Cramer-Rao Type Bounds for Sparsity-Aware

Multi-Sensor Multi-Target Tracking

Saurav Subedi, Yimin D. Zhang, Moeness G. Amin, and Braham Himed

Abstract

Conventionally, sparsity-aware multi-sensor multi-target tracking (MTT) algorithms comprise a two-
step architecture that cascades group sparse reconstruction and MTT algorithms. The group sparse
reconstruction algorithm exploits the a priori information that the measurements across multiple sensors
share a common sparse support in a discretized target state space and provides a computationally efficient
technique for centralized multi-sensor information fusion. In the succeeding step, the MTT filter performs
the data association, compensates for the missed detections, removes the clutter components, and improves
the accuracy of multi-target state estimates according to the pre-defined target dynamic model. In a recent
work, a novel technique was proposed for sparsity-aware multi-sensor MTT that deploys a recursive
feedback mechanism such that the group sparse reconstruction algorithm also benefits from the a priori
knowledge about the target dynamics. As such, it is of significant interest to compare the tracking
performance of these methods to the optimal multi-sensor MTT solution, with and without considering
the missing samples. In this paper, we analytically evaluate the Cramer-Rao type performance bounds
for these two schemes for sparsity-aware MTT algorithms and show that the recursive learning structure
outperforms the conventional approach, when the measurement vectors are corrupted by missing samples

and additive noise.
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I. INTRODUCTION

In recent years, sparsity-aware multi-target tracking (MTT) algorithms have attracted significant re-
search interest. Researchers have proposed several techniques (e.g., [2-5]) to exploit the a priori knowl-
edge that there is only a small number of targets to be tracked over a pre-defined surveillance area,
and hence, the measurements are sparse, either in their natural basis or some other sparsifying basis.
Recently, the hierarchical Kalman filter has been proposed in [6] to track the dynamic sparse signals,
which incorporates the fundamentals of sparse Bayesian learning into the traditional Kalman filtering,
where the output of the tracking filter is exploited to update the covariance matrix of the process noise,

thereby enforcing sparsity constraint into the traditional Kalman filtering framework.

Conventionally, the sparsity-aware MTT algorithm cascades the sparse signal reconstruction algorithm
and the multi-target tracking algorithm in succession. First, the sparse reconstruction algorithm is exploited
to estimate the multi-target state, and in the succeeding step, multi-target state estimates are fed as inputs
to the MTT filters for data association, clutter removal, compensation for missed detections, and reduction
in the localization error. For multi-sensor MTT [7], group sparse reconstruction algorithms have been
deployed as computationally efficient techniques for a centralized multi-sensor information fusion. The
a priori information that the measurements across multiple sensors share a common sparse support in a
discretized target state space allows for the exploitation of the group sparse reconstruction. As such, the
output of the group sparse reconstruction algorithm obtained in the form of instantaneous estimates of
the multi-target states is fed as the input to the MTT filters. The overall performance of these techniques
relies on the ability of the group sparse reconstruction algorithm to accurately and reliably estimate the

instantaneous multi-target states.

In many practical applications, the observations suffer from a high proportion of missing samples,
due to fading, shadowing or removal of impulsive noise, and is corrupted by a strong additive noise,
rendering it difficult to accurately estimate the multi-target states using group sparse reconstruction-
based methods. Recently, a novel technique is proposed in [8] for sparsity-aware multi-sensor MTT that
deploys a recursive feedback mechanism such that the group sparse reconstruction algorithm and the
conventional MTT filter interplay and learn from each other. Such recursive learning approach creates
a global learning architecture that enables the group sparse reconstruction algorithm to benefit from the
a priori knowledge about the target dynamics. Numerical results presented in [8] in terms of the optimal
sub-pattern assignment (OSPA) metric [9] show that the methods proposed therein enable a significant
performance improvement over the conventional approach through such a feedback mechanism. This is

particularly evident when the measurement vectors comprise a high percentage of missing samples and



are corrupted by strong additive noise.

