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ABSTRACT

This paper proposes efficient target localization methods for a passive radar system using bistatic time-of-arrival
(TOA) information measured at multiple synthetic array locations, where the position of these synthetic array
locations is subject to random errors. Since maximum likelihood (ML) formulation of this target localization
problem is a non-convex optimization problem, semi-definite relaxation (SDR)-based optimization methods in
general do not provide satisfactory performance. As a result, approximated ML optimization problems are
proposed and solved with SDR plus bisection methods. For the case without position errors, it is shown that the
relaxation guarantees a rank-one solution. The optimization problem for the case with position errors involves
only a relaxation of a scalar quadratic term. Simulation results show that the proposed algorithms outperform
existing methods and provide mean square position error performance very close to the Cramer-Rao lower bound
even for larger values of noise and position estimation errors.

1. INTRODUCTION

In recent years, bistatic passive radar (BPR) systems, which utilize broadcast signals as sources of opportunity,
have attracted significant interests due to their low cost, covertness, and availability of rich illuminator sources
[1–4]. Compared to conventional active radar systems which typically operate in a monostatic mode and emit
stronger signals with a wide signal bandwidth, BPR systems use broadcast signals which in general are very
weak and have an extremely narrow bandwidth. From a target localization perspective, these features make it
difficult to accurately estimate target positions exploiting a BPR system. In addition, BPR receivers may often
be implemented on aerial or ground moving vehicles. In this case, the radar platform may only have inaccurate
knowledge about its own instantaneous position. This uncertainty is caused by the accuracy limitation of the
positioning system as well as multipath propagations.

Target localization is an important task that received extensive studies in various applications, such as
wireless communications, sensor networks, urban canyon, and through-the-wall radar systems [5–8]. Specifically,
multi-lateration techniques utilize the range information observed at multiple positions, which are distributed
over a region, to uniquely localize a target. Depending on the applications, range information can be obtained
using time-of-arrival (TOA), time-delay-of-arrival (TDOA), and received signal strength indicator (RSSI). On
the other hand, the observation positions may be achieved using fixed receivers, or synthesized using a single
moving platform. In the latter case, the receiver positions are subject to inaccuracy.

In all these applications, maximum likelihood (ML) estimation is considered as a powerful method of esti-
mating the targets’ location, which in general is a non-convex optimization problem. When the measurement
noise is sufficiently small, the ML estimation problem may be solved using linearized least squares (LLS) es-
timation methods [5, 7]. The key steps of the LLS estimation methods are linearizing the objective function
using Taylor’s series expansion at some initial guess of target position and updating it with the least squares
(LS) solution in an iterative approach. Like in many iterative optimization techniques for non-convex problems,
however, the accuracy of the LLS estimator highly depends on the initial guess of the target’s location. This
has motivated researchers to consider more efficient designs. One such approach is the semi-definite relaxation
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(SDR) technique [6, 9–11], which converts a non-convex optimization problem into a convex one by relaxing
certain rank constraints. It is worthwhile to mention that SDR-based approaches outperform computationally
efficient two-step weighted least squares method proposed in [12], especially when the noise level is high and the
sensor positions are not perfectly known.

The accuracy (or tightness) of SDR techniques, however, is problem specific, as shown in [13] for the TOA
based optimization problems. For example, in optimization problems based on TDOA [9] and TOA [10], where
an unknown time instant of the source’s signal transmission is also optimized, SDR relaxations may not be tight
and, thus, the penalty function approach is introduced. This is true also for robust designs where sensor positions
are subject to certain random errors [9, 10]. In this context, the authors in [14] propose to use an approximate
ML function in the SDR-based source localization problem, where the main idea is to neglect the second-order
terms of noise signal [12].

In this paper, we propose an approximated ML estimation approach for target localization in a BPR system
using bistatic TOA information measured at different locations of a moving receiver. As we discussed above,
the range resolution is poor because of the narrow signal bandwidth and weak signal levels, and the receiver
positions are subject to inaccurate knowledge of their own positions. Therefore, an optimization problem is also
formulated for the case where the receiver positions are subject to estimation errors. The underlying optimization
problems are still non-convex, but can be reformulated as convex problems using SDR and solved in conjunction
with the bisection method. When there are no position errors, the SDR is confirmed to provide a rank-one
solution. When there are estimation errors, the corresponding optimization problem involves only a relaxation
of a quadratic scalar term.

