ

s:t:
s2nDD

T þs2eCC
T ðu� ~B ~z� ~bqÞ

ðu� ~B ~z� ~bqÞT γ

" #
≽0

q2 ¼ rTr�2rT ~zþz;
In ~z
~zT z

� �
≽0: ð39Þ

For a given q, the optimization problem (39) is convex. The
joint optimization is then solved in conjunction with the
bisection search over q. The algorithm (Algorithm 1), as
shown for the case without position errors, can then be
applied to solve (39).

When the assumed receiver position is subject to
errors, the CRLB can be expressed as (see Appendix A.2)

~CRB ¼ trððFp�Fp~rF
�1
~r FTp ~r Þ�1Þ ð40Þ

where Fp ¼ F,

Fp~r ¼
1
s2n

∂~sT

∂p
ETE

∂~s
∂~rT

;

F~r ¼
1
s2n

∂~sT

∂~r
ETE

∂~s
∂~rT

;

∂~sT

∂~r
¼ ~r�p

J ~r�pJ
;01�n;…;01�n

� �
: ð41Þ
4. Complexity analysis

We present the computational complexity of the pro-
posed optimization algorithms using the approach in [25].
For a given q, the number of iterations required for solving
(19) is upper bounded by ~Oððnþ1Þ1=2Þ, whereas the work
load per iteration is upper bounded by ~Oððn2þnÞ2ðnþ1Þ2Þ.
The bisection search w.r.t. q requires L ¼ log2ððqu�qlÞ=ϵÞ
iterations. This means that the overall complexity for the
case without position errors is approximately ~Oðn6:5LÞ. It is
interesting to note that the complexity of Algorithm 1 does



Table 1
Comparison of complexity between different methods.

Method Type Complexity (noM)

Proposed Without errors, problem (19) ~Oðn6:5LÞ
SDP Without errors [9] ~OðM6:5Þþ ~Oðϵ�2Þ
Proposed With errors, problem (39) ~OðM2:5n2LÞ
SDP With errors [9] ~OðM6:5Þþ ~Oðϵ�2Þ
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Fig. 2. Scene of the simulations.

4 We also tested the LLS method with other values of p0 but found
that the performance does not improve with respect to other methods,
especially at higher values of noise.
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not depend on M. In a similar manner, for a given q, we can
show that the complexity of (39) in terms of number of
iterations is ~OððnþMþ2Þ1=2Þ, whereas the complexity per
iteration is ~Oððnþ2Þ2ððnþ1Þ2þðMþ1Þ2ÞÞ. This means that
the total complexity of (39) is approximately ~OððnþMÞ0:5n2

ðn2þM2ÞÞ. For the case without position errors, the SDP
approach (before local optimization) of [9] requires ~Oððnþ
Mþ3Þ1=2Þ iterations, where the complexity per-iteration is
given by ~OðððMþ1Þ2þMþnþ2Þ2ððMþ2Þ2 þðnþ1Þ2ÞÞ. For a
gradient-based local optimization, such as steepest-descent
method, ~Oðϵ�2Þ iterations are required to keep the norm of
the gradient below ϵ [26]. Thus, the total complexity is given
by ~OððnþMÞ0:5ðM2þMþnÞ2ðM2þn2ÞÞ plus ~Oðϵ�2Þ. On
the other hand, for the case with position errors, the SDP
approach (before local optimization) in [9] requires ~Oððnþ1þ
2ðMþ2ÞÞ1=2Þ iterations. The corresponding computational
complexity of each iteration is given by ~OðððMþ1Þ2þMþ
nþ4Þ2ð2ðMþ2Þ2þðnþ1Þ2ÞÞ, which results in a total com-
plexity of ~Oððnþ2MÞ0:5ðM2þMþnÞ2 ð2M2þn2ÞÞþ ~Oðϵ�2Þ.
Note that in practice n{M. For this case, the total complexity
between the proposed and SDP methods is compared in
Table 1.

It can be observed from this table that, as long as
Lr ðM=nÞ6:5 for the case without errors and LrðM2=nÞ2
for the case with errors, the complexity of the proposed
method does not exceed that of the SDP.

5. Numerical results

Computer simulations are conducted to demonstrate
the effectiveness of the proposed method. The stationary
target and receiver are located at positions p¼ ½600;550�T
meters and r¼ ½�200;10� meters, respectively. The illu-
minators are located at the following positions:

800 900 1000 1100 1100 1100 1100
200 200 200 200 300 400 500

� �
meters:

A two-dimensional coordinate system for the locations of
the target, illuminators and receiver is shown in Fig. 2.