The unconditional posterior Cramer-Rao lower bound (PCRLB) [10] provides a theoretical performance
limit of any estimator for a non-linear filtering problem under the Bayesian framework. In [11], the authors
derived a recursive approach to calculate the sequential PCRLB for a general multi-dimensional discrete-
time non-linear filtering problem. Several variants of the PCRLB have been proposed in the literature to
make the PCRLB more adaptive. For instance, in [12—-14], the PCRLB is conditioned on the measurements
up to a reset initial time in lieu of the absolute initial state as in the vanilla PCRLB definition. Instead
of representing the posterior probability density function of the system state at the reset initial time
non-parametrically by a set of random particles as in [12], a systematic recursive approach is used
to derive the exact conditional PCRLB based on first principles in [15]. Two other online conditional
PCRLBs are proposed in [16] as alternatives to the one proposed in [15], and are shown to provide
similar results through numerical examples. These variants have rendered the prior knowledge of the
initial system state more useful and relevant in the PCRLB evaluation, particularly in situations when
the state process noise is high and thus the prior knowledge regarding the system state at the initial time
quickly becomes irrelevant. However, to the best of our knowledge, none of the existing works provide a
conditional PCRLB for situations where the measurement is unreliable due to strong additive noise and/or
a high proportion of missing samples. As such, the existing literature still lacks the PCRLB analysis for

sparsity-aware multi-sensor MTT problems.

In this paper, we analytically evaluate the performance bounds, for the two aforementioned architectures
for sparsity-aware multi-sensor MTT, namely, the conventional architecture and the global learning
architecture. We quantify the degradation in the overall tracking performance when the measurement
vectors suffer from a high percentage of missing samples and strong additive noise. First, we derive
the performance bounds for the estimation of the instantaneous multi-target state exploiting the group
sparse signal reconstruction algorithm in the case of a signal model comprising missing samples and
additive white Gaussian noise perturbation [17]. Assuming an optimal estimation of the instantaneous
multi-target state by the group sparse reconstruction algorithm under the given signal conditions, we
evaluate the performance bound for the MTT algorithm. Next, we analytically evaluate the performance
improvement achieved by implementing the recursive learning architecture, where the a priori knowledge
about the target dynamics is exploited at the sparse reconstruction stage through a feedback mechanism.

To summarize, the key contributions of this paper are follows:

1) We analytically quantify the effect of missing samples and additive noise on the performance of

sparsity-aware multi-sensor MTT algorithms.



2) We evaluate the limits on the performance improvement that can be achieved by implementing
the recursive learning architecture assuming optimal estimation at both stages - group sparse
reconstruction and MTT.

3) We analyze the boundary conditions for which the recursive learning architecture guarantees a

convergence and assess the effect of relative weight on the achievable performance improvement.

The remainder of the paper is organized as follows. Section II describes the target dynamic model,
presents the signal model, considering the effect of missing samples and additive white Gaussian noise.
Section III presents a high-level overview of the two approaches for sparsity-aware MTT. Section IV
presents the analytical comparison of the performance bounds for these two approaches. Section V
provides simulation results in the case of a multi-target tracking in a multi-static passive Doppler sensor

network, and finally conclusions are drawn in Section VI.

Notations: A lower (upper) case bold letter denotes a vector (matrix). Specifically, I and On denote
the N x N identity and zero matrices, respectively. ()7 and (-)¥, respectively, denote transpose and
Hermitian operations, and o denotes the Hadamard product. diag(-) forms a diagonal matrix from a
vector, tr(-) stands for matrix trace, and Re(-) denotes the real part of a complex variable. E(-) stands
for the expectation operation. C™*™ and C™*! represent an m x n-dimensional complex matrix and
an m-element complex vector, respectively. Likewise, R™*! represents an m-element real vector. || - ||,
denotes the ,,-norm of a vector, and z ~ N(a,b) and  ~ CN(a,b), respectively, denote variable x to

be real and complex Gaussian distributed with mean a and variance b.

II. SIGNAL MODEL
A. Target dynamics

We consider the problem of tracking K moving targets, where K is unknown. The ground truth state
vector associated with the kth target at the fth observation instant is represented as 6;; € RP*1 for
k=1,---,K and t = 1,---,T. Herein, we refer to the observation instants as the time instants at
which the sensors report their measurement vectors to the fusion center. Note that each measurement
comprises several discrete-time samples of the waveform received at the sensor. The number of samples
per measurement vector depends on the observation interval and the sampling rate deployed at the sensor.
At each observation instant, the ground truth state set is defined as ©; £ [Grft, e ,0%7t]T. The target

dynamics is assumed to evolve according to a linear Gaussian model, such that

01 =FO;_ 11 +wWp, (D



where F is the state transition matrix and w, ; ~ N(0, Q) is the process noise modeled as additive white
Gaussian. The definitions of the state transition matrix F' and the covariance matrix of the process noise

Q depend on the application. Application examples will be provided in Section V.