The target localization problem and optimization technique described in this paper differ from existing
literature in a number of ways. In contrast to the optimization problems in [6] and [13], where the objective
function is solely a function of monostatic range, the objective function in our case involves bistatic range,
which makes accurate target position estimation much more challenging. Further, in contrast to [9] and [10],
where SDR of several variables and penalty function approach are employed, our approach involves SDR of only
one variable, though in conjunction with the bisection approach. It is worthwhile to emphasize that the SDR
for perfectly known positions guarantees rank-one solutions, whereas the optimization problem for imperfectly
known positions involves relaxation of only a scalar quadratic term. For these reasons, the proposed method
provides better performance than those of [9, 10] and does not require refinement through local optimization.

Notations: Upper (lower) bold face letters will be used for matrices (vectors); (·)T , In, ||·||, tr(·), and A � 0
denote transpose, n× n identity matrix, Euclidean norm, matrix trace operator, and positive semi-definiteness
of A, respectively.

2. SYSTEM MODEL

Consider a BPR system in which a moving receiver observes the direct signal from an illuminator and the
reflected signal from a target at M different positions. The TOA of the direct signal from the illuminator at the
ith receiver position, where 1 ≤ i ≤M , is given by

τd,i =
1

c
||t− r̃i||, (1)

where c is the speed of light, t and r̃i are column vectors of length n that represent, respectively, the coordinates
of the illuminator and the receiver at the ith position. Depending on applications, n is 2 for a two-dimensional
coordinate system and 3 for a three-dimension coordinate system. t is assumed to be stationary and precisely
known. The TOA of the target reflected signal at the ith receiver position is given by

τb,i =
1

c
{||t− p||+ ||p− r̃i||} , (2)

where p is the n×1 vector representing the location information of the target. By correlating the target reflected
signal and the direct path, the effective TDOA between τd,i and τb,i can be estimated as

τ̄i = τb,i − τd,i + n̄i =
1

c
[||t− p||+ ||p− r̃i|| − ||t− r̃i||] + n̄i, (3)



where n̄i is the measurement noise, which is assumed to be zero-mean Gaussian distributed. For notational
simplicity, we denote τi = cτ̄i and ni = cn̄i. In this case, the ML estimate of the target location is expressed as

p̂ = argmin
p

M
∑

i=1

[τ̃i − ||t− p|| − ||p− r̃i||]
2
, (4)

where

τ̃i = τi + ||t− r̃i||. (5)

Note that the knowledge of the true position of the ith receiver, r̃i, may be inaccurate. Denote the estimated
receiver position by ri. The relationship between r̃i and ri is expressed as

r̃i = ri + ei (6)

where ei is the random estimation error for the ith receiver position.

3. PROPOSED OPTIMIZATION APPROACHES

The unconstrained minimization problem (4) is non-convex. Thus, it is difficult to obtain the global optimum
solution with a reasonable complexity. The SDR-based optimization methods applied in [9,10] may not be tight
enough in general and, thus, may often fail to provide performance sufficiently close to CRLB. In this section and
inspired from [12], we propose an alternative approach that approximates the ML target localization problem.
However, this approximate ML problem is shown to be less sensitive to the SDR and perform better than the
methods that solve the exact ML problem.

3.1 Optimization without Receiver Position Error

We first consider the case where the receiver positions are exactly known, i.e., r̃i = ri. Denote τi = τoi + ni,
where τoi is the noise-free observation. Then, from (7), we have

τoi = ||t− p||+ ||ri − p|| − ||t− ri|| (7)

or equivalently

τ̃oi − ||t− p|| = ||ri − p||, (8)

where τ̃oi = τoi + ||t− ri||. Squaring both sides of (8) and substituting τ̃oi = τ̃i − ni into (8), we obtain

τ̃2i − 2(τ̃i − q)ni + n2
i − 2τ̃iq + ||t||

2 − ||ri||
2 − 2(t− ri)

Tp = 0, (9)

where q = ||t− p||. Neglecting the second-order terms of the noise, n2
i , and stacking (9) for all i, we obtain the

following expression

u−Bz ≈ Dn, (10)

where

u =
[

||t||2 − ||r1||
2 + τ̃21 , · · · , ||t||

2 − ||rM ||
2 + τ̃2M

]T
,

B = 2











(t− r1)
T τ̃1

(t− r2)
T τ̃2

...
...