The CVX toolbox [27] is used to solve the convex
optimization problems (19) and (39). These optimization
problems are solved within a framework of bisection
algorithm outlined in Algorithm 1. We run Algorithm 1
and corresponding algorithm for (39) by taking ql ¼ 2 m,
qu ¼ 1000 m and ϵ¼ 1 m. Note that smaller values of ϵ can
be taken for improving convergence accuracy, whereas
larger values of qu can be taken if we do not have even a
coarse knowledge of the target-receiver range. Both set-
tings in general result in higher computational complexity,
since the bisection search requires more iterations. We
compare the proposed method with both the SDP method
that employs local optimization [9] and the LLS method.
Notice that the SDP method [9] without local optimization
gives very poor results in our simulation scenarios, and
thus, only the results after local optimization are shown.
As suggested in [9], the penalty parameter for this method
is varied between 10�3 and 10�7. The solution of the LLS
method at a given estimate p0 is given by

p¼ ðATAÞ�1AT ðτmo�hÞ; ð42Þ
where

A¼
aT19

ðp0 � t1ÞT
Jp0 � t1 J

þ ðp0 � ~rÞT
Jp0 � ~r J

⋮

aTM9 ðp0 � tM ÞT
Jp0 � tM J þ ðp0 � ~rÞT

Jp0 � ~r J

2
664

3
775;

h¼
Jp0�t1 Jþ Jp0� ~r J� Jt1� ~r JþpT

0a1
⋮

Jp0�tM Jþ Jp0� ~r J� JtM� ~r JþpT
0aM

2
64

3
75;

τmo ¼ ½τ1;…; τM�T or ½τr1;…; τrM �T : ð43Þ

For the LLS method, we take an initial estimate as
p0 ¼ ½10;10�T m,4 determine p using (42), and update p0
iteratively until Jp�p0 Jr1 m. We first consider the case
in which the observed data set is contaminated by mea-
surement noise, whereas the receiver position is perfectly
known. The measurement noise follows a zero-mean
Gaussian distribution with a variance of s2n. All results
are obtained from N¼200 independent realizations of
noise and position error.

Fig. 3 shows the root mean-square error (RMSE) of the
estimated target position as a function of sn. The RMSE is
defined as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

n ¼ 1
‖p̂ðnÞ

s
�p‖2; ð44Þ

where p̂ðnÞ is the estimated target position for the nth
simulation and p is the actual target position. The perfor-
mance of the proposed method is compared with the SDP
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Fig. 3. RMSE performance versus noise variance (no position error).

15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

500

σn(m)

R
M

S
E

 (m
)

CRLB
LLS
SDP+Local Opt.
Proposed method

Fig. 4. RMSE performance versus noise variance with uniformly distrib-
uted receiver position error d¼12 m.
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method that refines its solution with local optimization.
The RMSE performance of the LLS method is also shown in
Fig. 3. It is observed from this figure that the proposed
method outperforms both SDP and LLS methods and
provides performance very close to the CRLB. For
snZ38 m, the performance of the LLS approach deviates
much faster from CRLB than the other two methods.

In Fig. 4, the performance of the proposed robust
method is depicted for the case where the receiver posi-
tion is subject to a position error, the elements of which
are independent and uniformly distributed between �dm
and þdm. As in the case without position error, RMSE
of the LLS method starts to rise rapidly for snZ38 m,
whereas that of the proposed method and SDP (with local
optimization) remain stable. It can be observed from Fig. 4
that the proposed method provides better RMSE perfor-
mance than the SDP method and overall performance very
close to the CRLB. It is important to emphasize that the
results for SDP method without local optimization are not
shown since such approach fails to produce reasonable
results for both the cases with and without the receiver
position error.

