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Robust Time-Frequency Analysis of Multiple
FM Signals with Burst Missing Samples
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Abstract—In this letter, we consider sparsity-based time-
frequency representation (TFR) of frequency modulated (FM)
signals in the presence of burst missing samples. In the proposed
method, three key procedures are used to mitigate the effect of
missing samples. First, each slice in the instantaneous autocor-
relation function (IAF) corresponding to the time or lag domain
is converted to a Hankel matrix, and whose missing entries are
recovered via the atomic norm-based approach. Second, a signal-
adaptive time-frequency kernel is used to mitigate the undesired
cross-terms and the residual artifacts due to missing samples.
Third, we apply a rank deduction technique on the obtained
IAF to provide reliable TFR reconstruction results.

Index Terms—Time-frequency analysis, burst missing samples,
atomic norm, sparse reconstruction, nonstationary signal.

I. INTRODUCTION

FREQUENCY modulated (FM) signals with time-varying
instantaneous frequency (IF) are an important class of

nonstationary signals, which find broad applications such as in
radio astronomy, vibration acoustic, and communication [1]–
[6]. Time-frequency representation (TFR) plays an important
role in nonstationary signal analysis. In practice, missing
data samples may occur in the received signal due to, e.g.,
impulsive noise removal, or intentional undersampling. Such
missing samples prohibit providing accurate IF estimation
based on conventional time-frequency (TF) analysis methods.

In recent years, several methods have been developed to
enable robust TFR in the presence of random missing samples
[7], [8]. TF kernels are used to mitigate the effects of artifacts
due to missing samples while suppressing cross-terms, and
compressive sensing-based methods are exploited to utilize the
sparsity in the TF domain [7]. Compared to random missing
samples, a more realistic and more challenging problem is the
existence of burst missing data samples [9]–[11], which may
arise from propagation fading and measurement obstructions.

A missing data iterative adaptive (MIAA) approach [12]
was developed for spectrum analysis of stationary signals with
arbitrary missing patterns. However, this method is not suitable
to directly deal with nonstationary signals. Recognizing the
behavior of missing samples to be similar to their local
neighborhoods, an interpolation method based on empirical
mode decomposition was developed in [13], but it becomes
inefficient when few samples are available around the missing
bursts. A data-dependent TF kernel was developed in [14]
based on the minimization of the Gini’s index. By utilizing
the stationarity of the instantaneous auto-correlation function
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(IAF) with respect to the lag, an iterative sparse reconstruction
approach is developed to fill in IAF missing entries [11]. How-
ever, both methods [14] and [11] do not perform well for multi-
component signals with distinct strengths because the TFR of
the weak signal component may be obscured by the residual
artifacts of the stronger ones. An adaptive local filtering-based
directional TF distribution method was proposed in [10] to
handle multi-component signals with distinct magnitudes in
the presence of burst missing samples. However, the success
of this method replies on the performance of kerneled TFR.

In this letter, we propose a new approach that robustly
reconstruct the TFR of multiple FM signals with distinct
magnitudes in the presence of burst missing samples. Based
on the fact that artifacts resulting from missing samples can be
mitigated by interpolating the associated missing entries in the
IAF while suppressing the cross-terms using TF kernels, the
proposed method improves the IAF such that it is close to the
adaptively kerneled IAF obtained from the full data without
missing samples. Toward this end, the proposed method first
recovers missing entries through interpolation using the atomic
norm approach, and then applies the adaptive optimal kernel
(AOK) [15] to the interpolated IAF to mitigate the effect of
cross-terms and further reduces the residual effect of missing
samples. In addition, we utilize the rank deduction technique
on the interpolated and kerneled IAF and apply sparse TFR
reconstruction technique to further improve the TFR.

Notations : Lower-case (upper-case) bold characters are
used to denote vectors (matrices). (·)∗, (·)T and (·)H denote
the complex conjugation, transpose and the Hermitian trans-
pose, respectively. Fx(·) and F−1

x (·) represent the discrete
Fourier transform (DFT) and inverse DFT (IDFT) with respect
to x, respectively. diag(·) denotes a vector consisting of the
diagonal elements of a matrix. Y = H(x, p) converts vector
x to Hankel matrix Y with pencil parameter p, whereas
x = }(Y ) defines the inverse operation of Hankel matrix
conversion. d·e denotes the ceiling function. T (x) denotes a
Hermitian Toeplitz matrix with x as its first column.

