
Compressive Sampling Optimization for User Signal

Parameter Estimation in Massive MIMO Systems

Yujie Gu and Yimin D. Zhang

Abstract

As the most promising technology in wireless communications, massive multiple-

input multiple-output (MIMO) faces a significant challenge in practical im-

plementation because of the high complexity and cost involved in deploying

a separate front-end circuit for each antenna. In this paper, we apply the

compressive sampling technique to reduce the number of required front-end

circuits in the analog domain and the computational complexity in the digital

domain. Unlike the commonly adopted random projections, we exploit the a

priori probability distribution of the user positions to optimize the compres-

sive sampling strategy, so as to maximize the mutual information between

the compressed measurements and the direction-of-arrival (DOA) of user sig-

nals. With the optimized compressive sampling strategy, we further propose

a compressive sampling Capon spatial spectrum estimator for DOA estima-

tion. In addition, the user signal power is estimated by solving a compressed

measurement covariance matrix fitting problem. Furthermore, the user sig-

IPart of the results was presented at the 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing [1].
The authors are with the Department of Electrical and Computer Engineering,
Temple University, Philadelphia, PA, 19122 USA (e-mail: guyujie@hotmail.com;
ydzhang@temple.edu).

Preprint submitted to Digital Signal Processing June 26, 2019



nal waveforms are estimated from a robust adaptive beamformer through

the reconstruction of an interference-plus-noise compressed covariance ma-

trix. Simulation results clearly demonstrate the performance advantages of

the proposed techniques for user signal parameter estimation as compared to

existing techniques.

Keywords: Adaptive beamforming, compressive sampling optimization,

massive MIMO, mutual information, parameter estimation.

1. Introduction

Massive multiple-input multiple-output (MIMO) is recognized as one of

the most promising techniques in the next generation (5G and beyond) cellu-

lar wireless communication systems. By employing a high number of anten-

nas at the base station, a massive MIMO system provides a number of advan-

tages, including increased system capacity, energy efficiency, security and ro-

bustness [2, 3, 4, 5, 6]. While most current research activities mainly focus on

communication applications, such as mobile broadband, low-power machine-

type or ultra-reliable communications, massive MIMO is also very appealing

for non-communication applications such as radar, sensing and positioning

[7]. Among them, the location information of the users can provide added

values, e.g., for location-aware services and smart cities [8]. Compared to

previous cellular wireless communication techniques, massive MIMO enables

high-accuracy user localization benefiting from its high number of antennas

and large array aperture [9]. For instance, a fingerprinting-based positioning

solution is proposed for locating mobile users in distributed massive MIMO

systems [10]. A personal radar integrating millimeter-wave massive arrays
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in a smartphone or tablet enables accurate indoor simultaneous localization

and mapping (SLAM) [11, 12]. An estimation of signal parameters via ro-

tational invariance techniques (ESPRIT)-based approach and a beamspace

approach are respectively proposed for two-dimensional (2-D) localization of

incoherently distributed sources in massive MIMO systems in [13] and [14].

In [15], a source enumeration algorithm in the framework of the Bayesian

information criterion is proposed to provide reliable detection of the number

of sources in a large-scale adaptive antenna array. A direct source localiza-

tion technique is proposed in [16] to jointly process the snapshots of data

acquired at each base station for direct estimation of the source location.

Despite such advantages of massive MIMO for both communications and

user localization, it remaines challenging to equip a dedicated radio frequency

(RF) front-end chain and a high-resolution analog-digital converter (ADC)

for each antenna in massive MIMO systems. An RF front-end chain generally

consists of a band-pass filter, a low-noise amplifier, a mixer and a low-pass

filter. The ADC then digitizes the analog signal to obtain the baseband

digital signal to perform subsequent signal processing. Among them, the

ADC is a significant limiting factor from the perspective of cost and power

consumption. On the other hand, the computational complexity is another

major concern in massive MIMO systems for optimized beamforming because

of the high-dimensional matrix operation involved in either inversion or eigen-

decomposition. Hence, there is an urgent requirement to provide a hybrid

analog-digital processing strategy that simultaneously reduces the required

number of both RF front-end chains and ADCs in the analog domain and the

corresponding computational complexity in the digital domain. As a widely
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recognized signal processing technique, compressive sampling is an effective

and feasible solution to achieve this object in massive MIMO systems.