(t− rM )T τ̃M











,

D = 2











τ̃1 − q 0 · · · 0
0 τ̃2 − q · · · 0
...

...
...

...
0 0 · · · τ̃M − q











,

z = [pT , q]T ,

n = [n1, n2, · · · , nM ]T . (11)



Note that n is a vector of zero-mean i.i.d. Gaussian random variables of variance σ2
n. From (10), the noise vector

can be approximated as

n ≈ D−1(u−Bz). (12)

As a result, the ML target localization problem can be approximated as the following minimization problem

min
z

1

σ2
n

(u−Bz)TD−1D−1(u−Bz)

s.t. q , z(n+ 1) = ||t− p||, (13)

which, after omitting the constant scaling factor 1

σ2
n

, can be expressed as

min
z

M
∑

i=1

(ui − bT
i z)

2

(τ̃i − q)2

s.t. q = ||t− p||, (14)

where ui is the ith element of u and bT
i is the ith row of B. We define p , z̃ = [z(1), · · · , z(n)]T , b̃T

i =
[bi(1), · · · , bi(n)] and vi = bi(n + 1), where bi(k) is the kth element of bT

i . The objective function (13) can be
expressed as

fob =

M
∑

i=1

[

ui

τ̃i − q
−

b̃T
i z̃

τ̃i − q
−

viq

τ̃i − q

]2

, (15)

which, after some manipulations, can be expressed as

fob = [z̃T , 1]G(q)[z̃T , 1]T (16)

where the (n+ 1)× (n+ 1) matrix G(q) is given by

G(q) =













M
∑

i=1

b̃ib̃
T
i

(τ̃i − q)2

M
∑

i=1

b̃i(viq − ui)

(τ̃i − q)2

M
∑

i=1

b̃T
i (viq − ui)

(τ̃i − q)2

M
∑

i=1

(viq − ui)
2

(τ̃i − q)2













. (17)

Thus, the minimization problem (14) is given by

min
z̃,q

tr

{[

z̃

1

]

[z̃T , 1]G(q)

}

s.t. q2 = ||t− p||2 ←→ q2 = tr

{[

z̃

1

]

[z̃T , 1]

[

In t

−tT tT t

]}

, (18)

which is clearly a non-convex optimization problem. We define Z̃ = z̃z̃T , which is relaxed as Z̃ � z̃z̃T , i.e.,
Z̃− z̃z̃T is positive semi-definite. This yields the following optimization problem

min
z̃,Z̃,q

tr

{[

Z̃ z̃

z̃T 1

]

G(q)

}

s.t. q2 = tr

{[

Z̃ z̃

z̃T 1

] [

In t

−tT tT t

]}

,

[

1 z̃T

z̃ Z̃

]

� 0. (19)



For a given q, the above optimization problem is a convex function of z̃ and Z̃. However, the joint optimization
over q, z̃ and Z̃ is not convex. Nevertheless, since q ≥ 0 is a scalar variable, the joint optimization problem can
be solved by using one dimensional ( e.g., bisection) search with respect to q. Assume that the optimum q lies in
the interval [ql, qu]. It is obvious in the underlying problem that ql = 0. The algorithm (Algorithm 1) for solving
(19) is then provided below.

• 1) Initialize ql, qu and set ε > 0.

• 2) Solve (19) with q = ql and q = qu.

• 3) If fob(ql) < fob(qu), set qu = ql+qu
2

; otherwise set ql =
ql+qu

2
.

• 4) Go to step 2 until |qu − ql| ≤ ε.

Remark 1: Let [z̃∗, Z̃∗, q∗] be an optimal solution of the problem (19). Notice that the number of equality
constraints is L = 1. According to Shapiro-Barvinok-Pataki (SBP) result [15], there exists an optimal solution
Z̃∗ such that rank(Z̃∗)(rank(Z̃∗) + 1) ≤ 2L. Since L = 1 in (19) and rank(Z̃∗) 6= 0, we find that Z̃∗ is rank-one.