B. Observation with missing samples

We consider R receivers monitoring the region of interest. The multi-target states are represented as

a multi-component signal in the observation space at the rth receiver through a deterministic mapping,

such that K
27 (m) =3 s (8,4, m), @)

k=1
where af"gr) (m) is the mth sample in the observation domain, m =0,--- , M —1, sgrlg is the amplitude of

the signal corresponding to the kth target and (") (.) is the deterministic, possibly a non-linear, mapping

function.

In most tracking applications, the entire target state space, comprising /N possible target states, can

be discretized and represented as an N-dimensional vector SE ) corresponding to each receiver indexed

as T =1,---, R, such that each element in sgr) is uniquely associated with a possible target state either
directly in its natural state or through a deterministic mapping. Since the total number of targets within
the surveillance region at the ¢th observation is K, where K < N, the entire target state space can be

represented by a K -sparse vector SET) € CN*1 e, HSET)HO =K.

Following a typical sparse signal reconstruction model, a sparse decomposition of an M -dimensional

complex vector )“(ET) = [:Z‘ET) 0),--- ,JZ‘ET) (M —1)]7 € CM*! can be expressed as the linear model

%" = wis(), 3)

where \Ilgr) e CM*N M <« N, represents the basis or the dictionary which relates the vector iy) to

the sparse vector sgr) according to a pre-defined model.

In many applications, the observation may suffer from a high proportion of missing samples due to

propagation impairments resulting in fading or shadowing. Consider L samples missing from the C*!

vector fcgr), where 0 < L. < M. The missing sample positions are assumed to be random and uniformly

distributed over time. Accounting for the missing samples, we define the following observation vector
),

x) =% 04", (4)



where ¢§r) = [qth) 0),---, QSET) (M —1)]T with each element defined as an independent Bernoulli random
variable with a success probability (M — L)/M and a failure probability L /M. It is noted that the missing

sample positions may be different at each observation interval and across each sensor. As such,

" 1, iftmeS™,
t (m) = )

0, otherwise,

with St(r) C {0,---, M — 1} denoting the set of observed time instants and its cardinality is ]St(r)] =

M — L. Incorporating the missing samples, from (3) and (4), the actual observation can be expressed as
)= 8 47— a0 w0sl) el ©

where <I>§T) = diag(gbgr)) and ey) ~ CN(0,02Ty;) is the thermal noise modeled as an additive Gaussian

random vector.

C. Statistical model

Following the signal model in (6), the probability density function (pdf) of ygr), conditioned on <I>§T)

and the unknown ground truth state set ®,, is given as
p(y\ 1@, ©,) ~ CN(@ s 521,y). (7)

As such, the joint conditional pdf of the measurements from R independent receivers is expressed as

€

R
p(Yi| @1, 0)) ~ [[eN (@ e s o?Ly), ®)

r=1
where Y; = [ygl), e ,ng)] and ®; = [@gl), e ,@ER)].

The mathematical structure of the optimal solution for multi-sensor MTT has been well analyzed
[18, 19]. However, due the combinatorial complexity associated with the optimal solution [20, 21], a
direct implementation of the optimal solution is impractical and several sub-optimal solutions have been
proposed [22-24, 36]. Sparsity-aware multi-sensor MTT algorithms exploit group sparse reconstruction
methods for a centralized multi-sensor information fusion [7, 8], and thus, significantly reduce the
overall computational cost. In the following, we provide a high-level description of two commonly used

approaches for sparsity-aware multi-sensor MTT, respectively introduced in [7] and [8].

III. SPARSITY-AWARE MULTI-TARGET TRACKING

Estimation of instantatneous multi-target states exploiting group sparse reconstruction is a funda-

mental step in sparsity-aware multi-sensor MTT. This provides a computationally tractable method to



simultaneously utilize the measurements available at all sensors by exploiting the group sparsity of the

measurements in a discretized target state space.

A typical sparse signal reconstruction model is given as
g=A0+n, (©))

where g € RP*! is a measurement vector, A € RP*?, P <« @, is a known dictionary matrix, 8 € R@*1
is the unknown sparse weight vector to be estimated, and n € R”*! is the additive white Gaussian noise
vector modeled as 17 ~ A/(0, 0%I). The fundamental idea behind the sparsity based signal reconstruction
is the fact that the measurement vector g can be represented as a linear combination of K basis vectors

in its natural basis or some other sparsifying basis, where K < P [25].