Compressive sampling, also well known as compressive sensing, is a pop-

ular signal acquisition and recovery technique which provides solutions to

underdetermined linear systems for sparse signals [17]. The sparsity of a

signal implies that the signal can be sparsely represented in some domain

or basis. In this case, a high-dimensional signal can be reduced to some

low-dimensional manifold through a proper transformation. According to

the compressive sampling theory, the existence of signal sparsity allows sig-

nal recovery from far fewer samples than those required by the classical

Shannon-Nyquist sampling theory. In order to solve the underdetermined

signal recovery problem, the incoherence between the compressive measure-

ment matrix and the signal’s sparse representation basis is required to satisfy

the restricted isometry property (RIP) [17, 18]. It is known that random

compressive measurement matrices, such as Gaussian and Bernoulli matri-

ces, satisfy this incoherence requirement with a high probability for accurate

signal recovery [18, 19, 20].

In the past decade, the compressive sampling technique has been widely

applied in array signal processing for direction-of-arrival (DOA) estimation

[21, 22, 23, 24, 25, 26, 27] and adaptive beamformer design [28, 29, 30, 31].

For example, the compressive sampling technique is applied in the time do-

main to reduce the ADC sampling rate or the number of time samples in each

array element for bearing estimation [21] and beamforming [28], respectively.

In [22], compressing sampling is exploited in the spatial domain to compress

the array of a large number of elements into an array of a much smaller
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number of elements. In [26], the signal received in a coprime array is com-

pressively sampled to a lower-dimensional sketch to perform DOA estimation

with a high resolution and an increased number of degrees-of-freedom. In all

these approaches, random measurement matrices are adopted for compres-

sive sampling to satisfy the incoherence requirement, which guarantees the

recovery of the sparse signal from sub-Nyquist samples with a high proba-

bility [18, 19, 20]. Clearly, as a data-independent sampling scheme, random

sampling is robust but does not exploit the a priori knowledge of the signals

beyond the sparsity. In practical applications, however, prior knowledge of

the signals of interest is usually available and can be used to optimize the

compressive sampling [32, 33].

In massive MIMO systems, the a priori knowledge of the user signals,

such as the distribution of their spatial positions, can be learned and up-

dated from the observed data. Indeed, mobile users are often clustered but

with time-varying patterns. By taking this fact into account, the objective

of this paper is to achieve effective compressive sampling with a minimum

loss in the output performance. Toward this end, we exploit the available

a priori information of the spatial distribution of user positions to optimize

the compressive sampling strategy for the estimation of user signal param-

eters. As such, both the number of required front-end circuits (i.e., the

RF front-end chains and the ADCs) and the complexity of subsequent digi-

tal processing (i.e., the computational complexity) are significantly reduced,

while the advantages offered by the large array aperture and array gain of

the massive MIMO systems are maintained. Unlike random projections, the

proposed compressive sampling is optimized to maximize the mutual infor-
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mation between the compressed measurements and the signal DOA, where

the compressed measurements are parametrically characterized by a Gaus-

sian mixture model through discretizing the a priori probability distribution

of the signal DOA. Considering that the mutual information is not a convex

function with respect to (w.r.t.) the compressive sampling matrix, we de-

rive the approximate mutual information gradient to search for the optimal

compressive sampling matrix in a gradient ascent direction.

To describe the users’ information in a massive MIMO system, the key

parameters of interest generally include the DOA, power and waveform of

each user signal. After the compressive sampling strategy is optimized, we

then develop a compressive sampling Capon (CS-Capon) spatial spectrum

estimator for the DOA estimation of the user signals. Considering that the

Capon spatial spectrum grossly underestimates the power in the case of lim-

ited snapshots [34], we then formulate a compressed measurement covariance

matrix fitting problem to achieve improved power estimation. Based on the

estimated DOAs of the user signals and their power, the waveforms of the

user signals are then estimated from robust adaptive beamformers, which

are designed based on the reconstruction of the interference-plus-noise com-

pressed covariance matrix [34], to separate them from the mixed compressed

measurements. Simulation results demonstrate the performance advantage

of the proposed compressive sampling methods on user signal parameter es-

timation over the random projections.

Compared to the preliminary results presented in [1], which primarily

focuses on the optimization of the compressive sampling for DOA estima-

tion, this paper provides user signal parameter estimation in a more general
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context. More specifically, we further propose the compressed measurement

covariance matrix fitting optimization approach to achieve improved power

estimation, and a robust adaptive beamforming technique is developed based

on the reconstruction of the interference-plus-noise compressed covariance

matrix to achieve improved waveform estimation.

The rest of the paper is organized as follows. In Section 2, we introduce

the compressive array signal model in massive MIMO systems. In Section

3, we present the probabilistic signal model and propose an information-

theoretic compressive sampling optimization. In Section 4, we propose com-

pressive sampling-based technique to estimate the key user parameters, in-

cluding DOA, power and waveform. In Section 5, we present simulation

results to assess the parameter estimation performance of the proposed com-

pressive sampling techniques which are compared to those based on conven-

tional random projections. Conclusions are provided in Section 6.