II. SIGNAL MODEL AND TIME-FREQUENCY
REPRESENTATIONSA. Signal Model

Consider a discrete-time signal, x(t), t = 1, · · · , T , which
consists of a single or multiple FM components. Denote r(t)
as its observation data with L missing data bursts. The bursts
of missing samples are randomly and uniformly distributed
over time and do not overlap with each other.

The received signal r(t) can be taken as the product of the
original signal x(t) and an “observation mask”, R(t), i.e.,

r(t) = x(t) ·R(t). (1)
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Here, R(t) is a binary sequence, whose elements are 1 for the
observed samples and 0 for the missing samples.

B. Instantaneous Auto-correlation Function
The IAF of x(t) is defined as

Rxx(t, τ) = x(t+ τ)x∗(t− τ), (2)

where τ is the time lag. Recalling (1), the IAF of r(t) is
expressed as

Rrr(t, τ) = Rxx(t, τ)RRR(t, τ), (3)

where RRR(t, τ) is the IAF of the observation mask R(t).
Each burst of missing data samples results in a missing IAF
strip, which causes a convolving sinc function applied to the
TF domain. Therefore, sinc-like artifacts will obscure the true
signal IF signatures in the TF domain and lead an inaccurate
identification of the true IFs [11].

C. Sparse Reconstruction of Time-Frequency Representation
The Wigner-Ville Distribution (WVD) is often referred to

as the prototype bilinear TF distribution. It can be obtained
via the DFT of the IAF Rxx(t, τ) with respect to τ , i.e.,

Wxx(t, f) = Fτ [Rxx(t, τ)] =
∑
τ

Rxx(t, τ)e−4πfτ , (4)

where  =
√
−1 is the imaginary unit. In (4), 4π is used

instead of 2π since the time-lag τ is required to be an integer
so that the actual lag in (2) is 2τ . The WVD can also be
obtained from the 2-D DFT of the ambiguity function (AF),

Gxx(θ, τ) = Ft [Rxx(t, τ)] =
∑
t

Rxx(t, τ)e−2πθt, (5)

which is the DFT of the IAF with respect to time t.
The bilinear nature of the WVD renders cross-terms to

appear midway between true signal components in the case
of nonlinear or multicomponent signals. Such cross-terms
prohibit accurate analysis and interpretation of the signal IF
signatures [16]. To remedy this issue, TF kernels are designed
to suppress cross-terms while preserving auto-terms. TF ker-
nels can be classified into data-independent (fixed) kernels
and data-dependent (adaptive) kernels. Choi-Williams [17] and
cone-kernel [18] are examples of fixed kernels, whereas the
AOK is a commonly used adaptive kernel. Generally, adaptive
kernels outperform fixed counterparts since they are optimized
based on the signal characteristics.

Because FM signals are sparsely presented in the TF do-
main, obtaining TFR can be viewed as a sparse reconstruction
problem [7], [11], [19]. Denote yt as an IAF slice that contains
all IAF entries along the τ dimension corresponding to time
t, and st as the corresponding TFR slice for the same time t.
Here, yt may denote the original IAF, which corresponds to
the WVD, or its smoothed version as a result of applying a
TF kernel. The non-zero entries of st can be reconstructed as

ŝt = arg min
st
‖st‖0 s.t. yt = Φst, ∀t, (6)

where Φ is the IDFT dictionary matrix. Many compressive
sensing techniques, such as the orthogonal matching pursuit
(OMP) [20], least absolute shrinkage and selection operator
(LASSO) [21], and Bayesian sparse learning techniques [22],
[23], can be used to solve problem (6).

III. PROPOSED TFR RECONSTRUCTION TECHNIQUE

In this section, we describe the proposed technique which
improves the TFR reconstruction through three major stages.