In many practical applications, there are multiple measurements arising from a common physical
phenomenon. In such cases, for a correctly chosen sparsifying basis, the sparse weight vectors share a

common sparse support. Mathematically, such problems are modeled as

g =AM 4 n()  pel... N, (10)

where the sparse weight vectors o)

share the same sparsity support, whereas their values are generally
different [26, 27]. Group sparse reconstruction has found applications in a wide range of multi-sensor
problems, including direction-of-arrival estimation [28, 29], sensor selection [30], and multi-sensor MTT
[7, 8]. There are a number of algorithms available to solve the group sparse problems such as group
basis pursuit [31], group LASSO [32], and block orthogonal matching pursuit [33]. The multi-task

Bayesian compressive sensing algorithm [34, 35] provides an adaptive learning framework and generally

outperforms the conventional compressive sensing algorithms.

In the underlying problem, it is known a priori that the targets are sparsely distributed in the discretized
target state space for any given observation instant ¢. This motivates us to reformulate the problem as a
sparse reconstruction problem. Some recent works have proposed the exploitation of the prior knowledge
about the sparsity of the signal to improve the tracking performance (e.g., sparsity-aware Kalman tracking
[5] and hierarchical Bayesian Kalman filters [6]). In addition, we know a priori that the measurements
received at I different receivers are generated due to the same set of targets within the surveillance
region. As such, the measurements share a common sparse support in the discretized target state space,
thus inviting the use of group sparse reconstruction for estimating the instantaneous multi-target state.

The conventional approach for sparsity-aware MTT [7] cascades the sparse reconstruction algorithm

and the MTT filter as shown in Fig. 1. For every observation interval ¢, the solution of the group sparse

reconstruction algorithm converges to a K-sparse solution, whose indices correspond to the estimates
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Fig. 1. Diagram of the conventional approach.

of the K state vectors, @t,k, where £k =1, -- ,K . As such, at every ¢, we obtain instantaneous multi-
target state estimates, i.e., O, = [921, e ,9?K]T Note that K generally differs from K because of
missed detections and false alarms. In the succeeding step, these instantaneous multi-target state estimates
O, = [é:l, e ,QZK]T are fed as inputs to the MTT filter. The output of the MTT filter, at every &, is
denoted as ©; = [9;{1, R éZR]T, where K is the estimated number of targets at the output of the MTT
filter. In general, the MTT filter successfully compensates for the missed detections and removes the false
alarms, thereby achieving a better estimate of the number of targets. As a result and upon convergence,

K is usually equal, or at least very close, to K.

The performance of the conventional approach is severely degraded when the measurements include a
high proportion of missing samples and are corrupted by strong additive noise. A global learning structure
has recently been proposed in [8] to provide an effective solution in such challenging conditions. The
key idea behind the global learning architecture is that information from the MTT filter is exploited as an
additional prior in each recursion at the sparse reconstruction stage. The conversion of multi-target state
estimates obtained at the output of the MTT filter to the predicted measurement vectors in time-domain
involves two deterministic steps, referred to as ‘reconstruction’ and ‘mapping’ in Fig. 2. Reconstruction
involves populating a vector representing the discretized state space at the indices corresponding to the
multi-target state estimates. Since the number of target state estimates K < N, the resulting vector is a
sparse vector. The mapping process involves the conversion of the sparse vector to predicted measurement
vectors through a pre-defined deterministic model. As such, by recursively feeding the information from
the MTT as an additional input to the group sparse reconstruction algorithm, both the sparse reconstruction
algorithm and MTT filter recursively learn from each other, as shown in Fig. 2. The recursive process
continues to refine the overall performance by reducing both the cardinality error and localization error

until a convergence criterion is satisfied.

In the following, we analytically compare the performance bounds that can be achieved using these

two approaches.
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Fig. 2. Diagram of the recursive learning algorithm.