2. Array structure and signal model

2.1. Array signal model

Assume D uncorrelated users (i.e., sources) which are operated in the

same frequency band and impinge on a massive MIMO array equipped with

N antennas from the directions θ = [θ1, θ2, · · · , θD]T, where N is an order of

magnitude more elements than in systems being built today, say 50 antennas

or more. Here, ( · )T denotes the transpose operation. The array received

signal in the baseband measured at the t-th sampling time, x(t) ∈ CN , can
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Figure 1: Block diagram of an antenna array, where solid lines denote analog signals and

dashed lines denote digital signals.

be modeled as

x(t) =
D∑

d=1

a(θd)sd(t) + n(t)

= A(θ)s(t) + n(t), (1)

where A(θ) = [a(θ1),a(θ2), · · · ,a(θD)] ∈ CN×D denotes the array manifold

matrix whose column a(θd) ∈ CN represents the steering vector of the d-th

user with DOA θd, s(t) = [s1(t), s2(t), · · · , sD(t)]T ∈ CD represents the signal

waveform vector, and n(t) ∼ CN (0, σ2
nI) represents the zero-mean additive

white Gaussian noise (AWGN) vector. Here, σ2
n denotes the noise power, and

I denotes an identity matrix with appropriate dimensions.

As shown in the system block diagram of Fig. 1, each antenna of the

receive array is equipped with a dedicated separate front-end chain. The

front-end chain transforms the received RF signal to the digital baseband

signal by performing low-noise amplification, down-conversion, low-pass fil-

tering and analog-digital conversion in turn, and the result is then fed to

a digital signal processor for further digital signal processing. In the case
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Figure 2: Block diagram of a compressive sampling antenna array, where solid lines denote

analog signals and dashed lines denote digital signals.

of massive MIMO systems with N ≫ 1 antennas at the base station, it re-

quires a huge overhead to exploit the high number of front-end circuits and

implement the high-dimensional matrix operations.

2.2. Compressive array signal model

In massive MIMO systems, the number of users is typically much less

than the number of antennas at the base station, not to mention the number

of possible positions in the spatial domain. It implies that the array received

signals have a sparse representation and can be limited to a low-dimensional

signal subspace manifold. Motivated by the successful applications of com-

pressive sampling in the past decade, in this paper, we consider compressive

sampling of the array received signal as depicted in the system block diagram

in Fig. 2, where the array received signals are compressed in the analog do-

main before passing through much fewer number of front-end chains. As
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such, the number of required front-end chains is greatly reduced, thus sub-

sequently decreasing the computational complexity drastically.

In specific, we measure M ≪ N linear projections of the array received

signal (in the analog domain), xRF (t), onto a set of measurement kernels

{ϕm,m = 1, · · · ,M}. The m-th measurement yRF
m (t) is the projection of the

array received signal xRF (t) onto them-th measurement kernel ϕm, expressed

as

yRF
m (t) = ⟨ϕm,x

RF (t)⟩

=
N∑

n=1

ϕm,nx
RF
n (t), (2)

where ⟨ ·, · ⟩ denotes the inner product operator, and ϕm = [ϕm,1, ϕm,2, · · · , ϕm,N ] ∈

C1×N is the discrete representation of the analog measurement kernel. Here,

the analog multiplication is generally implemented by an attenuator on each

branch, or simply by a phase shifter in case of a Bernoulli distribution for

the entries of the measurement kernel. In order not to destroy the essential

information of the original array received signal, the number of compressed

branches, M , should be selected to ensure that it is greater than the number

of expected users.

Stacking the M measurement kernels as a compressive sampling matrix

Φ =
[
ϕT

1 ,ϕ
T
2 , · · · ,ϕT

M

]T ∈ CM×N yields an M -dimensional compressed mea-

surement vector in baseband, y(t) = [y1(t), y2(t), · · · , yM(t)]T ∈ CM , ex-

pressed as

y(t) = Φx(t) = ΦA(θ)s(t) +Φn(t), (3)

where ΦA(θ) = [Φa(θ1),Φa(θ2), · · · ,Φa(θD)] ∈ CM×D is a compressed ar-

ray manifold matrix with a significantly reduced dimension because M ≪ N ,
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and Φn(t) ∼ CN
(
0, σ2

nΦΦH
)
is the zero-mean additive Gaussian noise vec-

tor with dimension M × 1. Here, ( · )H denotes the Hermitian transpose

operation.

