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Abstract—This paper utilizes sparse array motion to increase
the numbers of achievable both degrees of freedom (DOFs)
and consecutive lags in direction-of-arrival (DOA) estimation
problems. We use commonly employed environment-independent
sparse array (EISA) configurations. The design of these arrays
is not dependent on the sources in the field of view, but rather
aims at achieving desirable difference co-arrays. They include
structured coprime and nested arrays, minimum redundancy
array (MRA), minimum hole array (MHA), and sparse uniform
linear array (SULA). Array motion can fill the holes in the
spatial autocorrelation lags associated with a fixed platform and,
therefore, increases the number of sources detectable by the
same number of array sensors. Quasi-stationarity of the envi-
ronment is assumed where the source locations and waveforms
are considered invariant over array motion of half wavelength.
Closed-form expressions of the number of DOFs and consecutive
spatial correlation lags for coprime and nested arrays as well as
SULA, due to array translation motion, are derived. The number
of DOFs and consecutive lags for the specific cases of MRA
and MHA are numerically evaluated. We show the respective
DOA estimation performance based on sparse reconstruction
techniques.

Index Terms—Sparse arrays, DOA estimation, difference co-
array, coprime array, nested array, minimum redundancy array,
array motion, synthetic aperture.

I. INTRODUCTION

SPARSE arrays provide the capability to estimate the
direction-of-arrival (DOA) of more sources than the num-

ber of physical sensors [2]–[14]. They are widely utilized
in many application areas, including communications, radar,
sonar, satellite navigation, and radio telescope [15]–[23].
Sparse arrays can be broadly categorized as structured or
non-structured arrays. Whereas the former seek the gener-
ation of large filled co-arrays, the latter are the results of
optimization problems that involve environment-dependent
objective functions, such as maximizing the output signal-
to-noise ratio (SNR) [24], [25]. Coprime arrays and nested
arrays are examples of structured arrays. It is noted that
minimum redundant arrays (MRAs) and minimum hole arrays
(MHAs) are in a class by themselves, as their configurations
do not follow specific formula, neither do they depend on the
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temporal and spatial characteristics of the sources in the field
of view. Rather, MRA and MHA require an exhaustive search
through all possible spatial combinations of available sensors
[3], [26]. In this paper, we lump MRA and MHA together
with structured arrays to define a general class of environment-
independent sparse arrays (EISAs).

EISAs can be mounted on a fixed or moving platform. The
latter can be air-borne, vehicle-attached, or a ship-based. Mov-
ing platforms may exhibit the same sensing environment over
a short observation period. Such environment includes source
positions, angular directions, and signal temporal structures.
In this regard, an EISA not only maintains its configuration
over time, but also can operate coherently on data collected at
different array positions. In so doing, the shifted array posi-
tions provide an opportunity to collectively produce difference
co-arrays with a longer span and more contiguous as well as
unique lags.

In this paper, we use array motion to fill the holes in the
difference co-arrays associated with any fixed array position,
and as such, increase the number of sources that can be
estimated. Platform motion was considered in [27] and applied
to coprime array with coprime integers M and N to provide
a hole-free co-array over an extended synthetic aperture. It
is shown in [27] that the coprime array must move as much
as η (η=N/2, N > M) half wavelength to produce a hole-
free co-array. However, it may be unrealistic to assume a sta-
tionary signal environment over a relatively long time period,
especially when considering a large array aperture. Further,
fast data acquisition requirement may necessitate dealing with
short observation periods. In this paper, we confine the array
translation motion to only a half wavelength so that temporal
and spatial source signal invariance can be reasoned.

One alternative approach to fill the missing holes and
achieve increased number of lags in the difference co-array
of a coprime array is through the utilization of two or
multiple frequencies [26], [28]. In this case, a set of additional
frequencies are employed to recover the missing lags through
dilations of the co-array [26]. The number and values of the
additional frequencies required for recovering the missing lags
are determined by exploiting the specific structure of the co-
array corresponding to the coprime configuration [26].

In this paper, considering single-frequency operation or
narrowband signals with time-invariant spectra, we analyze
the number of achievable degrees of freedom (DOFs) and
consecutive lags as well as the respective DOA estimation
performance for the case where the one-dimensional array
merely moves a half wavelength along its axis. It is shown
that such motion can fill most, if not all the holes, and
thereby significantly increases both the contiguous and unique
lags. Sparsity-based DOA estimation methods can then be
applied to utilize the increased number of DOFs, which is
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determined by the number of unique lags [8]. Out of available
compressive sensing (CS) techniques [29]–[35], which have
been introduced in the literature, we choose the LASSO [31]
method for source DOA estimation for moving sparse array
platform.

The proposed approach can be generally applied to a
sensor array operated in a quasi-stationary environment. In
this paper, we consider sonar as an example, where passive
synthetic aperture techniques [36]–[39] are proposed to obtain
a synthetic array. The source DOAs are estimated using a
moving sparse array within a relative short period.

The major contribution of this paper is two-fold: (i) We
derive analytical expressions of the difference co-arrays for
both nested and coprime arrays that exhibit a translation
motion of a half wavelength. It is shown that the difference
co-array of the combined two array positions consists of the
difference co-array of the original array augmented by its half-
wavelength shifted version toward and opposite to motion
direction; (ii) We derive the closed-form expressions of the
numbers of both DOFs and consecutive lags in the difference
co-array, under array motion, for coprime and nested arrays
as well as sparse uniform linear array (SULA). Specific cases
for MRA and MHA are used and numerically evaluated.

The remainder of the paper is organized as follows. The
basic concept of EISAs is reviewed in Section II. In Section
III, the signal model and synthetic aperture processing are
summarized. Section IV and V analyze the achievable numbers
of both DOFs and consecutive lags after array motion for
EISAs, including coprime and nested array, MRA, MHA and
SULA. The maximum increments in the numbers of both
DOFs and consecutive lags as a result of array motion are also
derived in these two sections. Sparsity-based DOA estimation
implementing LASSO is described in Section VI. In Section
VII, the performance of the proposed method is evaluated
through extensive simulations. Section VIII concludes the
paper.

Notations: We use lower-case (upper-case) bold charac-
ters to denote vectors (matrices). In particular, IN denotes
the N×N identity matrix. (·)* implies complex conjugation,
whereas (·)T and (·)H respectively denote the transpose and
conjugate transpose of a matrix or a vector. vec(·) denotes
the vectorization operator that turns a matrix into a vector by
stacking all columns on top of the another. E(·) is the statistical
expectation operator and

⊗
denotes the Kronecker product. S

denotes the sets of integers, and C denotes the sets of complex
values.

II. REVIEW OF EISAS

In this section, we briefly review the commonly used EISAs,
namely, the structured coprime and nested arrays, and the non-
structured MRA, MHA and SULA.

A coprime array consists of two subarrays with coprime
number of sensors, M and N , as illustrated in Fig. 1(a). The
two subarrays share the first sensor at the zeroth position, so
the total number of sensors used in the coprime array is L =

0 1 2 N-1

Md

0 1 M-1

Nd

. . .

. . .
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v

. . .
θ

Sensor positions before motion Sensor positions after motion  

(b)

Fig. 1. DOA Estimation exploiting a moving structured sparse array. (a) The
prototype coprime array; (b) The synthetic coprime array

M +N − 1. Without loss of generality, we assume M < N ,
and the sensor positions are expressed as [8]

Pc0 = {Mnd, 0 ≤ n ≤ N − 1} ∪ {Nmd, 0 ≤ m ≤M − 1} ,
(1)

where d is the unit inter-element spacing which is set to half
wavelength (λ/2), with λ denoting the wavelength.