IV. PERFORMANCE BOUNDS
A. Conventional method

Following the statistical model in (8), where the observation vector comprising the missing samples
is defined as a complex Gaussian variable with mean vector corresponding to the rth receiver ng) =
E{@ET)\I’Y) sy)} and covariance matrix C = 021, the Fisher information matrix (FIM) Z(6;) is given

as [37]

8 In p(Yt|(I’t, @t) 6 In p(Yt|<I’t7 @t)T} (11)

1(®y) = E{ 00, 00,

Fundamentally, the target state estimation problem is analogous to the parameter estimation problem
in multi-component polynomial phase signals [38]. The interactions among the multiple components or
the cross-terms have a significant effect on the Cramer-Rao bound in such problems. Mathematically,
such an effect is manifested through the off-diagonal blocks of the FIM. The closer the components
in the estimation space, the larger the off-diagonal blocks are. As such, the estimation performance for
each component is worse than the one achieved in a single-component case [39]. Herein, for analytical
convenience, we resort to a commonly adopted assumption in MTT problems (e.g., [11, 23, 24, 43]) that
each target evolves independent of each other and, therefore, is well-separated in the target state space
from any other neighboring target. Since the target state vectors are assumed independent, the FIM is
block diagonal in structure, and the (4, j)th block of the FIM is given by

A" ot
00, 00,

H R
[Z(6:)]ij = R tr{ac C‘laCC_l} + 22 Re . (12)
r=1

00,; = 00y,

Since the unknown variables under consideration are the target state vectors, the first term in (12) vanishes

to zero because the covariance matrix is independent of the target state vectors. As such, substituting for



the values of the mean vector ”gr) and the covariance matrix C, we obtain

n | OELE) (@) By
[Z(00))ij = 20, Re 26, A6, : (13)

r=1

where A = E{®!®;} = E{®;} = [(M — L)/M]I,;. Thus, (13) becomes

2M — L) _on [oE{sM) (@) op{ws
( )a_zzRe {(s") (%,7) } ) {wy s '} (14)
Moo 90, 06, ; '

[Z(64)]ij =

r=1
On the other hand, when there are no missing samples, A = I,;. In this case, the (i, j)th block of the

FIM is expressed as

200y = 302> e | PP ()T} OR(w ) s
t)]ij = 40¢ ot € aat,i aethj .

Assuming that the ground truth state of each target is independent, the FIM assumes a block diagonal
structure and, therefore, the CRLB on the variance of the unbiased estimator of €;; can be extracted
as the inverse of the corresponding block of the FIM. Thus, by comparing (14) and (15), it becomes
apparent that the loss of information due to the missing samples results in an increase in the variance of

the estimated target state vectors by a factor of M /(M — L).

In the conventional approach for sparsity-aware MTT, we use the estimates of the group sparse signal
reconstruction algorithm e, 2 [é:l, e ,9:K]T as inputs to the MTT filter. Since the purpose of this
paper is to evaluate and compare the performance bounds, we consider that an optimal solution is attained
from the group sparse reconstruction stage. There are several The covariance matrix of the inputs to the

MTT filter can, therefore, be modeled as
011 ~ N (01, [Z(80)]10). (16)

The posterior FIM is calculated as a sum of a data matrix and a priori matrix [10, 40, 41]. Following the

target dynamic model in (1) and the measurement model in (16), the recursive FIM can be expressed as

Z(0111))kk = [Z(01:1) )ik + [Q + FIZ(6,)] i FT] " (17)

As such, the posterior bound on the variance of the estimator of the unknown ground truth state vectors

at the ¢th observation is given as the inverse of the posterior FIM.



B. Recursive learning architecture

In the recursive learning architecture as shown in Fig. 2, there is information available in the form of

predicted observation vectors {y,ﬁ”, S ng)} from the feedback path in addition to the actual observation
vectors {yt(l), e ,y,ER)}. Incorporating the feedback, we define a new measurement vector
" =By + (L - B{")3;" (18)

for the rth receiver, where BET) is an M x M diagonal matrix with the mth diagonal element 0 <

Biy(m) <1, m =0,---, M — 1, that determines the relative weight assigned to the respective sample
of the current observation and the predicted observation vector at the tth observation. It is noted that
a smaller 5;(m) puts a lower emphasis on the current observation sample, which mitigates the effect
of missing samples and strong additive noise. On the other hand, it results in a slower adaptation to
any sudden changes in target trajectories [8]. Following the statistical model in (7), the weighted current

observation vector can be modeled as

pByM13" B 6,,) ~cN BN ws" 2BINBMNH). (19)