Unlike using random projections, our objective is to optimize the com-

pressive sampling matrix Φ according to the prior knowledge of the user

distribution in the spatial domain to further improve the estimation accu-

racy of user signal parameters including direction, power and waveform, from

the compressed measurements.

3. Compressive sampling optimization

By exploiting the available probability distribution of the signal DOA θ,

we adopt the mutual information maximization criterion in this section to

optimize the compressive sampling matrix Φ for the parameter estimation of

user signals.

3.1. Probabilistic signal model

In our compressive sampling optimization, the DOA θ is treated as a

random variable with a priori known probability density function (pdf) f(θ).

Such probability distribution can be estimated either from the previously

observed data or from the tracking information of current users in the massive

MIMO system.

Applying the law of total probability, the pdf of the compressed measure-

ment vector y can be expressed as

f(y) = Eθ {f(y|θ)} =

∫
θ∈Θ

f(y|θ)f(θ) dθ, (4)

11



where Eθ{ · } denotes the statistical expectation operator w.r.t. the variable

θ, and Θ is the region of observation. Discretizing the pdf f(θ) intoK angular

bins with an equal width of ∆θ̄, the pdf of the measurement vector y can be

approximated as

f(y) ≈
∑
k∈K

pkf(y|θ̄k), (5)

where pk = f(θ̄k)∆θ̄ denotes the probability of the k-th angular bin with∑
k∈K pk = 1, and f(y|θ̄k) denotes the corresponding conditional pdf of the

measurement vector y given the specific DOA θ̄k. Here, K = {1, 2, · · · , K}

denotes the index set of the angular bins.

The signal arrived in a specific angular bin can be regarded as a mixture

of different user signals, and is modeled as a zero-mean complex Gaussian

random variable s(t) ∼ CN (0, σ2
s), where σ

2
s denotes the signal power. When

the signal impinges from the k-th angular bin with a nominal DOA θ̄k, the

compressed measurement vector is given by

y|θ=θ̄k = Φ
(
a(θ̄k)s(t) + n(t)

)
(6)

with conditional pdf

f(y|θ̄k) =
1

πM
∣∣Cyy|θ̄k

∣∣e−yHC−1
yy|θ̄k

y
, (7)

where

Cyy|θ̄k = Φ
(
σ2
sa(θ̄k)a

H(θ̄k) + σ2
nI

)
ΦH (8)

is the compressed measurement covariance matrix given the specific DOA θ̄k,

and | · | denotes the determinant of a matrix.

As a result, the pdf of the compressed measurement vector y is approxi-

mated as a weighted sum ofK zero-mean Gaussian distributions {f(y|θ̄k); k ∈
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K}, which forms a Gaussian mixture distribution with the parameters
{
pk,0,Cyy|θ̄k ; k ∈

K
}
. When the angular bin width ∆θ̄ is chosen to be sufficiently small, the

approximation in (5) approaches to equality.

3.2. Optimization of the compressive sampling matrix

According to the Gaussian mixture distribution of the compressed mea-

surement vector, we adopt the mutual information maximization criterion

[35] to optimize the compressive sampling matrix Φ such that the user signal

parameters can be estimated more accurately. Considering the fact that the

optimization variable Φ is a high-dimensional matrix, we choose a gradient

ascent approach to search for the optimal compressive sampling matrix.

The gradient of the mutual information I(y; θ) between the compressed

measurement vector y and the signal DOA θ w.r.t. the compressive sampling

matrix Φ is computed as

∇ΦI(y; θ) = ∇Φh(y)−∇Φh(y|θ), (9)

where ∇Φ{ · } is the gradient operator w.r.t. Φ, h(y) = −Ey

{
log[f(y)]

}
de-

notes the differential entropy of the compressed measurement vector y, and

h(y|θ) = −Ey,θ

{
log[f(y|θ)]

}
represents the conditional differential entropy

of the compressed measurement vector y given the signal DOA θ. In gen-

eral, there is no closed-form expression for the mutual information gradient.

However, the discretization of the pdf of DOA makes it easy to derive an

approximate mutual information gradient.

The conditional pdf of the mean value of the compressed measurement

vector y (y0 = 0) given the signal DOA θ is given by

f(y0|θ) =
1

πM
∣∣Cyy|θ

∣∣ , (10)
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where

Cyy|θ = Φ
(
σ2
sa(θ)a

H(θ) + σ2
nI

)
ΦH (11)

is the compressed measurement covariance matrix given the DOA θ. Using

the approximation in (5), the mutual information can be expressed as

I(y; θ) = −
∫

f(y)logf(y)dy +

∫∫
f(y, θ)logf(y|θ)dydθ

≈ −log
∑
k∈K

pkf(y0|θ̄k) +
∫∫

f(y, θ)logf(y0|θ) dydθ

= −log
∑
k∈K

pk

πM
∣∣Cyy|θ̄k

∣∣ + ∫
log

1

πM
∣∣Cyy|θ

∣∣f(θ)dθ
≈ −log

∑
k∈K

pk∣∣Cyy|θ̄k

∣∣ −∑
k∈K

pklog
∣∣Cyy|θ̄k

∣∣ , (12)

where the first approximation is based on the first-order Taylor series expan-

sion of logf(y) and logf(y|θ) around the mean value y0 = 0, respectively.