For a nested array, we consider the two-level and the K-
level nested arrays. The former consists of L = N1 + N2

sensors which are arranged into two uniform linear subarrays
respectively of N1 and N2 sensors. The sensor positions are
given by [3]

Pn2,0 = {nd, 0 ≤ n ≤ N1 − 1}
∪ {(n(N1 + 1)− 1)d, 1 ≤ n ≤ N2} . (2)

For an optimum K-level (K = L − 1) nested array with L
sensors, the sensor positions are expressed as [3]

PnK,0 = {(2n − 1)d, 0 ≤ n ≤ L− 1} . (3)

The MRA and MHA are proposed to yield the largest
possible co-arrays under two different constrains by searching
all possible spatial position combinations of the available
sensors. The sensor positions of these arrays have no close-
form expressions.

We also consider the SULA with the inter-element spacing
being three half-wavelengths, and the sensor positions are
given by

Pu0 = {3nd, 0 ≤ n ≤ L− 1} . (4)

III. SIGNAL MODEL

We consider a sparse receive array with L sensors moving
at a constant velocity v. The schematic is illustrated in Fig. 1
(b), where a coprime array is used as an example. The black
circle and red rhombus represent the sensor positions of the
original and shifted array, respectively.

The received signals from Q far-field uncorrelated sources
are described as sq(t), t = Ts, 2Ts, · · · , LsTs, for q =
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1, · · · , Q, where Ts and Ls, respectively, represent the sam-
pling interval and the number of snapshots. The arrival angle of
the qth source is denoted as θq . Because of the assumed short
translation motion of the array, the directions of the sources
with respect to the sensor array can be considered fixed. The
output of the receive array, at time t, is expressed as

x(t) =

Q∑
q=1

sq(t) exp

(
−j2πvt sin(θq)

λ

)
a(θq) + ε(t)

= As(t) + ε(t),

(5)

where

a(θq)=

[
1, exp(−j2πd2 sin(θq)

λ
), · · · , exp(−j2πdL sin(θq)

λ
)

]T
is the steering vector, and dl is the position of the lth array
sensor, l = 1, 2, · · · , L. The first sensor is used as a reference,
i.e., d1 = 0. In addition,

s(t) =

[
s1(t) exp

(
−j2πvt sin(θ1)

λ

)
,

s2(t) exp

(
−j2πvt sin(θ2)

λ

)
, · · · ,

sQ(t) exp

(
−j2πvt sin(θQ)

λ

)]T
(6)

is the signal vector. A = [a(θ1),a(θ2), · · · ,a(θQ)] ∈ CL×Q

is the array manifold matrix, and ε(t) ∈ CL×1 is zero-mean
complex additive white Gaussian noise vector with covariance
matrix σ2

εIL. At time t + τ , the output of the receive array
becomes

x(t+τ) =

Q∑
q=1

sq(t+τ) exp

(
−j2πvt sin(θq)

λ

)
· exp

(
−j2πvτ sin(θq)

λ

)
a(θq)+ε(t+ τ)

= Bs(t+ τ) + ε(t+ τ) (7)

where

B = [b(θ1),b(θ1), · · · ,b(θQ)] ∈ CL×Q (8)

with

b(θq) = exp

(
−j2πvτ sin(θq)

λ

)
a(θq)

=

[
exp

(
−j2πvτ sin(θq)

λ

)
,

exp

(
−j2π (vτ + d2) sin(θq)

λ

)
, · · · ,

exp

(
−j2π (vτ + dL) sin(θq)

λ

)]T
, (9)

and

s(t+ τ) =

[
s1(t+ τ) exp

(
−j2πvt sin(θ1)

λ

)
,

s2(t+ τ) exp

(
−j2πvt sin(θ2)

λ

)
, · · · ,

sQ(t+ τ) exp

(
−j2πvt sin(θQ)

λ

)]T
. (10)

For narrowband signals with carrier frequency f , sq(t+τ) =
sq(t) exp(j2πfτ). Accordingly, (7) can be rewritten as

x(t+τ) = exp(j2πfτ)Bs(t) + ε(t+ τ). (11)

By choosing vτ = d = λ/2, the steering vector at time t+τ
becomes

b(θq) =

[
exp

(
−j2πd sin(θq)

λ

)
,

exp

(
−j2π (d+ d2) sin(θq)

λ

)
, · · · ,

exp

(
−j2π (d+ dL) sin(θq)

λ

)]T
. (12)

By compensating for the phase correction factor
exp(j2πfτ) using the technique described in [40], we
obtain a phase synchronized received signal vector as

x̃(t+τ) = x(t+τ) exp(−j2πfτ) = Bs(t) + ε̃(t+ τ), (13)

where ε̃(t+ τ) = exp(−j2πfτ)ε(t+ τ).
Combining equations (5) and (13) yields,

y(t) =

[
x(t)

x̃(t+τ)

]
= Ass(t) +

[
ε(t)

ε̃(t+τ)

]
∈ C2L×1,

(14)

where

As = [as(θ1),as(θ2), · · · ,as(θQ)] ∈ C2L×Q, (15)

as(θq) = [aT (θq),bT (θq)]T

= [1, u2(θq), · · · , uL(θq), (16)

ud(θq), u2(θq)ud(θq), · · · , uL(θq)ud(θq)]
T
,

ul(θq) = exp (−j2πdl sin(θq)/λ), and ud(θq) =
exp (−j2πd sin(θq)/λ).

IV. DOF ANALYSIS: COPRIME ARRAY

In this section, we consider the synthetic array constructed
upon moving a structured sparse array by half wavelength (one
unit step) . We derive the analytical expressions of the numbers
of both DOFs and consecutive lags. The former is defined as
the number of non-negative unique lags in the difference co-
array.

A. Set of Cross-Lags

In the sequel, the array at its original position is referred
to as the original array, whereas that in its shifted position is
termed as the shifted array. The sensor positions of the shifted
array are expressed as

Pc1 = {(Mn+ 1)d, 0 ≤ n ≤ N − 1}
∪ {(Nm+ 1)d, 0 ≤ m ≤M − 1} . (17)

Combining the sensor positions of the original and the shifted
arrays, we have

Pc = Pc0 ∪ Pc1. (18)

The original and the shifted coprime arrays are illustrated in
Fig. 2 using black circles and red rhombuses, respectively. It
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Fig. 2. The two subarrays of the synthetic coprime array.

is noted that some sensors corresponding to the original and
the shifted arrays do overlap. For example, the second red
rhombus in upper subarray overlaps with the second black
circle in lower subarray for N = M + 1. This means that
the number of sensors of the synthetic array becomes smaller
than twice the number of sensors of the original array. Such
overlapping is deemed to occur for a coprime array, because
the co-array of the original coprime array contains lag-one
sensor pairs [2], [8].

The set formed from the difference co-array can be divided
into two subsets; one is obtained from the self-lags, whereas
the other is from the cross-lags. Since the self-lag positions
form a subset of the cross-lag positions [41], we only consider
the cross-lags in determining the number of DOFs. The cross-
lags between the two synthetic subarrays are given by the
overall set:

Sca = S12 ∪ S1′2′ ∪ S11′ ∪ S22′ ∪ S12′ ∪ S21′ . (19)

In the above expression, subscripts 1 and 2 refer to the two
subarrays in their original positions, whereas 1′ and 2′ refer
to these subarrays in the shifted positions.
S12 is defined as the set of cross-lags between original

subarray 1 and original subarray 2 which is given by [41]:

S12 = S̃12 ∪ S̃−12 = {Mk1 −Nk2} ∪ {Nk2 −Mk1} , (20)

for 0 ≤ k1 ≤ N − 1, 0 ≤ k2 ≤ M − 1, where S̃12 =
{Mk1 −Nk2} and S̃−12 = {Nk2 −Mk1}.