3.2 Optimization with Receiver Position Error

In the presence of random position errors (i.e., r̃i = ri + ei), we can express the measured range difference for
the ith receiver position as

τ ri = ||t− p||+ ||(ri + ei)− p|| − ||(ri + ei)− t||+ ni. (20)

We consider that ei are small when compared to ri − p and ri − t , i.e., ||ei|| << {||ri − p||, ||ri − t||}. Using
Taylor’s series expansion, we get

||(ri + ei)− p|| = ||ri − p||+ eTi
ri − p

||ri − p||
+O(||ei||),

||(ri + ei)− t|| = ||ri − t||+ eTi
ri − t

||ri − t||
+O(||ei||), (21)

where O(||ei||) stands for higher order terms of ||ei||. Substituting (21) into (20), we obtain

τ ri ≈||t− p||+ ||ri − p|| − ||ri − t||+ eTi

[

ri − p

||ri − p||
−

ri − t

||ri − t||

]

+ ni. (22)

Define τ̃ ri = τ ri + ||ri − t||, w̃i =
ri−p

||ri−p|| and wi =
ri−t

||ri−t|| . Then, (22) can be expressed as

(τ̃ ri − ni) + eTi wi − ||t− p|| ≈ ||ri − p||+ eTi w̃i. (23)

Squaring both sides of (23) and after some derivations, we get

(τ̃ ri )
2 + ||t||2 − ||ri||

2 − 2(t− ri)
Tp− 2τ̃ ri q + n2

i ≈

2ni(τ̃
r
i − q) + 2eTi (ri − p− τ̃ riwi + qwi) + 2nie

T
i wi. (24)

Neglecting the second order terms of noise and the cross-order term between noise and position error, for
i = 1, · · · ,M , (24) can be expressed in vector form as

u−Bz ≈ Dn+CeL (25)

where

C = 2











cT1 01×n · · · 01×n

01×n cT2 · · · 01×n

...
...

...
...

01×n 01×n · · · cTM











,

cTi = (ri − p)T −wT
i (τ̃

r
i − q), ∀i,

eL = [eT1 , e
T
2 , · · · , e

T
M ]T . (26)



Notice that (25) can be expressed as

D−1(u−Bz) ≈ n+D−1CeL. (27)

Assume that the position error corresponding to the ith receiver is Gaussian distributed with zero-mean and
covariance matrix Qi. Assuming that {ei}

M

i=1
are statistically independent, we have QL = E

{

eLe
T
L

}

=

blkdiag(Q1, · · · ,QM ), where blkdiag stands for a block-diagonal matrix. Moreover, since {ei}
M

i=1
and ni are

independent, we obtain

E
{

(n+D−1CeL)(n+D−1CeL)
T
}

= σ2
nIM +D−1CQLC

T (D−1)T . (28)

Particularly, under the assumption Qi = σ2
e In, where σ2

e is the variance of the elements of {ei}
M

i=1
, the ML

localization problem can be approximately expressed as

min
z

{

(u−Bz)TD−1
(

σ2
nIM + σ2

eD
−1CCTD−1

)−1
D−1(u−Bz)

}

s.t. q , z(n+ 1) = ||t− p||. (29)

The objective function of the optimization problem (29) can be simplified to

frob = (u−Bz)T
(

σ2
nDDT + σ2

eCCT
)−1

(u−Bz), (30)

where

DDT =4











(τ̃ r1 − q)2 0 · · · 0
0 (τ̃ r2 − q)2 · · · 0
...

...
...

...
0 0 · · · (τ̃ rM − q)2











,

CCT =











cT1 c1 0 · · · 0
0 cT2 c2 · · · 0
...

...
...

...
0 0 · · · cTMcM











. (31)

Substituting (31) into (30), frob can be expressed as

frob =
1

4

M
∑

i=1

(ui − bT
i z)

2

σ2(τ̃ ri − q)2 + σ2
e (||ri − p||2 + 2(τ̃i − q)(ri − p)Twi)

, (32)

where σ2 = σ2
e + σ2

n. With the following definitions

d̄i = σ2(τ̃ ri )
2 + σ2

e

(

||ri||
2 − 2τ̃ ri r

T
i wi

)

,

f̄i = 2
(

σ2
er

T
i wi − σ2τ̃ ri

)

,

gT
i = 2σ2

e

(

τ̃ riw
T
i − rTi

)