6. Conclusions

We considered the problem of localizing a target using
time-of-arrival information measured at a receiver from
the signals of multiple illuminators in a multistatic passive
radar system. The localization problems are formulated
using an approximate maximum likelihood estimate of
the target location. The resulting non-convex problems are
reformulated as convex problems using the semi-definite
relaxation approach and solved in a framework of bisec-
tion algorithm. The optimization problems are examined
for the cases when only measurement errors are present
and when both the measurement and receiver position
errors are present. Simulation results verify the superior
performance of the proposed method over the semidefi-
nite programming method based on exact maximum like-
lihood estimate of the target location.
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Appendix A

A.1. Derivation of CRLB when receiver position is
perfectly known

The log-likelihood function can be expressed as

L pð Þ ¼ � 1
2s2n

∑
M

i ¼ 1
ð~τ i�ðqþsiÞÞ2; si9 Jti�pJ ; 8 i; ð45Þ

L pð Þ ¼ � 1
2s2n

f‖~τ‖2�2τT ~sþ ~sTETE~sg; ð46Þ

where

~τ ¼ ½~τ1;…; ~τM�T ; τ T ¼ ∑
i
~τ i; ~τ

T

" #
;

~s ¼ ½q; s1;…; sM �T ;E¼ ½1M ; IM �: ð47Þ
The Fisher information matrix is given by

F¼ �

E ∂2LðpÞ
∂p21

n o
E ∂2LðpÞ

∂p1∂p2

n o
… E ∂2LðpÞ

∂p1∂pn

n o
E ∂2LðpÞ

∂p2∂p1

n o
E ∂2LðpÞ

∂p22

n o
… E ∂2LðpÞ

∂p2∂pn

n o
⋮ ⋮ ⋮ ⋮

E ∂2LðpÞ
∂pn∂p1

n o
E ∂2LðpÞ

∂pn∂p2

n o
… E ∂2LðpÞ

∂p2n

n o

2
66666664

3
77777775
; ð48Þ

where pl denotes the lth element of p. Since

∂LðpÞ
∂pl

¼ � 1
s2n

�τT
∂~s
∂pl

þ ~sTETE
∂~s
∂pl

� �
; ð49Þ
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we have

∂2LðpÞ
∂p2l

¼ � 1
s2n

∂2 ~s
∂p2l

 !T

ETE~s�τ
	 


þ ∂~s
∂pl

� �T

ETE
∂~s
∂pl

8<
:

9=
;;

∂2LðpÞ
∂pj∂pl

¼ � 1
s2n

∂2 ~s
∂pj∂pl

 !T

ETE~s�τ
	 


þ ∂~s
∂pj

 !T

ETE
∂~s
∂pl

8<
:

9=
;:

ð50Þ
Notice that it can be readily shown that EfETE~s�τ g ¼ 0.
Thus, we get

E
∂2LðpÞ
∂p2l

( )
¼ � 1

s2n

∂~s
∂pl

� �T

ETE
∂~s
∂pl

;

E
∂2LðpÞ
∂pj∂pl

( )
¼ � 1

s2n

∂~s
∂pj

 !T

ETE
∂~s
∂pl

; ð51Þ

where

∂~s
∂pl

¼ ∂q
∂pl

;
∂s1
∂pl

;…;
∂sM
∂pl

� �T

¼ pl�rl
Jp�rJ

;
t1;l�pl
Jp�t1 J

;…;
tM;l�pl
Jp�tM J

� �T
: ð52Þ

Note that ti;l is the lth element of ti. Substituting (52) and
(51) into (48), F is obtained. This completes the derivation
of the CRLB when there are no errors in receiver position.

A.2. Derivation of CRLB when receiver position
is imperfectly known

When receiver position is erroneous, let β¼ ½pT ; ~rT �T
denote the estimated parameter. Assume that the TDOA
and receiver position measurements are independent. The
corresponding log-likelihood function can be expressed as

L βð Þ ¼ � 1
2s2n

‖~τ‖2�2τ T ~sþ ~sTETE~s
h i

þ 1
2s2e

‖r� ~r‖2
� �

: ð53Þ

The Fisher information matrix is given by

Fβ ¼
Fp FTp~r
Fp~r F~r

" #
; ð54Þ

where

Fp ¼ �E
∂2LðβÞ
∂p∂pT

� �
;

Fp~r ¼ �E
∂2LðβÞ
∂p∂~rT

( )
;

F ~r ¼ �E
∂2LðβÞ
∂~r∂~rT

� �
: ð55Þ

It is clear from Appendix A.1 that Fp ¼ F¼ ð1=s2nÞð∂~sT=∂pÞ
ETE∂~s=∂pT . On the other hand, differentiation of LðβÞ w.r.t.
to ~r gives