Similarly,

S1′2′ =
{
Mk

′

1 −Nk
′

2

}
∪
{
Nk

′

2 −Mk
′

1

}
, (21)

where 0 ≤ k
′

1 ≤ N − 1, 0 ≤ k
′

2 ≤ M − 1. From (20) and
(21), it is clear that S12 and S1′2′ have the same elements,
i.e., S12 ∪ S1′2′ = S12. On the other hand, S11′ is defined as
the cross-lag set between subarray 1 and subarray 1

′
, whereas

S22′ is defined as the cross-lag set between subarray 2 and
subarray 2

′
. They are respectively given as,

S11′ =
{
Mk1 −Mk

′

1 − 1
}
∪
{
Mk

′

1 −Mk1 + 1
}
, (22)

S22′ =
{
Nk2 −Nk

′

2 − 1
}
∪
{
Nk

′

2 −Nk2 + 1
}
. (23)

Similarly,

S12′ =
{
Mk1 −Nk

′

2 − 1
}
∪
{
Nk

′

2 −Mk1 + 1
}
, (24)

S21′ =
{
Nk2 −Mk

′

1 − 1
}
∪
{
Mk

′

1 −Nk2 + 1
}
. (25)

Lemma 1: For sets S11′ , S22′ , S12′ and S21′ defined above,
S11′ ∪ S22′ ∪ S12′ ∪ 21′ = S12′ ∪ S21′ .

Proof. See Appendix A.

Because S12 ∪ S1′2′ = S12 and based on Lemma 1, the
cross-lags of the synthetic array are simplified to following
set:

Sca = S12 ∪ S12′ ∪ S21′ . (26)

With different combinations of the subsets, it is easy to show

S12′ ∪ S21′ = S̃12′ ∪ S̃21′ (27)

where

S̃12′ =
{
Mk1 −Nk

′

2 − 1
}
∪
{
Nk2 −Mk

′

1 − 1
}
,

S̃21′ =
{
Nk

′

2 −Mk1 + 1
}
∪
{
Mk

′

1 −Nk2 + 1
}
.

Then,
Sca = S12 ∪ S̃12′ ∪ S̃21′ . (28)

It is noted that the new subsets S̃12′ and S̃21′ can be
interpreted as the difference co-array of the original coprime
array one unit step (lag) to the left and one unit step to the
right. This shows that the number of unique lags increases due
to motion.

We remark that if the difference co-array of the original
coprime array is a filled virtual array, then there would be
two additional unique lags which are created as a result of
array motion, one to the left and one to the right. On the
other hand, if the difference co-array of the original coprime
array has holes, i.e., missing lags, the additional number of
unique lags due to array motion would fill some or all of
these holes. This property will be utilized to determine the
number of unique lags. Because (28) does not depend on the
specific subarray structures and sensor positions, the above
conclusions are applicable to other sparse arrays.

B. Number of Unique Lags

The number of unique lags in Sca is the sum of the number
of unique lags in S12 and the number of holes in S12 which
become filled due to array motion. The number of the unique
lags for CACIS is analyzed in [8]. By using a similar approach,
the number of unique lags in S12 is obtained as

ηcb = MN +M +N − 2. (29)

We first identify the positions of the holes in S12 for 2 <
M < N as [8]

Phole = {±(Ml1 +Nl2)d, l1, l2 ∈ L} , (30)

where

L ={l1, l2|1 ≤ l1 ≤ bN − 1− N

M
c, 1 ≤ l2 ≤ b(M −

2M

N
)c,

|Ml1 +Nl2| ≤M(N − 1)}, (31)

and bxc denotes the floor function which rounds x to the
nearest integer towards zero. For the co-array shifted to the



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

ηci =



4(M−2)− 2, N = M + 1,

4(N − 3)− 4, N = 2M − 1,

2[(M − 1− κ2+)α2+ + (N − 4)α2−]− 2, N = 2M + 1,

2[(N − 1− κ1+)α1+ + (M − 1− κ1−)α1−]− 4, N = βM − 1, β ≥ 3,

2[(M − 1− κ2+)α2+ + (N − 1− κ2−)α2−]− 4, N = βM + 1, β ≥ 3,

2[(N − 1− κ1+)α1+ + (M − 1− κ1−)α1− + (M − 1− κ2+)α2+

+(N − 1− κ2−)α2− − 1− (N − 1− κ1+)(M − 1− κ2+)
−(M − 1− κ1−)(N − 1− κ2−)]
−2 max {min{M − 1− κ1−, α1+}min{N − 1− κ1+, α1−},

min{M − 1− κ2+, α2−}min{N − 1− κ2−, α2+}} ,

otherwise,

(38)

left by one unit, the condition for the holes in set S12 to be
filled is:

Ml
′

1 −Nl
′

2 − 1 = ±(Ml1 +Nl2), (32)

Nl
′

2 −Ml
′

1 − 1 = ±(Ml1 +Nl2), (33)

whereas the condition for the co-array shifted to the right by
one unit is given by

Ml
′

1 −Nl
′

2 + 1 = ±(Ml1 +Nl2), (34)

Nl
′

2 −Ml
′

1 + 1 = ±(Ml1 +Nl2), (35)

where l1, l2 ∈ L, and

0 ≤ l
′

1 ≤ N − 1, 0 ≤ l
′

2 ≤M − 1. (36)

Lemma 2 : For an (L = M + N − 1)-element coprime array
with unit inter-element spacing d = λ/2, the number of unique
lags of the synthetic array after moving the original coprime
array by a half wavelength is given by:

ηca = ηcb + ηci + 2. (37)

where ηci is the number of additional lags achieved due to
array motion. It can be expressed as in (38), shown on the top
of this page, where

κ1+ = l2 + l
′

2 + ((N −M)(l2 + l
′

2) + 1)/M,

κ1− = l1 + l
′

1 − ((N −M)(l1 + l
′

1) + 1)/N,

κ2+ = l1 + l
′

1 + ((N −M)(l1 + l
′

1)− 1)/M,

κ2− = l2 + l
′

2 − ((N −M)(l2 + l
′

2)− 1)/N. (39)

In addition, α1+ in (38) is the number of combinations that
make ((N −M)(l2 + l

′

2) + 1) divisible by M, and α1− is the
number to make (N −M)(l1 + l

′

1) + 1 divisible by N. α2+

and α2− are the numbers of combinations of l1, l
′

1 and l2, l
′

2 to
make (N −M)(l1 + l

′

1)− 1 divisible by N and ((N−M)(l2+
l
′

2)− 1) divisible by M, respectively.

Proof. See Appendix B.

C. Number of Consecutive Lags

Note that all the holes may not be always filled due to
array motion. In Fig. 3 and Fig. 4, we show two examples
of an original coprime array and its corresponding synthetic
array after motion. It is shown in Figs. 3(a) and 3(b) that the
number of holes for both cases of M = 4 , N = 7 and M = 5
, N = 6 is the same. When considering the synthetic arrays,
as shown in Fig. 4(a), the difference co-array has no holes for
the case of M = 4 , N = 7, but Fig. 4(b) shows that one hole
persists for the case of M = 5 , N = 6.

It is straightforward to conclude in Section IV-B that any
two consecutive holes will be filled due to array motion.
Accordingly, the first hole in the difference co-array of the syn-
thetic array would appear at the first set of three consecutive
holes in the difference co-array of the original synthetic array.
Although the positions of maximum consecutive holes are
given in [26] to determine the maximum frequency separation
for an extended coprime array, yet the positions of consecutive
holes are not analyzed, which is the purpose of Lemma 3.