The gradient of the approximate mutual information I(y; θ) in (12) w.r.t.

the compressive sampling matrix Φ is then computed as

∇ΦI(y; θ) ≈

∑
k∈K

pk∣∣∣Cyy|θ̄k
σ2
n

∣∣∣
[
Cyy|θ̄k
σ2
n

]−1

Φ

(
σ2
s

σ2
n

a(θ̄k)a
H(θ̄k) + I

)
∑
k∈K

pk

∣∣∣∣Cyy|θ̄k
σ2
n

∣∣∣∣−1

−
∑
k∈K

pk

[
Cyy|θ̄k
σ2
n

]−1

Φ

(
σ2
s

σ2
n

a(θ̄k)a
H(θ̄k) + I

)
, (13)

where σ2
s/σ

2
n denotes the signal-to-noise ratio (SNR) of the input signal, and

Cyy|θ̄k
σ2
n

= Φ

(
σ2
s

σ2
n

a(θ̄k)a
H(θ̄k) + I

)
ΦH. (14)

To maximize the mutual information, we use the approximate mutual

information gradient ∇ΦI(y; θ) in (13) to iteratively search for the optimal
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compressive sampling matrix in the gradient-ascent direction according to

Φ̃ = Φ+ γ∇ΦI(y; θ), (15)

where γ > 0 is a small step size. To avoid increasing the mutual information

simply by scaling up Φ, we introduce a row-orthonormal constraint 1 on Φ,

i.e., ΦΦH = I. Hence, the procedure is iterated by re-orthonormalizing the

rows of the updated compressive sampling matrix Φ̃ (15) and computing

the approximate mutual information gradient ∇Φ̃I(y; θ) (13). The iterative

process continues until either the convergence or the maximum number of

iterations is reached.

Compared to random projections which has been widely used in the com-

pressive sensing literature [17, 21, 22], the proposed compressive sampling

is optimized in the information-theoretic framework based on the a priori

knowledge of the user spatial distribution. Considering that the computa-

tional complexity of obtaining the approximate mutual information gradient

is O(KMN2), the computational complexity of the proposed compressive

sampling optimization is O(JKMN2), where J denotes the number of iter-

ations.

4. User signal parameter estimation

In massive MIMO systems, the user signal parameters which can be esti-

mated at the base station generally include DOA (i.e., relative position to the

1In order to avoid increasing the mutual information by scaling up the compressive

sampling matrix, another feasible constraint is Tr(ΦΦH) = M , where Tr( · ) denotes the

trace of a matrix.
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array), power (i.e., received signal strength), and waveform (i.e, embedded

information symbol).

With a given (either random or optimized) compressive sampling matrix

Φ, the sample covariance matrix of the compressed measurements is com-

puted as

R̂yy =
1

T

T∑
t=1

y(t)yH(t) = ΦR̂xxΦ
H, (16)

where T ≥ 1 denotes the number of snapshots, and

R̂xx =
1

T

T∑
t=1

x(t)xH(t) (17)

is the sample covariance matrix of the array received signals without any

compression as shown in Fig. 1. Due to the time-varying nature of wireless

channel, the calculation of sample covariance matrix is time-consuming. For

reducing complexity and latency, it can be easily estimated using the training

pilots only [36]. In addition to the sample covariance matrix, some structural

information on the covariance matrix can be further exploited, which may

improve the estimation performance of user signal parameters [37, 38, 39,

40]. For example, in [37], the asymptotic maximum likelihood estimate of a

structured covariance matrix makes use of the extended invariance principle

for parameter estimation. In [38], a maximum likelihood solution is derived

for a structured covariance matrix to provide faster convergence.