, (33)

the denominator and numerator of the ith term of frob, respectively, can be given by

fden,i = d̄i + f̄iq + gT
i z̃+ σ2q2 − 2σ2

e qz̃
Twi + σ2

e z̃
T z̃,

fnum,i = (ui − b̃T
i z̃− viq)

2. (34)

Introducing the auxiliary variables ti ≥ 0, ∀i, the optimization problem (29) is then expressed as

min
ti,q,z̃

M
∑

i=1

ti

s.t. fden,i ≥
(ui − b̃T

i z̃− viq)
2

ti
, ∀i

q2 = ||t− z̃||2. (35)



Using the Schur-complement theorem [18], the ith inequality constraint of (35) can be expressed as

[

ti ui − b̃T
i z̃− viq

ui − b̃T
i z̃− viq fden,i

]

� 0. (36)

Defining z̄s = z̃T z̃ and using the relaxation z̄s ≥ z̃T z̃, the optimization problem (35) is given by

min
ti,q,z̃

M
∑

i=1

ti

s.t.

[

ti ui − b̃T
i z̃− viq

ui − b̃T
i z̃− viq f̃den,i

]

� 0, ∀i,

q2 = ||t||2 − 2tT z̃+ z̄s,
[

1 z̃

z̃T z̄s

]

� 0, (37)

where

f̃den,i= d̄i + f̄iq + gT
i z̃+ σ2q2 − 2σ2

eqz̃
Twi + σ2

e z̄s. (38)

For a given q, the optimization problem (37) is convex. The joint optimization is then solved in conjunction with
the bisection search over q. The algorithm (Algorithm 1) as shown for the case without position errors can then
be applied to solve (37).

4. COMPLEXITY ANALYSIS

We present the computational complexity of the proposed optimization algorithms using the approach [16]. For

a given q, the number of iterations required for solving (19) is upper bounded by Õ
(

(n+ 1)
1

2

)

, whereas the

work load per iteration is upper bounded by Õ
(

(n2 + n)2((n+ 1)2 + 1)
)

. The bisection search w.r.t. q requires

L̄ = log2
(

qu−ql
ε

)

iterations. This means the overall complexity for the case withour position errors is approx-

imately Õ
(

n6.5L̄
)

. It is interesting to note that the complexity of Algorithm 1 does not depend on M . In
a similar manner, for a given q, we can show that the complexity of (37) in terms of number of iterations is

Õ
(

(n+ 1 + 2M)
1

2

)

, whereas the complexity per iteration is Õ
(

(n+M)2((n+ 1)2 + 4M + 1)
)

. This means that

the total complexity of (37) is approximately Õ
(

(n+ 2M)0.5(n+M)2(n2 + 4M)
)

. For the case without position

errors, the SDP approach (before local optimization) of [9] requires Õ
(

(n+ 2 +M)
1

2

)

iterations, where the com-

plexity per-iteration is given by Õ
(

(M2 +M + n+ 1)2((M + 1)2 + (n+ 1)2 +M2)
)

. For a gradient-based local

optimization, such as steepest-descent method, Õ(ε−2) iterations are required to keep the norm of the gradient
below ε [17]. Thus, the total complexity is approximately given by Õ

(

(n+M)0.5(M2 +M + n)2(2M2 + n2)
)

+

Õ(ε−2). On the other hand, for the case with position errors, the SDP approach (before local optimization)

in [9] requires Õ
(

(n+ 1 + 2(M + 1))
1

2

)

iterations. The computational complexity of each iteration is given

by Õ
(

(M2 +M + n+ 3)2
(

2(M + 1)2 + (n+ 1)2 +M2
))

, which results in a total approximate complexity of

Õ
(

(n+ 2M)0.5(M2 +M + n)2(3M2 + n2)
)

+ Õ(ε−2). Note that in practice n << M . For this case, the total
complexity between the proposed and SDP methods is compared in Table 1.