Lemma 3: The position of the first positive hole in the
difference co-array of the synthetic array, ph, is expressed as

(a) For N = M + 1,M ≥ 5,

ph = 3M +N + 1;

(b) For M + 1 < N < 2M − 1,M ≥ 7,

ph = min[(κmax + + 1− κh1+)M

+ (αh1+ − αmin + + 1)N + 1,

αh1−M + (κmax− + 1− κh1−)N + 1];

(c) For N = 2M − 1 and M ≥ 5, or for N = βM − 1,
β ≥ 3, and M ≥ 4,

ph = M + 3N + 1;

(d) For N = βM + 1, β ≥ 2, and M ≥ 4,

ph = (5 + 2(β − 2))M +N + 1;

(e) For N > 2M + 1, N 6= βM ± 1, β ≥ 3,

ph = min [(κmax + 1− κh1+)M + αh1+N + 1,

(αh1− − αmin− + 1)M + (κmax− + 1− κh1−)N + 1]
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TABLE I
NUMBER OF UNIQUE AND CONSECUTIVE LAGS FOR COPRIME ARRAYS

L M, N κ1+ α1+ κ1− α1− κ2+ α2+ κ2− α2− ηci ηcb ηca NULR ξcb ξca NCLR

7 3,5 4 21 27 1.29 15 27 1.80

8 4,5 6 27 35 1.30 17 35 2.06

9 3,7 1 2 2 1 8 29 39 1.35 19 39 2.05

10
5,6 10 39 51 1.31 21 43 2.05
4,7 12 37 51 1.38 21 51 2.43
3,8 3 1 1 3 10 33 45 1.36 21 45 2.14

11 5,7 3 2 2 3 3 4 4 3 16 45 63 1.40 23 63 2.74

12

6,7 14 53 69 1.30 25 51 2.04
5,8 5 3 3 5 2 3 3 2 20 51 73 1.43 25 73 2.92
4,9 1 2 2 1 16 47 65 1.38 25 59 2.36
3,10 1 3 3 1 14 41 57 1.39 25 57 2.28

(f) For other cases, no holes exist.
In the above expressions,

κh1+ = ((N −M)(l
′

2 + ln1)− 1)/M + l
′

2 + ln1,

αh1+ = l
′

2 + ln1,

κh2+ = ((N −M)(l
′

2 + ln2)− 2)/M + l
′

2 + ln2,

αh2+ = l
′

2 + ln2,

κh3+ = ((N −M)(l
′

2 + ln3)− 3)/M + l
′

2 + ln3,

αh3+ = l
′

2 + ln3,

κmax + = max(κh1+, κh2+, κh3+),

αmin + = min(αh1+, αh2+, αh3+).

Similarly,

κh1− = l
′

1 + lm1 − ((N −M)(l
′

1 + lm1) + 1)/N

αh1− = l
′

1 + lm1,

κh2− = l
′

1 + lm2 − ((N −M)(l
′

1 + lm2) + 2)/N

αh2− = l
′

1 + lm2,

κh3− = l
′

1 + lm3 − ((N −M)(l
′

1 + lm3) + 3)/N,

αh3− = l
′

1 + lm3,

κmax− = max(κh1−, κh2−, κh3−),

αmin− = min(αh1−, αh2−, αh3−).

Proof. See Appendix C.

By definitions, the number of consecutive lags is ξca =
2ph − 1, which becomes ξca = 2M(N − 1) + 3 if there are
no holes. This is because the lags of the difference co-array,
corresponding to the original array, are distributed between
−M(N − 1) and M(N − 1). On the other hand, ξcb =
2(N +M)− 1.

Example 1: Table I deals with co-prime arrays and shows
examples of the parameters computed from Lemma 2 and
Lemma 3 for different pairs of M and N. NULR denotes the
ratio between the numbers of unique lags with and without
array motion, i.e., ηca/ηcb. NCLR denotes the ratio between
the numbers of consecutive lags with and without array
motion. The difference co-arrays corresponding to the original

-26 -21 -16 -11 -6 -1 4  9  14 19 24 
nz = 37(a)

-26 -21 -16 -11 -6 -1 4  9  14 19 24 
nz = 39(b)

Fig. 3. Difference co-array of original coprime array. (a) M=4, N=7; (b) M=5,
N=6.(•:lags; ×:holes)

-26 -21 -16 -11 -6 -1 4  9  14 19 24 
nz = 51(a)

-26 -21 -16 -11 -6 -1 4  9  14 19 24 
nz = 51(b)

Fig. 4. Difference co-array of synthetic coprime array. (a) M=4, N=7; (b)
M=5, N=6.

and synthetic coprime arrays are respectively presented in Fig.
3 and Fig. 4.

From Table I, Fig. 3 and Fig. 4, we observe that the numbers
of both unique and consecutive lags increase substantially due
to array motion. This is largely because that all (see Fig. 4(a))
or most (see Fig. 4(b)) holes become filled. The maximum
number of additional unique and consecutive lags are obtained
when 2M − 1 ≥ N > M + 1 for a given number of sensors.

V. DOF ANALYSIS: OTHER SPARSE ARRAYS

A. Nested Array

Similar to the coprime array, the difference co-array of
the nested array after moving one unit step consists of the
difference co-array before motion and the results of moving
one unit step to the left and 1 step to the right from the original
difference co-array. Because the difference co-array of two-
level nested array is fully filled, the number of unique lags
after the motion is expressed as

ηna,2 = ηnb,2 + 2, (40)
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where the expression of ηnb,2 is given in Table II [3].
For an optimum K-level nested array (K = L − 1), the

number of unique lags before the array motion is given by
ηnb,K = L(L − 1) + 1 [3]. The number of unique lags after
the array motion is expressed as

ηna,K = 3L2 − 13L+ 21, L ≥ 4. (41)

The derivation of (41) is provided below.
The lags in the difference co-arrays of the original and the

synthetic K-level nested arrays are respectively given by sets
Snb,K and Sna,K , expressed as

Snb,K = 2n1 − 2n2 ,

Sna,K = {2n1 − 2n2 + 1} ∪ {2n1 − 2n2 − 1}, (42)

where n1, n2 ∈ [0, L− 1].
From the above equation, we find that Snb,K and Sna,K

form subsets of Snb,K+1 and Sna,K+1, respectively. Therefore,
ηna,K+1 can be determined based on ηna,K and the number
of additional lags offered through the array motion. We denote
ηnb,K and ηna,K as the number of the entire original co-array
and that of the original difference co-array, respectively. For
the convenience of description, we only consider the number
of additional lags rendered in the non-negative difference co-
array.

For the original difference co-array, ηnb,K is equal to 13
for L = 4. There exists only a single hole in the non-negative
difference co-array located at the 5th lag position, together
with a symmetric hole in the negative difference co-array. As
a result, the number of unique lags after array motion becomes
ηna,K = 17 as a result of filling these holes and extending the
co-array aperture by one unit to both the left and the right.
When the level is increased by 1, we obtain L− 1 additional
lags located at

Sad = {2L−1−2L−2, 2L−1−2L−3, · · · , 2L−1−2, 2L−1−1}
(43)

in the non-negative difference co-array, while the other posi-
tions between 2L−1 − 2L−2 and 2L−1 − 1 are holes. From
Sad, we can obtain the difference set of the adjacent lags as
Sd = {2L−3, 2L−4, · · · , 4, 2, 1}. It implies that, except the
single hole between 2 and 4, other holes form L − 4 groups
with 3 or more consecutive holes in each group.

The array motion fills in the single hole, and reduces the
number of missing lags in each consecutive hole group by 2.
As a result, for each addtional sensor, L − 1 lags are added
in the original co-array, whereas 1 + 2(L− 4) lags are added
by filling the holes after the array motion. In addition, one
additional lag at 2L−1 is obtained by moving the co-array
to the right. Note that this lag always overlaps with the the
smallest lag in Sad in the (L + 1)-sensor array, i.e., 2L −
2L−1 = 2L−1, thus reducing the lag increment by 1 when an
additional level is added.

As the result of the above discussion, each additional sensor
yields a total increment of 3L − 8 lags in the resulting non-
negative synthetic co-array. Considering ηna,K = 17 for L =
4, we can obtain ηna,K = 3L2−13L+21 for L ≥ 4 as shown
in (41).