A. Stage 1: IAF Interpolation via Atomic Norm

Assume that there are P frequency components at time
instant t, i.e., the TF slice wt is a sparse vector with P non-
zero components. Because the IAF is the IDFT of WVD with
respect to f , the IAF slice yt ∈ CQ at time instant t can be
expressed as

yt = F−1
f (wt) =

P∑
p=1

cpe
2πfpτ , (7)

where cp denotes the complex amplitude of the p-th signal
component, fp is the corresponding signal frequency, and τ =
[τ1, · · · , τQ]T is the time lag vector. We solve this problem in
the context of Hankel matrix completion [24] by forming the
following Hankel matrix from yt:

Ht = H(yt, q1) =


yt1 yt2 · · · ytq2
yt2 yt3 · · · ytq2+1
...

...
. . .

...
ytq1 ytq1+1 · · · ytQ

 , (8)

where q1 is the pencil parameter, which is usually set to
dQ/2e, and q2 = Q− q1 + 1.

All the columns in Ht share the same P frequency com-
ponents. An atom to represent Ht can be expressed as

A(f,φ) = a(f)φH, (9)

where a(f) = e2πfτ ∈ Cq1 , f ∈ [0, 1), φ ∈ Cq2 with
‖φ‖2 = 1. The frequency set is continuously defined and not
restricted on the grid. Then, we can define the atom set for
Ht as A = {A(f,φ)|f ∈ [0, 1), ‖φ‖2 = 1} . Following the
recipe in [25]–[27], atomic norm of Ht can be expressed as

‖Ht‖A = inf
{
β > 0 : Ht ∈ βconv(A)

}
= inf

{∑
p

|cp| : Ht =
∑
p

|cp|a(fp,φp)

}
,

(10)

where conv(A) is the convex hull of A. Then, the signal
recovery from a noisy measurement can be converted into an
atomic norm minimization problem as

ŷt = arg min
yt
‖H(yt, q1)‖A s.t. ‖ytΩt − ztΩt‖2 ≤ ε, (11)

where zt = [Rrr(t, τ1), · · · , Rrr(t, τQ)]
T denotes the t-th

slice of the IAF of the observed signal r(t), and Ωt =
[RRR(t, τ1), · · · , RRR(t, τQ)]

T denotes the observation pat-
tern, i.e., the t-th slice of the IAF of the observation mask
R(t), and ε denotes the noise. ‖H(yt, q1)‖A in (11) can be
computed via semidefinite programming (SDP) [26], [28] as:

min
u,W ,yt

Tr(T (u)) + Tr(W )

s.t.
[

T (u) H(yt, q1)
H(yt, q1)H W

]
� 0, ‖ytΩt − ztΩt‖2 ≤ ε.

(12)
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The structure of the IAF can be used to reduce the dimension
of unknowns and renders better TFR reconstruction perfor-
mance. It is clear from (2) that yt is Hermitian symmetrical
about τI = 0, where I is the index of the center element in
τ , i.e.,

[
ytI−1, · · · , yt2, yt1

]H
=
[
ytI+1, · · · , ytQ−1, y

t
Q

]T
. Then,

yt =
[
yt1, · · · , ytI−1, y

t
I ,
(
ytI−1

)∗
, · · · ,

(
yt1
)∗]T

. (13)

As such, the number of unknowns in yt is reduced to half.
When dealing with a finite data sequence, the IAF has a

diamond shape with a time-varying width of Q = T−|T+1−
2t| because of zero-padding. When Q is small, the recovery of
missing entries of yt becomes unreliable. To avoid this issue,
we recover the missing entries of yt based on the approach
described above only for 0.25T ≤ t ≤ 0.75T . For the missing
entries in the triangular regions of t < 0.25T and t > 0.75T
(see Fig. 1), we utilize the sparsity of the short-time AF and
the similar DFT relationship between the IAF and the AF to
recover the missing entries for 0 ≤ τ ≤ 0.25T , whereas those
for −0.25T ≤ τ < 0 are obtained based on the conjugate
property of the IAF. The obtained IAF after performing the
atomic norm interpolation is denoted as R̂(1)

rr (t, τ).

B. Stages 2 and 3: TF Kernel and Rank Reduction

Because the use of atomic norm cannot suppress cross-terms
which exist even in the absence of missing samples, we use
the AOK to obtain a signal-adaptive kernel, denoted in the AF
domain as Ψ(t, τ), and obtain the kerneled IAF as,

R̂(2)
rr (t, τ) = F−1

t

[
R̂(1)
rr (t, τ)Ψ(t, τ)

]
. (14)

After the previous two stage processing, true signal com-
ponents would dominate the interpolated and kerneled IAF.
Next, we utilize the low-rank property of the true IAF to
further reduce the residual effects of cross-terms and artifacts
in R̂(2)

rr (t, τ). Denote ÿt as the t-th column of IAF R̂(2)
rr (t, τ).