Next, we investigate the statistical behavior of the predicted observation vector yt(”. As discussed

earlier and since this paper attempts to evaluate and compare the performance bounds, we assume that
the MTT filter also obtains an optimal unbiased solution. As such, the estimated target state vector can
be represented as

ét,k =0k + O, (20)

where 1, ;, represents the estimation error obtained by exploiting the feedback structure. In this case,

the samples of the predicted observation vector can be obtained through a known deterministic mapping,

such that K
g (m) =" (B ,m)
et (21)
= Z (O i + Vi, m)
k=1
where m = 0,--- , M — 1. It is noted that the statistical behavior of the predicted observation vector

depends on the transformation of a Gaussian random variable in the parameter space to the measurement
space, which is non-trivial to characterize [42]. Nonetheless, for a guaranteed convergence, the variance

of the error in the estimated target state has to be upper-bounded by a small value. As such, we can



apply the first-order Taylor series approximation to obtain the following linearization of the predicted

observation vector K

G0 m) = 3 (600 m) + 0L,V (05, m)) (22)
k=1

where V(6 ,m) is the gradient of the function calculated at 6; ;. Following the sparse modeling in

(3)—(7), we can model the predicted observation vector as

i) = o i, @3)

where the mth sample of the error vector gﬁ” is given by

K
«(m) =" 9LV (8, m), (24)

k=1
where m = 0,---, M — 1. The covariance matrix of the error vector qgr) is obtained as Cgrt) =S

Blsi” (6i)").
Having characterized the actual observation vectors yy) in (6) and the predicted observation vectors

yﬁ” in (23), and given the proposed relation in (18), we can express the conditional pdf of the effective

(r)
measurement vectors 7; ~ as

p(n”|@f" B 0,4) ~ CN (B, C), (25)
where the mean vector is given by
" = BB e e s + 1y — B )ws("), (26)
and the covariance matrix is obtained as

¢ =o2B"B" + 1y - B{)Cl 1y - B + 2B s, (1 - B, @)

where Xy 5 = [yi”yﬁr)} represents the cross-covariance matrix between the actual measurements and

the predicted measurements. In the underlying problem, the additive error term introduced through the

feedback, i.e., ggr) defined in (23), is small compared to the additive noise term associated with the

actual measurements, i.e., eg'") defined in (6). Likewise, the cross-covariance term between the actual
measurements and predicted measurements is also negligible owing to a small correlation coefficient
between the two vectors, particularly in low SNR conditions and high percentage of missing samples. A
numerical assessment of the correlation between the actual measurements and predicted measurements,
for different SNR and varying ratios of missing samples, is presented later in Section V. Therefore,

for the problem under consideration, the covariance matrix in (27) can be approximated as Cgr) ~

o2 B0



Following (13), we can express the ¢jth block of the FIM obtained using the recursive feedback

structure as

R 0 (ﬁp)H =)\ ! aﬂ(f)
00l =32 Re | =55 (O) Ga | @
r=1 it i

and, following (17), the corresponding recursive FIM can be obtained as
- - -1
Z@e0)lk = [L(O0s1)]i + |Q+ FIZ@)uF"| . 29)

The posterior bound on the variance of the target state estimates obtained using the feedback structure

is given by the inverse of the corresponding block of the recursive FIM.

C. Discussion on convergence

The error in the estimated target state vector 19, causes two types of perturbations in the proposed
recursive architecture: (a) When the magnitude of the error in the estimated target state vector
is smaller than the resolution of the dictionary matrix, the sparse representations of both the actual
measurement and the predicted measurement share a common support. As such, this type of perturbation
is corrected in the sparse reconstruction phase. Such a phenomenon is observed generally after the steady
state is reached; (b) On the other hand, when the magnitude of the error in the estimated target state
vector 1y is larger than the resolution of the dictionary matrix, the actual measurement vectors and
the predicted measurement vectors constitute two multi-component sinusoids with different fundamental
components. This results in a cardinality error. The MTT filter is capable of correcting for such cardinality
errors and merging the multiple components as a single one, provided that the error ellipses of the target
state estimates overlap with one another. For example, this process of cardinality management is described
as ‘pruning’ in [43], where the Mahalanobis distance between a target state estimate and an error ellipse
is used to merge/prune the estimates. As such, for guaranteed convergence, it is imperative that the

magnitude of the error in target state estimates 19, j is bounded within the error ellipse of the MTT filter.