TABLE II
THEORETICAL EXPRESSIONS OF THE NUMBER OF UNIQUE LAGS OF

TWO-LEVEL NESTED ARRAY

L Optimal N1,N2 ηnb,2

Even N1 = N2 = L/2 (L2 − 2)
/
2 + L

Odd N1 = (L− 1)/2, N2 = (L+ 1)/2 (L2 − 1)
/
2 + L

TABLE III
NUMBER OF UNIQUE LAGS OF A MOVING MRA

L ηri ηrb ηra NULR ξrb ξra NCLR
3 2 7 9 1.29 7 9 1.29
5 2 19 21 1.11 19 21 1.11
6 2 27 29 1.07 27 29 1.07
8 2 47 49 1.04 47 49 1.04
9 2 59 61 1.03 59 61 1.03

TABLE IV
NUMBER OF UNIQUE LAGS OF A MOVING MHA

L ηhi ηhb ηha NULR ξhb ξha NCLR
3 2 7 9 1.29 7 9 1.29
5 4 21 25 1.191 19 25 1.32
6 6 31 37 1.193 27 37 1.37
8 14 57 71 1.246 31 71 2.29
9 18 73 91 1.247 35 91 2.60

We now can determine the position of the first hole in the
difference co-array of the K-level nested array. When L =
4, the first hole appears at the 5th position of the original
K-level nested array. When L = 5, from the expression of
Sad in (43), the position of the middle one of the first three
consecutive holes is 2L−1−6 = 10. Because Snb,K and Sna,K
respecxtively form subsets of Snb,K+1 and Sna,K+1, this first
hole position at lag 10 is unchanged as the number of sensors
increases, as can be seen in Fig. 5(b) and Fig. 6(b).

B. MRA and MHA

Because MRA and MHA do not have closed-form expres-
sions for their array geometry and the number of achievable
DOFs, we analyze their DOFs using examples, illustrated in
Table III and Table IV. The same sensor positions as in [42] are
used. Because there may be multiple array configurations for
MHA and MRA for a given number of sensors, the numbers of
consecutive lags (ξrb and ξhb) are set to the maximum value.

C. SULA

For the uniform sparse array with the inter-element spacing
being three half wavelength, the sensor positions of after array
motion are given by

Pu1 = {3nd+ 1, 0 ≤ n ≤ L− 1} . (44)

Because of the specific inter-element spacing, the number of
unique lags in the difference array equals to 2(L−1)+1, i.e.,
ηsb = 2L− 1, and the number of holes in the difference array
is 4(L− 1). The number of the lags in the difference co-array
of the synthetic array is expressed as

ηsa = 3(2L− 1). (45)
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The difference co-array after the array motion is fully filled
because the number of holes between each pair of adjacent
sensors is two. It is noted that, unlike other arrays, ηsa/ηsb = 3
is constant for the SULA.

Example 2: Difference co-arrays of the original and syn-
thetic arrays are respectively presented in Fig. 5 and Fig. 6 for
the nested array, MRA, MHA and SULA. From the figure, we
observe again that the numbers of both unique and consecutive
lags increase after array motion. Especially, for the SULA,
there are no consecutive lags before array motion, whereas
the difference co-array is fully filled after the array motion.

-19 -14 -9 -4 1  6  11 16 
nz = 23(a)

-19 -14 -9 -4 1  6  11 16 
nz = 21(b)

-19 -14 -9 -4 1  6  11 16 
nz = 19(c)

-19 -14 -9 -4 1  6  11 16 
nz = 31(d)

-19 -14 -9 -4 1  6  11 16 
nz = 13(e)

Fig. 5. Difference co-arrays of original sparse arrays. (a) Two-level nested
array with L = 6; (b) Four-level nested array with L = 5; (c) MRA with
L = 5; (d) MHA with L = 6; (e) SULA with L = 7.

D. Remarks
So far, we have analyzed the achievable DOFs and the

consecutive lags for different structured sparse arrays with
array motion. The theoretical expressions are summarized in
Table V.

The following points are worth noticing:
1) The difference co-arrays of the synthetic two-level

nested array, MRA and SULA are all fully filled. The
first two original sparse arrays have fully-filled differ-
ence co-arrays, while all the lags of the original SULA
are disjoint.

2) The SULA achieves the highest NULR of 3, whereas
the two-level nested array and MRA perform worst on
the NULR and NCLR because only exactly 2 lags are
added with the array motion, regardless of the number
of sensors. The NULR and NCLR of the coprime array
vary and achieve their maximum values when 2M−1 ≥
N > M + 1 (see Table I). The NULR of the K-level
nested array increases as the number of sensors increases
because the term 10L− 18/L2 − L+ 1 monotonically
decreases with L. The same situation happens on MHA.

-19 -14 -9 -4 1  6  11 16 
nz = 25(a)

-19 -14 -9 -4 1  6  11 16 
nz = 31(b)

-19 -14 -9 -4 1  6  11 16 
nz = 21(c)

-19 -14 -9 -4 1  6  11 16 
nz = 37(d)

-19 -14 -9 -4 1  6  11 16 
nz = 39(e)

Fig. 6. Difference co-array of synthetic sparse arrays. (a) Two-level nested
array with L = 6; (b) Four-level nested array with L = 5; (c) MRA with
L = 5; (d) MHA with L = 6; (e) SULA with L = 7.

3) For a given number of sensors, the K-level nested array
achieves the highest number of unique lags by exploiting
array motion because more holes in the original differ-
ence co-array are filled by the array motion. However,
it has the smallest number of consecutive lags, which is
equal to 19. MHA has the highest number of consecutive
lags. The K-level nested array works better than SULA
for a given number of sensors.

VI. DOA ESTIMATION

In this section, we briefly introduce the DOA estimation
based on compressive sensing [7] and co-array MUSIC [3],
[6], which utilize all and consecutive lags, respectively.

From (14), the covariance matrix of y(t) is expressed as

Ry = AsRsA
H
s + σεIL̃, (46)

where Rs = E[s(t)sH(t)] = diag[σ1, σ2, · · · , σQ] is the
source covariance matrix with σq real and positive, and σε
denotes the noise variance. In addition, L̃ is the number of
sensors in the synthetic array. Note that L̃ ≤ 2L because
some sensor positions before and after motion may overlap.
Vectorizing Ry yields the following L̃2 × 1 vector

z̃ = vec(Ry) = Ãb̃ + σεi, (47)

where

Ã = [ã(θ1), ã(θ2), · · · , ã(θQ)] ∈ CL̃2×Q,

ã(θq) = as
∗(θq)⊗ as(θq) ∈ CL̃2×1,

b̃ = [σ1, σ2, · · · , σQ]T ,

i = vec(IL̃) = [10 · · · 0, 01 · · · 0, · · · , 00 · · · 1]
T ∈ RL̃2×1.

(48)
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TABLE V
THEORETICAL EXPRESSIONS OF ACHIEVABLE DOFS AND CONSECUTIVE LAGS FOR DIFFERENT STRUCTURED SPARSE ARRAYS WITH ARRAY MOTION

Coprime array Two-level nested array K-level nested array MRA MHA SULA

Number of unique lags
of original array

MN +M +N − 2
L2−2

2
+ L,L is even

L2−1
2

+ L,L is odd
L(L− 1) + 1

see
Table III

see
Table IV

2L− 1

Number of consecutive lags
of original array

2(M +N)− 1
L2−2

2
+ L,L is even

L2−1
2

+ L,L is odd
9

see
Table III

see
Table IV

0

Number of unique lags
of synthetic array

MN +M +N + ηci

L2+2
2

+ L,L is even
L2+3

2
+ L,L is odd

3L2 − 13L+ 21
see

Table III
see

Table IV
3(2L− 1)

Number of consecutive lags
of synthetic array

2ph − 1, ph 6= 0

2M(N − 1) + 3, ph = 0

L2+2
2

+ L,L is even
L2+3

2
+ L,L is odd

19
see

Table III
see

Table IV
3(2L− 1)

NULR 1 + ηci+2
MN+M+N−2

1 + 4
L2+2L−2

, L is even

1 + 4
L2+2L−1

, L is odd
3− 10L−18

L2−L+1

see
Table III

see
Table IV

3

NCLR

2ph−1
2(M+N)−1

, ph 6= 0
2M(N−1)+3
2(M+N)−1

, ph = 0

1 + 4
L2+2L−2

, L is even

1 + 4
L2+2L−1

, L is odd
2.11

see
Table III

see
Table IV

N/A

To utilize all the lags in the difference co-array, (47) can be
replaced by the sparse signal representation

Ỹ = B̃r + σεi (49)

where B̃ = [ãT (θ1), ãT (θ2), · · · , ãT (θQ̃)]T , and r is a Q̃ ×
1 vector to be determined. The positions and values of the
non-zero entries in r represent the estimated DOAs and the
corresponding signal power. Q̃ � Q denotes the size of the
search grid in spatial angles.