For each time instant t for t = 1, · · · , T , convert ÿt to a
Hankel matrix Ḧ

t ∈ Cq1×q2 in the same way as (8). The
singular value decomposition (SVD) yields:

Ḧ
t

= U tΣt
(
V t
)H
, (15)

where U t ∈ Cq1×q1 and V t ∈ Cq2×q2 are column-
orthonormal matrices, and Σt ∈ Cq1×q2 is a diagonal ma-
trix with singular values [σ2

1 , σ
2
2 , · · · , σ2

min(q1,q2)] located in
the diagonal. We select N principal singular values and
form diag(Σ̄

t
) = [σ2

1 , · · · , σ2
N , · · · , 0, 0] with 0 < N ≤

min(q1, q2). A rule of thumb for determining the value of N is
to retain enough singular values to make up around 95% of the
energy in Σt [29]. Thus, the t-th column of the rank-reduced
kerneled interpolated IAF R̂

(3)
rr (t, τ) is obtained as[

R̂(3)
rr (t, τ1), · · · , R̂(3)

rr (t, τQ)
]T

= ȳt, (16)

where ȳt = }
[
U tΣ̄

t (
V t
)H]

. R̂(3)
rr (t, τ) is used to reconstruct

the TFR using OMP by solving (6) for each time instant.

Along direction 

Along 

direction

t
t

Fig. 1. IAF with burst missing samples for atomic norm-based processing.

IV. SIMULATION RESULTS

We consider two sets of FM signals, i.e., two-component
linear and nonlinear FM signals with different amplitudes,

x(t) = exp (2πΦ1(t)) + 0.5 exp (2πΦ2(t)) , (17)

t = 1, · · · , T . We assume T = 128, and each missing burst
contains 4 missing entries. Unless otherwise specified, there
are 48 missing samples and no noise is considered.

A. Two-component Linear FM
We first consider the following two-component linear FM

signal with their phase laws given as:

Φ1(t) = 0.05t+ 0.2t2/T, Φ2(t) = 0.2t2/T. (18)

Figs. 2(a) and 2(b) show the IAF and the WVD in the absence
of missing samples. The missing entries in the IAF are clearly
seen in Fig. 2(c) and cause localized artifacts in the WVD as
shown in Fig. 2(d). Note that the amplitude difference makes
the detection of the weak signal challenging. Fig. 2(e) shows
that the combined use of the AOK and the OMP fails to
effectively mitigate the artifacts and detect the weak signal.

Fig. 2(f) depicts the recovered IAF R̂
(1)
rr (t, τ) via the

atomic norm-based reconstruction (Stage 1), which restores
the missing entries, and the result is very close to the ideal
IAF Rxx(t, τ) shown in Fig. 2(a) obtained in the absence of
missing samples. The corresponding WVD is shown in Fig.
2(g), which is close to the ideal WVD, shown in Fig. 2(b),
obtained in the absence of missing samples.

Figs. 2(h) and 2(i) show the IAF R̂
(2)
rr (t, τ) and the cor-

responding TFR after further applying the AOK (Stage 2). It
is clear that both artifacts and cross-terms are substantially
mitigated but there are still some residual artifacts. Figs.
2(j) and 2(k) show the IAF and clear two-component TFR
after reduced-rank processing (Stage 3). Fig. 2(l) shows the
final TFR obtained through sparse reconstruction using OMP.
Compared to Fig. 2(d), the occupancy rate of the auto-terms
of the TFR in Fig. 2(l) increases from 39.7% to 98.5%.

B. Two-component nonlinear FM
Now we consider a two-component nonlinear FM signal

with the following instantaneous phase laws:

Φ1(t) = 0.05t+ 0.05t2/T + 0.1t3/T 2,

Φ2(t) = 0.15t+ 0.025t2/T + 0.1t3/T 2.
(19)

Fig. 3(a) shows the IAF in the absence of missing samples,
and Fig. 3(b) shows the corresponding WVD.