∂LðβÞ
∂~rT

¼ � 1
s2n

�τ T
∂~s
∂~rT

þ ~sTETE
∂~s
∂~rT

� �
þ 1

s2e
ð~r�rÞT

� �
: ð56Þ

It follows that the derivative of ∂LðβÞ=∂~rT with respect to p
is given by

∂2LðβÞ
∂p∂~rT

¼ � 1
s2n

~sTEET �τ T
	 
 ∂2 ~s

∂p∂~rT
þ ∂~sT

∂p
ETE

∂~s
∂~rT

" #
: ð57Þ
Since Ef~sTEET �τ T g ¼ 0, it is clear that

Fp~r ¼ �E
∂2LðβÞ
∂p∂~rT

( )
¼ 1

s2n

∂~sT

∂p
ETE

∂~s
∂~rT

; ð58Þ

where n� ðMþ1Þ matrix ∂~sT=∂~r is given by

∂~sT

∂~r
¼ r�p

Jr�pJ
;0n�1;…;0n�1

� �
: ð59Þ

Moreover, the derivative of ∂LðβÞ=∂~rT with respect to ~r is
given by

∂2LðβÞ
∂~r∂~rT

¼ � 1
s2n

~sTEET �τ T
	 
 ∂2 ~s

∂~r∂~rT
þ ∂~sT

∂~r
ETE

∂~s
∂~rT

" #
þ 1

s2n

∂~rT

∂~r

( )

ð60Þ
which means that

F ~r ¼ �E
∂2LðβÞ
∂~r∂~rT

� �
¼ 1

s2n

∂~sT

∂~r
ETE

∂~s
∂~rT

þ 1
s2e

In: ð61Þ

The derivation of CRLB for the case with receiver position
error is then complete.

References

[1] H.D. Griffiths, N.R.W. Long, Television-based bistatic radar, Proceed-
ings of the IEE – Radar Sonar Navigation, vol. 133 (7), December
1986, pp. 649–657.

[2] V. Koch, R. Westphal, New approach to a multistatic passive radar
sensor for air/space defense, IEEE Aerosp. Electron. Syst. Mag.
10 (November (11)) (1995) 24–32.

[3] H.D. Griffiths, C.J. Baker, Passive coherent location radar systems.
Part 1: performance prediction, Proceedings of the IEE – Radar Sonar
Navigation, vol. 152 (June 3), 2005, pp. 153–159.

[4] C.J. Baker, H.D. Griffiths, I. Papoutsis, Passive coherent location radar
systems. Part 2: waveform properties, Proceedings of the IEE-Radar
Sonar Navigation vol. 152 (June 3), 2005, pp. 160–168.

[5] Y. Huang, J. Benesty, G.W. Elko, R.M. Mersereati, Real-time passive
source localization: a practical linear correction least-squares
approach, IEEE Trans. Speech Audio Proc. 9 (November (8)) (2001)
943–956.

[6] K.W. Cheung, W.-K. Ma, H.C. So, Accurate approximation algorithm
for TOA-based maximum likelihood mobile location using semi-
definite programming, in: Proceedings of the IEEE ICASSP, Montreal,
Canada, May 2004.

[7] D. Li, Y.H. Hu, Least square solutions of energy based acoustic source
localization problems, in: Proceedings of the International Confer-
ence on Parallel Proceedings, 2004, pp. 443–446.

[8] Y. Zhang, M.G. Amin, A. Fauzia, Localization of inanimate moving
targets using dual-frequency synthetic aperture radar and time-
frequency analysis, in: Proceedings of the IEEE International
Geoscience Remote Sensing Symposium, Boston, MA, July 2008,
pp. 33–36.

[9] K. Yang, G. Wang, Z.-Q. Luo, Efficient convex relaxation methods for
robust target localization by a sensor network using time differences
of arrivals, IEEE Trans. Sig. Proc. 57 (July (7)) (2009) 2775–2784.

[10] E. Xu, Z. Ding, S. Dasgupta, Source localization in wireless sensor
networks from signal time-of-arrival measurements, IEEE Trans. Sig.
Proc. 59 (June 6) (2011) 2887–2897.

[11] Y. Zhang, K. Yang, M.G. Amin, Robust target localization in moving
radar platform through semi-definite relaxation, in: Proceedings of
the IEEE ICASSP, Taipei, Taiwan, April 2009, pp. 2209–2212.

[12] K.C. Ho, X. Lu, L. Kovavisaruch, An accurate algebraic solution for
moving source location using TDOA and FDOA measurements in the
presence of receiver location errors: analysis and solution, IEEE
Trans. Sig. Proc. 55 (February (2)) (2007) 684–696.