The estimation is obtained by solving the following LASSO
problem [31]

r̂ = arg min
r

[
1

2

∥∥∥Ỹ −Br
∥∥∥2

2
+ λt‖r‖1

]
, (50)

where λt is a regularization parameter, and ‖·‖2 and ‖·‖1
denote the l2-norm and l1-norm, respectively.

Using the consecutive lags in the difference co-array, the co-
array MUSIC can be applied to obtain DOA estimates. This
technique proceeds by constructing the full rank matrix Rss,
expressed as [6],

Rss =
1

Lss

Lss∑
p=1

Jpy
ULA
diff {yULA

diff }HJH
p . (51)

where Lss = (LULA + 1)/2 with LULA denoting the number
of contiguous lags in the difference co-array, and yULA

diff is the
respective coarray data vector. In addition, Jp is a selection
matrix defined as [6]

Jp =
[
0Lss×(Lss−1−p) ILss×Lss 0Lss×p

]
(52)

∈ {0, 1}Lss×(2Lss−1).

where 0Lss×p is a Lss × p zero matrix.

VII. NUMERICAL RESULTS

In this section, we present DOA estimation results through
Monte Carlo simulations. The RMSE of the estimated DOA
of the sources, expressed as

RMSE =

√√√√ 1

QNm

Nm∑
p=1

Q∑
q=1

(θ̂q(p)− θq)
2

(53)

is used for performance comparison, where θ̂q(p) is the
estimate of θq for the pth Monte Carlo trial, Nm is the number
of the Monte Carlo trials, and Nm = 100 in all simulations.

A. Achievable Number of DOFs

In this simulation, we analyze the achievable number of
DOFs for the coprime array, K-level nested array, MHA
and SULA. The two-level nested array and MRA are not
included because their difference co-arrays are fully filled,
and the additional number of unique lags is only 2. In all the
simulations, the input SNR is set to 10 dB, and 1,000 snapshots
are used. Because each array yields a different number of
DOFs, different values of Q are utilized. In the first simulation,
the LASSO algorithm [31] is used to perform sparsity-based
DOA estimation, and all lags are exploited. Q = 21 sources
are used for the coprime array with M = 5 and N = 6,
whereas the value of Q is taken as 13, 18 and 17 respectively
for the four-level nested array, 6-element MHA and 8-element
SULA. For the MHA, the sensor positions are [0, 1, 4, 10,
15, 17]. The spatial frequencies of the Q sources, denoted as
θ̃ = d sin(θ)/λ, are uniformly distributed between −0.49 and
0.49, which correspond to −78.5o and 78.5o, respectively.

The simulations results are shown in Fig. 7 and Fig. 8.
It is clear from Fig. 7 that the original sparse array cannot
identify the DOAs of all Q sources because of insufficient
DOFs. Grating lobes appear in Fig. 7(d) because the SULA
has large inter-element spacing. On the other hand, as shown
in Fig. 8, the proposed method correctly identify the DOAs
of all Q sources as a result of the additional DOFs achieved
through array motion.

In the second simulation example, we use the Co-array
MUSIC and only the consecutive lags are used. The values of
Q are set to 18, 7 and 15, respectively, for the coprime array,
the four-level nested array and the 6-element MHA. The other
parameters remain the same as in the first simulation. The
simulations results are shown in Fig. 9. After motion, in Figs.
9(b), 9(d) and 9(f), the number of consecutive lags increases,
thus enabling the synthetic array to identify the DOAs of all
Q sources. On the other hand, in Figs. 9(a), 9(c) and 9(e), the
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Fig. 7. Estimated DOAs for original sparse arrays using LASSO. (a) Coprime array with M = 5 and N = 6 for 21 sources, ηcb = 39; (b) Four-level nested
array with L = 5 for 13 sources, ηnb,K = 21; (c) MHA with L = 6 for 18 sources, ηhb = 31; (d) SULA with L = 8 for 17 sources, ηsb = 17.
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Fig. 8. Estimated DOAs for synthetic sparse arrays using LASSO. (a) Coprime array with M = 5 and N = 6 for 21 sources, ηca = 51; (b) Four-level
nested array with L = 5 for 13 sources, ηna,K = 31; (c) MHA with L = 6 for 18 sources, ηha = 37; (d) SULA with L = 8 for 17 sources, ηsa = 45.

Q sources are not estimated correctly. This result is similar
to the results obtained from LASSO, and the reason lies in
the increased number of consecutive and unique lags through
array motion.

B. Estimation performance analysis
We compare the RMSE performance for different sparse

arrays based on LASSO and co-array MUSIC. 2,000 snapshots
of data are used, and the results are averaged with 100 Monte
Carlo trails. The input SNR varies between −10 dB and 20
dB, and the grid is set to 0.02◦. The numbers of sensors
and sources are, respectively, set to 7 and 6 for all sparse
arrays. For the coprime array, M = 3 and N = 5 are
assumed, the first sensor of the two subarrys is overlapping.
For LASSO, the RMSE performance versus the input SNR for
the original and the synthetic arrays is shown in Fig. 10 using
dash dot lines and solid lines, respectively. The superiority
of the synthetic array over the original array is evident. The
six-level nested array offers the highest improvement with
most additional lags through array motion, whereas the MRA
yields the smallest increment of 2 additional lags in the co-
array after array motion. Regarding the RMSE performance,
without the array motion, the six-level nested array provides
the best estimation performance, while the SULA performs the
worst. On the other hand, after the array motion, the six-level
nested array provides the best estimation performance, while
the coprime array performs the worst. Although the original
MHA and the six-level nested array have the same number of
unique lags, the latter has a larger array aperture and thus
yields better estimation performance. The synthetic SULA,
the original and the synthetic MRAs have similar number of

unique lags as well as array aperture and thus lead to close
RMSE performance. Fig. 11 shows the RMSE performance
as the number of snapshots changes for the original and the
synthetic arrays. In this simulation, the input SNR is set to
5 dB, and the number of snapshot varies from 200 to 6,000.
The other parameters are same as those used in Fig. 10. Due
to the difference of the number of unique lags and array
aperture, before the array motion, the the six-level nested
array performs the best, whereas SULA performs worst. After
the array motion, the nested array performs the best and the
coprime array does the worst. The other sparse arrays perform
similarly to Fig. 10.

The co-array MUSIC uses the same parameter values as in
LASSO. Here, the 2-level nested array is adopted to replace
the K-level nested array since the latter only identifies 5
sources before array motion. The simulation RMSE results
with respect to the input SNR and the number of snapshots
are respectively shown in Fig. 12 and Fig. 13. It is clear
that the synthetic array is superior to the original array due
to the increased number of the consecutive lags. The MHA
obtains the highest performance improvement with the highest
additional consecutive lags after array motion, whereas the
MRA and 2-level nested array offer the lowest increment of
2 additional lags. It is noted that before the array motion,
the MRA performs the best, while the MHA and the coprime
arrays perform the worst. The synthetic and original arrays for
the 2-level nested array and the MRA have similar estimation
performance because the numbers of the consecutive lags
corresponding to the synthetic and original array are very
close.
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Fig. 9. Estimated DOAs using co-array MUSIC. (a) The original coprime
array with M = 5 and N = 6 for 18 sources, ξcb = 21; (b) The synthetic
coprime array with M = 5 and N = 6 for 18 sources, ξca = 43; (c) The
Original four-level nested array with L = 5 for 7 sources, ξnb = 9; (d) The
synthetic four-level nested array with L = 5 for 7 sources, ξna = 19; (e)
The original MHA with L = 6 for 15 sources, ξhb = 27; (f) The synthetic
MHA with L = 6 for 15 sources, ξha = 37. (ξnb and ξna are the number
of consecutive lags for the original and synthetic four-level nested array.)