4.1. DOA estimation

Because the compressive sampling matrixΦ is row-orthonormal, the com-

pressed noise vector Φn(t) is still zero-mean white Gaussian, i.e., Φn(t) ∼

CN (0, σ2
nI). Based on the minimum variance distortionless response (MVDR)
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criterion, we propose a compressive sampling MVDR spatial spectrum esti-

mator as

PCS-Capon(θ) =
1

N

aH(θ)ΦHΦa(θ)

aH(θ)ΦHR̂
−1

yyΦa(θ)
, (18)

which is also referred to as the CS-Capon spatial spectrum estimator. When

there is no compression (i.e., Φ = I), the proposed CS-Capon spatial spec-

trum estimator degenerates into the standard Capon spatial spectrum esti-

mator

PCapon(θ) =
1

aH(θ)R̂
−1

xxa(θ)
(19)

because aH(θ)a(θ) = N for any direction θ. By searching the peaks of the

proposed CS-Capon spatial spectrum PCS-Capon(θ), the DOAs of user signals

can be estimated. Other high-resolution DOA estimation methods, such

as multiple signal classification (MUSIC) [41], ESPRIT [42], sparse signal

reconstruction [43] and off-grid DOA estimation [27], can also be used.

By compressive sampling the array received signals, the high-dimensional

sample covariance matrix R̂xx ∈ CN×N is compressed to a much lower-

dimensional compressed measurement covariance matrix R̂yy ∈ CM×M be-

cause M ≪ N . Hence, the computational complexity of the proposed CS-

Capon spatial spectrum estimator in (18) is O(M3), reduced from O(N3),

the computational complexity of the Capon spatial spectrum estimator in

(19). Meanwhile, in order to avoid the ill-conditioned matrix inversion, the

number of required snapshots for calculating the compressed measurement

covariance matrix is T ≥ M , which is much smaller than T ≥ N required for

Nyquist sampling without any compression.
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4.2. Power estimation

It is pointed out in [44] that there exists the peak underestimation prob-

lem of the Capon spatial power spectrum estimator, that is, the Capon spa-

tial spectrum estimator grossly underestimates the power in the case of small

number of snapshots or imprecise steering vector.

To avoid this problem and obtain an accurate power estimation, we make

use of the estimated DOAs as the support information. With DOA estimates

θ̂ =
[
θ̂1, θ̂2, · · · , θ̂D

]
, the user signal power estimation can be formulated as

a compressed measurement covariance matrix fitting problem as

min
P (θ̂),σ2

n

∥∥∥R̂yy −ΦA(θ̂)P (θ̂)AH(θ̂)ΦH − σ2
nI

∥∥∥2

F
, (20)

where the optimization variable P (θ̂) = Diag
(
p(θ̂)

)
with the power p(θ̂) ∈

RD
++ over the DOA support θ̂, andΦA

(
θ̂
)
=

[
Φa

(
θ̂1
)
,Φa

(
θ̂2
)
, · · · ,Φa

(
θ̂D

)]
∈

CN×D is the corresponding compressed array manifold matrix. Here, ∥ · ∥2F
denotes the Frobenius norm of a matrix, and RD

++ denotes the set of positive

real D-dimensional vectors. For the sake of simplicity , the noise power σ2
n

can be estimated as the minimum eigenvalue of R̂yy, i.e., σ̂
2
n.

Note that P (θ̂) = Diag
(
p(θ̂)

)
and p(θ̂) = diag

(
P (θ̂)

)
. Therefore, the

compressed measurement covariance matrix fitting problem (20) is equivalent

to

min
p(θ̂)

∥∥∥vec(R̂yy − σ̂2
nI

)
−
(
ΦA(θ̂)⊙ΦA(θ̂)

)
p(θ̂)

∥∥∥2

2
, (21)

where vec( · ) denotes the vectorization operator, and⊙ stands for the Khatri-

Rao product. It is clear that the closed-form power estimation is given by

p(θ̂) =
[
GHG

]−1
GHz, (22)
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where matrixG = ΦA(θ̂)⊙ΦA(θ̂) =
[
vec

(
Φa(θ̂1)a

H(θ̂1)Φ
H
)
, vec

(
Φa(θ̂2)a

H(θ̂2)Φ
H
)
, · · · ,

vec
(
Φa(θ̂D)a

H(θ̂D)Φ
H
)]

∈ CM2×D and vector z = vec
(
R̂yy − σ̂2

nI
)
∈ CM2

are obtained by stacking the tensor outer products of the compressed signal

steering vectors and the compressed measurement covariance matrix sub-

tracted by the estimated noise covariance matrix, respectively.

The computational complexity of the power estimation in (22) isO (max(D2M2, D3)),

which is much less than O (D2N2), the computational complexity of the

power estimation without any compression.