5. NUMERICAL RESULTS AND DISCUSSIONS

Computer simulations are conducted to demonstrate the effectiveness of the proposed method. We consider that
the receiver of the BPR system is mounted on a ground vehicle. As such, we use a two-dimensional coordinate
system. As shown in Fig. 1, the stationary target and illuminators are located at positions p = [600, 550]T meters



Method Type Complexity (n << M)

Proposed Without errors, problem (19) Õ
(

n6.5L̄
)

SDP Without errors [9] Õ
(

M6.5
)

+ Õ
(

ε−2
)

Proposed With errors, problem (37) Õ
(

M3.5L̄
)

SDP With errors [9] Õ
(

M6.5
)

+ Õ
(

ε−2
)

Table 1. Comparison of complexity between different methods.

and t = [−200, 0]T meters, respectively. The ground vehicle moves around the target, first in the x-axis direction
and then in the y-axis. The TOA information is measured at the following seven positions of the receiver,

[

800 900 1000 1100 1100 1100 1100
200 200 200 200 300 400 500

]

meters.
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−100
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x−position (m)
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)
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Figure 1. Scene of the simulations

The CVX toolbox [19] is used to solve the convex optimization problems (19) and (37). These optimization
problems are solved within a framework of bisection algorithm outlined in Algorithm 1. We run Algorithm 1
and corresponding algorithm for (37) by taking ql = 0m, qu = 1000m and ε = 1m. Note that smaller values of
ε can be taken for improving convergence accuracy, whereas larger values of qu can be taken if we do not have
even a coarse knowledge of the illuminator-target range. Both settings in general result in higher computational
complexity, since the bisection search requires more iterations. We compare the proposed method with the SDP
method that employs local optimization [9] and the LLS method. Notice that the SDP method [9] without local
optimization gives very poor results in our simulation scenarios, and thus, only the results after local optimization
are shown. As suggested in [9], the penalty parameter for this method is varied between 10−3 and 10−7. The
solution of the LLS method at a given estimate p0 is given by

p = (ATA)−1AT (τmo − h), (39)

where

A =















aT1 ,
(p0 − t)T

||p0 − t||
+

(p0 − r1)
T

||p0 − r1||
...

aTM ,
(p0 − t)T

||p0 − t||
+

(p0 − rM )T

||p0 − rM ||















,

h =







||p0 − t||+ ||p0 − r1|| − ||t− r1||+ pT
0 a1

...

||p0 − t||+ ||p0 − rM || − ||t− rM ||+ pT
0 aM






,

τ
mo = [τ1, · · · , τM ]T or [τ r1, · · · , τ

r
M ]T . (40)



For the LLS method, we take an initial estimate as p0 = [10, 10]T and update p using (39) until ||p− p0|| ≤ 1.
We first consider the case in which the observed data set is contaminated by measurement noise, whereas the
receiver positions are perfectly known. The measurement noise follows a zero-mean Gaussian distribution with
a variance of σ2

n.
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Figure 2. RMSE performance versus noise variance (no position error)

Fig. 2 shows the root-mean-square error (RMSE) of the estimated target position as a function of σ2
n. The

performance of the proposed method is compared with the LLS and SDP methods, and the Cramer-Rao lower
bound (CRLB). It is observed from this figure that the proposed method significantly outperforms the LLS
method and slightly outperforms the SDP method, especially for larger values of σ2

n. The performance of the
proposed method is very close to the CRLB for all σ2

n. When σ2
n > 1250m2, the RMSE performance of the LLS

method deviates significantly from the CRLB, whereas that of the other two methods remains stable.
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Figure 3. RMSE performance versus noise variance with σ
2

e = 100m2.

In Fig. 3, the performance of the proposed robust method is displayed for the case where the receiver
positions are subject to i.i.d distributed Gaussian random errors with a variance of σ2

e = 100m2. It can be
observed from this figure that the performance of the LLS method degrades drastically when σ2

n increases. Both
the proposed and the SDP methods provide performances close to the CRLB. However, the proposed method
slightly outperforms the SDP method which employs local optimization.

6. CONCLUSIONS

We investigated the problem of localizing a target using time-of-arrival information measured at different locations
of a receiver in a bistatic passive radar system. The localization problems are formulated using an approximate
maximum likelihood (ML) estimate of the target location. The resulting non-convex problems are reformulated



as convex problems using the semi-definite relaxation approach and solved in a framework of bisection algorithm.
The optimization problems are examined for the cases when only measurement errors are present and when both
the measurement and receiver position errors are present. Simulation results verify that the performance of the
proposed methods is much closer to the CRLB and better than the SDP method.
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