VIII. CONCLUSION

A DOA estimation approach for one-dimensional sparse
array moving platform was presented in this paper. By shifting
the physical sparse array by half wavelength along its axis,
the difference co-array of the combined two array positions
consists of the difference co-array of the original array and
its unit lag shifted versions in and opposite to direction of
motion. The impact of this shifting is filling the majority or
all the holes in EISAs. We assessed the rise in DOFs due to
array motion. It was shown that the SULAs always yields no-
hole co-arrays, whereas the K-level nested array obtains the
highest number of unique lags. We evaluated the effect of array
motion on the number of consecutive lags, and showed that the
MHAs obtain the highest number of consecutive lags. These
results contribute towards better understanding of the offerings
and limitations of the EISAs when considering a moving
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Fig. 10. RMSE vs. SNR for different sparse arrays using LASSO. (CA and
NA denote coprime array and K-level nested array, respectively.)
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Fig. 11. RMSE vs. snapshots for different sparse arrays using LASSO.
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Fig. 12. RMSE vs. SNR for different sparse arrays using MUSIC. (2NA
denotes 2-level nested array.)

platform. Supporting simulation examples were provided for
DOA estimation utilizing the overall degrees of freedom.
These examples demonstrate that EISAs can achieve more
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Fig. 13. RMSE vs. snapshots for different sparse arrays using MUSIC.

DOFs and consecutive lags upon a half wavelength array
motion. The estimation performance depends on the number
of unique lags at the original and the shifted array positions.

APPENDIX A
PROOF OF LEMMA 1

The set S11′ ∪ S22′ can be rewritten as

S11′ ∪ S22′ =
{
M(k1 − k

′

1)− 1
}
∪
{
M(k

′

1 − k1) + 1
}

∪
{
N(k2 − k

′

2)− 1
}
∪
{
N(k

′

2 − k2) + 1
}
,

(54)

where −(N − 1) ≤ k1 − k
′

1 ≤ N − 1,−(M − 1) ≤ k2 − k
′

2 ≤
M − 1.The set S12′ ∪ S21′ can be rewritten as

S12′ ∪ S21′ =
{
Mk1 −Nk

′

2 − 1
}
∪
{
Nk2 −Mk

′

1 − 1
}

∪
{
Nk

′

2 −Mk1 + 1
}
∪
{
Mk

′

1 −Nk2 + 1
}
.

(55)

When k2 = k
′

2 = 0 , the set S12′ ∪ S21′ can be expressed as

S12′ ∪ S21′ = {Mk1 − 1} ∪
{
−Mk

′

1 − 1
}

∪{−Mk1 + 1} ∪
{
Mk

′

1 + 1
}
. (56)

Because 0 ≤ k′

1, k1 ≤ N − 1, then,{
M(k1 − k

′

1)− 1
}

= {Mk1 − 1} ∪
{
−Mk

′

1 − 1
}

{
M(k1 − k

′

1) + 1
}

= {−Mk1 + 1} ∪
{
Mk

′

1 + 1
}
, (57)

S12′ ∪ S21′ can be written as following equation when k2 =
k

′

2 = 0 ,

S12′ ∪ S21′ =
{
M(k1 − k

′

1)− 1
}
∪
{
M(k

′

1 − k1) + 1
}
. (58)

Similarly, when k1 = k
′

1 = 0, S12′ ∪ S21′ can be expressed as

S12′ ∪ S21′ =
{
N(k2 − k

′

2)− 1
}
∪
{
N(k

′

2 − k2) + 1
}
. (59)

Based on (58) and (59), it is clear that S11′ ∪ S22′ forms a
subset of S12′ ∪ S21′ . Therefore, Lemma 1 is proved.

APPENDIX B
PROOF OF LEMMA 2

From the subsection A of the Section IV, we know that
additional 2 lags are obtained besides the holes filled after
array motion. One is the maximum number of the difference
co-array of original array, the other is the minimum number.
Therefore, (37) is proved. (38) is the result of equations (32)–
(35). Next we solve these equations one by one.

A. For equation (32)

When positive filled holes exist, we have

Ml
′

1 −Nl
′

2 − 1 = Ml1 +Nl2, (60)

From (60), we can obtain

M(l
′

1 − l1) = N(l
′

2 + l2) + 1. (61)

Applying (31) and (36) to the two sides of (61), we have
following two inequations

2 ≤ l
′

1 − l1 ≤ N − 2,

1 ≤ l
′

2 + l2 ≤ (M(N − 2)− 1)/N. (62)

Due to 1 ≤ l1 ≤ fix(N − 1 − N/M) , we can obtain the
variation range of variable l

′

1 as 3 ≤ l
′

1 ≤ N − 1. Applying
(31) and (36) to the two sides of (60), we have

M +N ≤Ml
′

1 −Nl
′

2 − 1 ≤M(N − 1)− 1. (63)

From (63) and (62), we can obtain

0 ≤ l
′

2 ≤M − 1− (2M + 1)/N,

1 ≤ l2 ≤ (M(N − 2)− 1)/N. (64)

Rearranging (60), we have the following expressions,

l
′

1 = l1 + l2 + l
′

2 +
(N −M)(l2 + l

′

2) + 1

M
. (65)

It is difficult to solve a underdetermined equation. We give the
results under different relations of M and N. The number of
filled holes is given as:


0, N = M + 1,

(N − 3), N = 2M − 1,

(N − 1− κ1+)α1+, otherwise,

where κ1+ = l2 + l
′

2 + ((N −M)(l2 + l
′

2) + 1)/M is an
integer. Integer α1+ is the number of combinations of l2,l

′

2

to make ((N −M)(l2 + l
′

2) + 1) divisible by M.
Similarly, when the negative filled holes exist, we have the

following expression,

l
′

2 = l2 + l1 + l
′

1 −
(N −M)(l1 + l

′

1) + 1

N
. (66)

The number of filled holes is given as:
0, N = M + 1,

(N − 3), N = 2M − 1,

0, N = βM + 1, β ≥ 2,
(N − 1− κ1+)α1+, otherwise,
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where integer κ1− = l1 + l
′

1 − ((N −M)(l1 + l
′

1) + 1)/N ,
α1− is the number of combinations of l1,l

′

1 to make ((N −
M)(l1 + l

′

1) + 1) divisible by N.
From the above, we have a conclusion for (32). The number

of holes which are filled due to array motion can be expressed
as:

0, N = M + 1,

2(N − 3), N = 2M − 1,

(N − 1− κ1+)α1+ + (M − 1− κ1−)α1−,
2M − 1 > N > M + 1,

(N − 1− κ1+)α1+, N = 2M + 1,

(N − 1− κ1+)α1+ + (M − 1− κ1−)α1−,

N = βM − 1, β ≥ 3,

(N − 1− κ1+)α1+,
N = βM + 1, β ≥ 3,

(N − 1− κ1+)α1+ + (M − 1− κ1−)α1−,
N > 2M + 1, N 6= βM ± 1. β ≥ 3.