[13] A. Beck, P. Stoica, J. Li, Exact and approximate solutions of source
localization problems, IEEE Trans. Sig. Proc. 56 (May (5)) (2008)
1770–1778.

[14] G. Wang, Y. Li, N. Ansari, A semidefinite relaxation method for
source localization using TDOA and FDOA measurements, IEEE
Trans. Veh. Tech. 62 (February (2)) (2013) 853–862.

https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref2
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref2
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref2
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref5
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref5
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref5
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref5
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref9
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref9
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref9
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref10
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref10
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref10
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref12
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref12
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref12
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref12
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref13
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref13
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref13
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref14
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref14
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref14


B.K. Chalise et al. / Signal Processing 102 (2014) 207–215 215
[15] X. Yin, T. Pedersen, P. Blattnig, A. Jaquier, B.H. Fleury, A single-stage
target tracking algorithm for multistatic DVB-T passive radar sys-
tems, in: Proceedings of the IEEE Digital Signal Processing Workshop
and IEEE Signal Processing Education Workshop Marco Island, FL,
2009, pp. 518–523.

[16] U. Nickel, “System considerations for passive radar with GSM illumi-
nators, in: Proceedings of the IEEE International Symposium on
Phased Array Systems and Technology, Waltham, MA, 2010,
pp. 189–195.

[17] J.J. Zhang, A. Papandreou-Suppappola, MIMO radar with frequency
diversity, in: Proceedings of the International Conference on Waveform
Diversity and Design, Kissimmee, FL, February 2009, pp. 208–212.

[18] N.H. Lehmann, E. Fishler, A.M. Haimovich, R.S. Blum, L.J. Cimini,
R.A. Valenzuela, Evaluation of transmit diversity in MIMO-radar
direction finding, IEEE Trans. Signal Proc. 55 (May (5)) (2007)
2215–2225.

[19] E. Fishler, A. Haimovich, R.S. Blum, L.J. Cimini, D. Chizhik, R.A. Valenzuela,
Spatial diversity in radar-models and detection performance, IEEE Trans.
Signal Proc. 54 (March (3)) (2006) 823–838.

[20] C. Berger, B. Demissie, J. Heckenbach, P. Willett, S. Zhou, Signal
processing for passive radar using OFDM waveforms, IEEE J. Sel.
Topics Signal Proc. 4 (February (1)) (2010) 226–238.
[21] Y.D. Zhang, B. Himed, Moving target parameter estimation and SFN
ghost rejection in multistatic passive radar, in: Proceedings of the
IEEE Radar Conference, Ottawa, Canada, April 2013.

[22] G.R. Curry, Radar System Performance Modeling, Artech House,
Boston, MA, USA, 2004.

[23] Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye, S. Zhang, Semidefinite
relaxation of quadratic optimization problems: from its practical
deployments and scope of applicability to key theoretical results,
IEEE Sig. Proc. Mag. 27 (May (3)) (2010) 20–34.

[24] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[25] M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of
second-order cone programming, Linear Algebra Appl. 284 (1998)
193–228.

[26] C. Cartis, N.I.M. Gould, Ph.L. Toint, On the complexity of steepest
descent, Newton's and regularized Newton's methods for non-convex
unconstrained optimization problems, SIAM J. Optim. 20 (6) (2009)
2833–2852.

[27] M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex
Programming, 〈http://stanford.edu/�boyd/cvx〉.

https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref18
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref18
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref18
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref18
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref19
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref19
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref19
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref20
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref20
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref20
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref22
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref22
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref23
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref23
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref23
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref23
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref24
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref24
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref25
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref25
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref25
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref26
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref26
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref26
https://gateway.villanova.edu/S0165-1684(14)00093-0/,DanaInfo=refhub.elsevier.com+sbref26
https://gateway.villanova.edu/~boyd/,DanaInfo=stanford.edu+cvx
https://gateway.villanova.edu/~boyd/,DanaInfo=stanford.edu+cvx

	Target localization in a multi-static passive radar system through convex optimization
	Introduction
	System model
	Proposed optimization approaches
	Optimization without receiver position error
	Optimization with receiver position error

	Complexity analysis
	Numerical results
	Conclusions
	Acknowledgments
	Derivation of CRLB when receiver position is perfectly known
	Derivation of CRLB when receiver position is imperfectly known

	References