In the sequel, we consider the signal in the presence of
burst missing samples. Fig. 3(c) shows the IAF which exhibits
clear missing entry patterns. Fig. 3(d) shows the corresponding
WVD with artifacts around the signal IFs. The TFR obtained
from sparse reconstruction using AOK and OMP, as shown in
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Fig. 2. Results for two-component linear FM signal. (a) IAF without burst missing samples; (b) WVD without burst missing samples; (c) IAF with burst
missing samples; (d) WVD with burst missing samples; (e) TFR using OMP and AOK with burst missing samples; (f) IAF for stage 1 (atomic norm); (g)
WVD for stage 1 (atomic norm); (h) IAF for stage 2 (atomic norm + AOK); (i) TFR for stage 2 (atomic norm + AOK); (j) IAF for stage 3 (atomic norm +
AOK + rank deduction); (k) TFR for stage 3 (atomic norm + AOK + rank deduction); (l) proposed TFR.
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Fig. 3. Results for two-component nonlinear FM signal. (a) IAF without burst missing samples; (b) WVD without burst missing samples; (c) IAF with burst
missing samples; (d) WVD with burst missing samples; (e) TFR using OMP and AOK with burst missing samples; (f) IAF for stage 1 (atomic norm); (g)
WVD for stage 1 (atomic norm); (h) IAF for stage 2 (atomic norm + AOK); (i) TFR for stage 2 (atomic norm + AOK); (j) IAF for stage 3 (atomic norm +
AOK + rank deduction); (k) TFR for stage 3 (atomic norm + AOK + rank deduction); (l) proposed TFR.

Fig. 3(e), provides a much better result but fails to consistently
identify the IFs of the two components, as the second signal
component is misguided by the cross-terms at the beginning
of time. Fig. 3(f) depicts the IAF R̂

(1)
rr (t, τ) after atomic

norm-based recovery where most missing entries are correctly
interpolated. The resulting WVD shown in Fig. 3(g) is much
closer to the WVD in the full-data case as shown in Fig. 3(b),
and exhibits a significant improvement from Fig. 3(d). Clearly,
the nonlinear FM signal case is much more challenging as
compared to the linear FM signal counterpart because of the
much more complicated TF cross-terms involved in this case.

As depicted in Figs. 3(h) and 3(i), the use of AOK further
substantially mitigates the cross-terms, yielding much cleaner
TFR. The subsequent rank reduction reduces residual aliasing
and renders much more consistent TFR, as shown in Figs. 3(j)
and 3(k). Finally, applying the OMP yields high-resolution
TFR results with a high fidelity, as shown in Fig. 3(l).
Compared to Fig. 3(d), the occupancy rate of the auto-terms
of the TFR in Fig. 3(l) increases from 14.06% to 98.11%.

Next, we consider noisy signal measurements with different
levels of the input SNR and missing rate. We report the mean
square error (MSE) between the interpolated IAF and the
ideal IAF (obtained from noiseless signal with no missing
samples) as a performance indicator in Table I. The baseline

TABLE I
MSE BETWEEN STAGE 1 IAF (Stg1) AND ORIGINAL IAF (Org)

SNR Linear FM Nonlinear FM

(dB) 37.5% 50% 37.5% 50%
Stg1 Org Stg1 Org Stg1 Org Stg1 Org

Inf 0.00 0.57 0.14 0.63 0.22 0.44 0.45 0.60
25 0.02 0.57 0.17 0.64 0.23 0.45 0.45 0.60
15 0.06 0.58 0.24 0.64 0.27 0.47 0.48 0.60
5 0.35 0.69 0.49 0.71 0.52 0.58 0.65 0.67

used for comparison is the original IAF obtained without
performing interpolation. 50 simulation runs are performed
for each scenario. As shown in Table I, our proposed method
consistently reduces the MSE of the reconstructed IAF.

V. CONCLUSION

In this letter, we propose a new algorithm to achieve high-
fidelity TFR reconstruction for multi-component FM signals
in the presence of burst missing samples. The proposed algo-
rithm effectively mitigates the effect of burst missing samples
by interpolating the missing entries in the IAF domain via
the atomic norm-based approach. The AOK is then used to
suppress the cross-terms, and rank deduction technique further
reduces the residual aliasing. The effectiveness of the proposed
algorithm is verified for both linear and nonlinear FM signals.
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