B. For equation (33)

The derivation process for (33) is similar to that for (32).
The number of filled holes is given as:



2(M − 2), N = M + 1,

(N − 1− κ2−)α2−, N = 2M − 1,

(M − 1− κ2+)α2+ + (N − 1− κ2−)α2− − 1,
2M − 1 > N > M + 1,

(M − 1− κ2+)α2+ + (N − 4)α2−, N = 2M + 1,

(N − 1− κ2−)α2−, N = βM − 1, β ≥ 3,

(M − 1− κ2+)α2+ + (N − 1− κ2−)α2− − 1,
N = βM + 1, β ≥ 3,

(M − 1− κ2+)α2+ + (N − 1− κ2−)α2− − 1,
N > 2M + 1, N 6= βM ± 1, β ≥ 3.

where κ2+ = l1 + l
′

1 − ((N −M)(l1 + l
′

1)− 1)/N , κ2− =
l2 + l

′

2 +((N −M)(l2 + l
′

2)− 1)/M are integers. Integer α2+

is the number of combinations of l1 and l
′

1 to make (N −
M)(l1 + l

′

1)−1 divisible by N, and integer α2− is the number
of combinations of l2 and l

′

2 to make ((N −M)(l2 + l
′

2)− 1)
divisible by M.

Before combining the conclusions for (32) and (33), note
that there still exist some overlapped holes. We obtain the
following equations by letting (32) equal to (33),

Ml
′

3 −Nl
′

4 − 1 = Nl4 −Ml3 − 1 = ±(Ml1 +Nl2). (67)

Because M and N are coprime, (67) holds when and only
when the following equation holds,

l
′

4 + l4 = M, l
′

3 + l3 = N. (68)

The number of overlapped holes is given as:

0, N = M + 1,

(N − 1− κ2−)α2−, N = 2M − 1,

(N − 1− κ1+)α1+ − 1, N = 2M + 1,

(N − 1− κ2−)α2− − (β − 1),

N = βM − 1, β ≥ 3,

(N − 1− κ1+)α1+ − (β − 1),
N = βM + 1, β ≥ 3,

(N − 1− κ1+)(M − 1− κ+)
+(M − 1− κ1−)(N − 1− κ2−), otherwise.

Therefore, the number of filled holes to satisfy (32) and (33)
is given as:

2(M − 2), N = M + 1,

2(N − 3), N = 2M − 1,

(M − 1− κ2+)α2+ + (N − 4)α2− + 1, N = 2M + 1,

(N − 1− κ1+)α1+ + (M − 1− κ1−)α1− − 1 + β − 1,

N = βM − 1, β ≥ 3,

(M − 1− κ2+)α2+ + (N − 1− κ2−)α2− − 1 + β − 1,
N = βM + 1, β ≥ 3,

(N − 1− κ1+)α1+ + (M − 1− κ1−)α1−
+(M − 1− κ2+)α2+ + (N − 1− κ2−)α2−

−(N − 1− κ1+)(M − 1− κ2+)

−(M − 1− κ1−)(N − 1− κ2−), otherwise.

C. For equations (34) and (35)

By comparing (32) and (33) with (34) and (35), we conclude
that, the left sides of (33) and (34) are opposite in sign. That
means that the positive holes filled for (34) have the same
positions with the negative holes filled for (33). The negative
holes filled for (34) have the same positions with the positive
holes filled for (33). The same situation happens in (32) and
(35). Therefore, the number of holes filled in (32) and (33) is
same as that in (34) and (35). However, there exist the same
lags between (32) and (35) as well as between (33) and (34),
which can be calculated from the following equations,

Ml
′

3 −Nl
′

4 − 1 = Nl4 −Ml3 + 1 = ±(Ml1 +Nl2),

Nl
′

4 −Ml
′

3 − 1 = Ml3 −Nl4 + 1 = ±(Ml1 +Nl2), (69)

where l3, l
′

3 ∈ [0, N − 1] , l4, l
′

4 ∈ [0,M − 1].
Similarly, combining (69) and the conclusion of (32) and

(33), we can obtain (38).

APPENDIX C
PROOF OF LEMMA 3

The first hole position of difference co-array of the synthetic
array is the second hole position of the first consecutive three
holes of difference co-array of the original array. Due to the
symmetry, here we just consider the positive part of the co-
array. For set S̃12, wen can obtain following equations if the
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consecutive three holes of difference co-array of the original
array exist.

Ml
′

1 −Nl
′

2 + 1 = Mlm1 +Nln1,

Ml
′

1 −Nl
′

2 + 2 = Mlm2 +Nln2,

Ml
′

1 −Nl
′

2 + 3 = Mlm3 +Nln3. (70)

where (lmj , lnj) ∈ L, j = 1, 2, 3. The first hole position of the
synthetic array is determined by solving the minimum value
of Mlm1 +Nln1 in above equation.

(70) can be rewritten as

l1
′ − lm1 = ((N −M)(l2

′ + ln1)− 1)/M + l2
′ + ln1,

l
′

1 − lm2 = ((N −M)(l2
′ + ln2)− 2)/M + l2

′ + ln2,

l
′

1 − lm3 = ((N −M)(l2
′ + ln3)− 3)/M + l2

′ + ln3. (71)

Similar to Appendix B, we obtain

1 ≤ l
′

2 + lnj ≤ (M(N − 2)− 1)/N. (72)

and the first hole position ph is given as:



3M +N, N = M + 1,M > 5,

M + 3N + 1,

N = 2M − 1,M ≥ 5 & N = βM − 1, β ≥ 3,M ≥ 4,

(κmax + + 1− κh1+)M + (αh1+ − (αmin + − 1))N + 1,

2M − 1 > N > M + 1,M > 7,

(5 + 2(β − 2))M +N + 1,
N = βM + 1, β ≥ 2,M ≥ 4,

(κmax + 1− κh1+)M + αh1+N + 1,
N > 2M + 1, N 6= βM ± 1, β ≥ 3,

where integer κh1+ = ((N −M)(l
′

2 + ln1)− 1)/M+l
′

2+ln1,
αh1+ = l

′

2 + ln1, κh2+ = ((N −M)(l
′

2 + ln2)− 2)/M + l
′

2 +
ln2, αh2+ = l

′

2 + ln2, κh3+ = ((N −M)(l
′

2 + ln3)− 3)/M +
l
′

2 + ln3, αh3+ = l
′

2 + ln3. And integer κmax + =
max(κh1+, κh2+, κh2+), αmin + = min(αh1+, αh2+, αh2+).

For set S̃−12,

l
′

2 − ln1 = l
′

1 + lm1 − ((N −M)(l
′

1 + lm1) + 1)/N,

l
′

2 − ln2 = l
′

1 + lm2 − ((N −M)(l
′

1 + lm2) + 2)/N,

l
′

2 − ln3 = l
′

1 + lm3 − ((N −M)(l
′

1 + lm3) + 3)/N, (73)

and ph is given as:



no holes, N = M + 1,M > 5,

2M + 3N + 1,

N = 2M − 1,M ≥ 5 & N = βM − 1, β ≥ 3,M ≥ 4,

αh1−M + (κmax− + 1− κh1−)N + 1,

2M − 1 > N > M + 1,M > 7,

(6 + 2(β − 2))M +N + 1,
N = βM + 1, β ≥ 2,M ≥ 4,

(αh1− − αmin− + 1)M + (κmax− + 1− κh1−)N + 1,
N > 2M + 1, N 6= βM ± 1, β ≥ 3,

where integer κmax− = max(κh1−, κh2−, κh2−), αmin− =
min(αh1−, αh2−, αh2−). Integer κh1− = l

′

1 + lm1 −
((N −M)(l

′

1 + lm1) + 1)/N , αh1− = l
′

1 + lm1, κh2− =
l
′

1 + lm2 − ((N −M)(l
′

1 + lm2) + 2)/N , αh2− = l
′

1 + lm2,
κh3− = l

′

1 + lm3 − ((N −M)(l
′

1 + lm3) + 3)/N , αh3− =
l
′

1 + lm3 .
Combining the conclusions of S̃12 and S̃−12, we obtain the

expressions of Lemma 3.
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