4.3. Waveform estimation

In order to decode the embedded information, the mixed signals from

different directions can be separated out from the compressed measurements

through spatial filtering, namely, adaptive beamforming. According to the es-

timated signal DOA and power information, the adaptive beamformer based

on the interference-plus-noise covariance matrix sparse reconstruction [34]

is adopted, which provides a near-optimal output performance regardless of

the input SNR. In detail, using the D-sparse spatial spectrum p(θ̂), the

interference-plus-noise compressed covariance matrix for the d-th user signal

with the estimated DOA θ̂d is reconstructed as

R̂CS,i+n,d =
D∑

q=1,q ̸=d

p(θ̂q)Φa(θ̂q)a
H(θ̂q)Φ

H + σ̂2
nI, ∀ d = {1, · · · , D}, (23)

where Φa(θ̂q)a
H(θ̂q)Φ

H is the tensor outer product of the q-th interference

compressed steering vector Φa(θ̂q). Using the MVDR criterion, the robust

adaptive beamformer for the d-th user signal is given by

wd =
R̂

−1

CS,i+n,dΦa(θ̂d)

aH(θ̂d)Φ
HR̂

−1

CS,i+n,dΦa(θ̂d)
, ∀ d = {1, · · · , D}, (24)
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whose output

ŝd(t) = wH
d y(t) (25)

is the estimate of the signal waveform impinged from θd.

The computational complexity of computing the interference-plus-noise

compressed covariance matrix reconstruction-based adaptive beamformer is

O (max(DMN,DM2,M3)), which is much less than O (N3), the computa-

tional complexity of computing the interference-plus-noise covariance matrix

reconstruction-based adaptive beamformer.

Under the compressive sampling framework, the output performance of

the adaptive beamformer is evaluated by the compressive sampling output

signal-to-interference-plus-noise ratio (SINR), defined as

SINRCS =
σ2
sd
|wHΦa(θd)|2

wHRCS,i+n,dw
, (26)

where σ2
sd

= E {|sd(t)|2} is the signal power of the d-th user, and

RCS,i+n,d = ΦE
{
xi+n,d(t)x

H
i+n,d(t)

}
ΦH

= ΦRi+n,dΦ
H (27)

is the corresponding interference-plus-noise compressed covariance matrix.

Here, xi+n,d(t) =
∑D

q=1,q ̸=d a(θq)sq(t)+n(t) is the array received interference-

plus-noise term which excludes the desired signal a(θd)sd(t), i.e., the array

received signal impinged from θd.

When the signal waveforms from different directions are separated out,

the time of arrival (TOA) can be estimated via cross-correlation in terms

of time delay for multipath signals that are correlated to each other, thus

rendering further improvement of the localization accuracy of the users.

20



5. Simulation results

In this section, we compare the parameter estimation performance of the

proposed compressive sampling with that of Gaussian random projections.

We assume N = 50 omnidirectional sensors with a half-wavelength inter-

element spacing in a massive MIMO system. The compression ratio is chosen

to be N/M = 5, namely, the number of front-end chains is reduced to 10 from

50. Meanwhile, the dimension of the compressed measurement vector y(t)

is reduced to M = 10 from N = 50. Without loss of generality, the DOAs

of the users are assumed to follow a Gaussian distribution N (0◦, (5◦)2). We

uniformly discretize the pdf of the signal DOA with a width of ∆θ̄ = 0.1◦ for

the compressive sampling matrix optimization regardless of the input SNR,

renderingK = 1, 801 components in the Gaussian mixture (5). In the process

of sampling matrix optimization, a step size of γ = 0.001 is chosen for the

gradient-based search.

In the first example, we compare the CS-Capon spatial spectra, computed

from (18), between the optimized compressive sampling and the random com-

pressive sampling. The results are shown in Fig. 3, where the number of snap-

shots is T = 100 and nine users impinging from−8◦,−6◦,−4◦,−2◦, 0◦, 2◦, 4◦, 6◦ and 8◦

have the same input SNR of 20 dB. As a reference, the standard Capon spa-

tial spectrum obtained from (19) is also plotted. It is evident that, benefiting

from the a priori knowledge of the user spatial distribution, the optimized

compressive sampling can clearly identify the nine users as the Nyquist sam-

pling, while the random compressive sampling does not provide sufficient

resolution to identify all nine users.

In the second example, we consider one signal following the same dis-
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Figure 3: Capon spatial spectra comparison.

tribution as that for the compressive sampling optimization. In Fig. 4, we

compare the root mean square error (RMSE), defined as

RMSE =

√√√√ 1

NMC

NMc∑
l=1

(
θ̂l − θl

)2

, (28)

to evaluate the DOA estimation performance, and the mean absolute per-

centage error (MAPE), defined as

MAPE =
1

NMC

NMc∑
l=1

|σ2
l − σ̂2

l |
σ2
l

, (29)

to evaluate the power estimation performance, where θ̂l and σ̂2
l are respec-

tively the estimate of DOA θl and the estimate of power σ2
l , for the l-th

Monte-Carlo trial. The number of snapshots is fixed to T = 100 in Figs. 4(a)

and 4(b) when comparing the performance versus the input SNR, and the

input SNR is fixed at 5 dB in Figs. 4(c) and 4(d) when comparing the per-
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Figure 4: Performance comparison of different sampling schemes. (a) RMSE versus SNR;

(b) MAPE versus SNR; (c) RMSE versus number of snapshots; (d) MAPE versus number

of snapshots.
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formance versus the number of snapshots. For each scenario, NMC = 1, 000

Monte-Carlo runs are performed.

It is clear that the optimized compressive sampling outperforms random

projections in both DOA and power estimations. For example, we observe

from Fig. 4(a) that the optimized compressive sampling provides an SNR

advantage of at least 5 dB compared to random projections in order to achieve

the same DOA estimation accuracy. Furthermore, it also performs better

than the Nyquist sampling either at the low SNR region, benefiting from

the a priori knowledge, or with few snapshots, benefiting from the low-

dimensional covariance matrix estimation. For the power estimation, the

estimation accuracy can be further improved by increasing the number of

snapshots as depicted in Fig. 4(d). On the other hand, when the number of

snapshots is fixed, the power estimation accuracy is further improved with the

increase of SNR when the SNR is lower than 10 dB, and the power estimation

accuracy reaches a floor when the input SNR is higher than 10 dB. Compared

to the CS-Capon spatial spectrum estimator presented in [1], the proposed

compressed measurement covariance matrix fitting problem provides a better

power estimation accuracy.

In the third example, we compare the waveform estimation performance

in the terms of the output SINR versus the input SNR and the number of

snapshots. The optimal SINR with Nyquist sampling defined as

max SINR =
σ2
s |wHa(θd)|2

wHRi+nw
, (30)

is also shown in all figures for the reference, whereRi+n = E
{
xi+n(t)x

H
i+n(t)

}
is the interference-plus-noise covariance matrix corresponding to the d-th de-

sired signal. In this example, the desired signal and the interferer are assumed

24



to impinge from the known direction θs = 5◦ and θi = −6◦, respectively. The

input interference-to-noise ratio (INR) in each sensor is equal to 10 dB. When

comparing the output SINR versus the input SNR, the number of snapshots

is fixed to T = 100. While comparing the output SINR versus the number of

snapshots, the input SNR in each sensor is fixed at 5 dB. For each scenario,

1,000 Monte-Carlo runs are performed. The proposed compressive sampling

matrix is assumed to be optimized when the input SNR is 10 dB.

From Fig. 5(a), it is clear that there is more than 7 dB performance

loss for random projections compared with the Nyquist sampling, while the

output performance of the optimized compressive sampling is very close to

that of the Nyquist sampling. Compared with the classical sample matrix

inversion (SMI) adaptive beamformer, the proposed interference-plus-noise

compressed covariance matrix reconstruction-based adaptive beamformer can

reach the optimal output performance regardless of the input SNR by exclud-

ing the desired signal component from the compressed covariance matrix for

the adaptive beamformer design. Furthermore, as Fig. 5(b) shows, the pro-

posed interference-plus-noise compressed covariance matrix reconstruction-

based beamforming algorithm also has a faster convergence rate than the

SMI beamforming algorithm, and it converges to the optimal output as long

as the number of snapshots is larger than the number of compressed mea-

surements. This is another attractive feature of the proposed technique to

make quick response on the environment change.
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Figure 5: Output SINR comparison of different beamforming algorithms with different

compressive sampling schemes. (a) Output SINR versus input SNR; (b) output SINR

versus number of snapshots.
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6. Conclusion

In this paper, we proposed a compressive sampling optimization for user

signal parameter estimation in massive MIMO systems. Different from ran-

dom projections that are commonly used in the compressive sampling liter-

atures, the proposed compressive sampling is optimized by exploiting the a

priori knowledge of the probability of spatial distribution of the user signals

to maximize the mutual information between the compressed measurements

and the user DOAs. The optimized compressive sampling matrix is then used

to estimate the DOAs by searching the proposed CS-Capon spatial spectrum,

and the power by solving a compressed measurement covariance matrix fit-

ting problem. The proposed robust adaptive beamformer separates each user

signal waveform from the compressed measurements. In addition to achiev-

ing significant complexity reduction both in the number of front-end chains

and in the computational complexity, simulation results demonstrate that

the proposed compressive sampling techniques offer significant performance

improvement compared with random projections. Furthermore, the proposed

compressive sampling provides the better accuracy on DOA estimation than

the standard Nyquist sampling particularly when the input SNR is low or

when only few snapshots are available.
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