D. Effect of relative weights

It can be inferred from (26) and (27) that the bounds on the instantaneous estimation error and the
posterior error are functions of the relative weights. The preceding analysis can be used to determine an
optimal value of the relative weights 0 < ;(m) < 1, m = 0,--- ;M — 1, for a given percentage of
missing samples and a specified signal-to-noise ratio (SNR). This is elaborated further through numerical

results in Section V.



For a case with no missing samples, i.e., when CIJET) = Is, the mean vector is expressed as [Jy) =

E{\PgT)ng)}, which is equal to the case with no missing samples and no feedback. In this case, the
covariance matrix comprises smaller values, i.e., C\"” ~ ¢2B{" (BI")H < 21, since 0 < fBy(m) <
1, m=0,---, M —1. Accordingly, by adopting the feedback structure, the bound on the variance of the
target state estimates can actually be lowered compared to the case even without any missing samples.

This is a remarkable improvement over the conventional sparsity-aware multi-sensor MTT algorithms.

In the following and as an application example, we consider the problem of tracking multiple ground
moving targets in a passive multi-static radar (PMR) system exploiting Doppler-based observations.

Simulation results are presented to validate the analysis in the preceding sections.

V. SIMULATION RESULTS

Consider the problem of tracking multiple ground moving targets in a PMR system exploiting Doppler-
based observations as shown in Fig. 3. Such a PMR system typically comprises an illuminator of
opportunity (e.g., Digital Audio Broadcast (DAB) and Digital Video Broadcast (DVB) stations, frequency
modulation (FM) radio transmitter, and cellular mobile transmitter), a distributed network of Doppler
sensors, and an information fusion center. Alternatively, a network comprising multiple spatially separated
transmitters and a single Doppler sensor can be deployed. The former configuration with multiple sensors
is more expensive; nonetheless, it is more flexible in configuring a favorable multi-static geometry by

placing the sensors at appropriate positions around the available transmitter of opportunity [44].

In the simulations, we consider a PMR configuration as shown in Fig. 4, where a DAB broadcast station
(Tx) is located at the origin of the coordinate system and transmits a cellular communication signal at a
carrier frequency of 950 MHz, and 5 Doppler frequency measurement sensors (Rx) are distributed along
a circle of radius 2.5 km from the transmitter. The region of interest is assumed to be a rectangular
area bounded by [—2500,2500]7 m along both the z- and y-axes. The transmitter and the receivers are

assumed stationary and their locations are assumed to be precisely known a priori at the fusion center.

Following the analysis in Section II, we consider K = 2 targets moving within the region of surveil-
lance, which are initially located at [—750,0]” m and [750,0]” m and travel along linear trajectories
with velocities [30, 30]7 m/s and [—30, 30]7 m/s, respectively, as shown in Fig. 4. The state vector of the
kth target at the tth observation comprises its instantaneous position p; j = 12 py7t7k]T and velocity
v 2 (Vg s vng]T in the two-dimensional (2-D) Cartesian coordinate system, i.e., 6; ;, = [pzk, vz]T. The

target dynamics are assumed to evolve according to a constant velocity linear Gaussian model described
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in (1). As such, the state transition matrix F is expressed as

I, Al
F= , (30)
02 12
A is the sampling interval, and the covariance matrix of the process noise vector w; ; can be expressed
as [7]
4 3
5L, &5

Q=o0u| .,
51, A,

3D

The sensors report their respective observation vectors to the fusion center at an interval of A = 0.5

sec. For each observation instant ¢, the observation vector comprises 512 samples corresponding to an



observation duration of 0.5 sec., and a sampling rate of Iy, = 1024 Hz is considered to account for
the maximum possible Doppler frequency measurement of fo = 500 Hz. As such, the mth sample of
the signal received at the rth Doppler sensor is defined as a superposition of K complex exponentials

corresponding to the radar returns from the detected targets during the tth interval, such that

K
2 (m) =Y s exp(2n f)m), (32)
k=1
where sgrk) is the reflection coefficient corresponding to the kth target, m = 0,--- ;M — 1 represent

the discrete-time instants sampled at a rate of Fs over the {th interval, and ft(? is the bistatic Doppler

frequency given by [45, 46]

(r) _ Vi puk—r” Pir — b
A lIpee =@z [[pes —bl2 |

t,k (33)

where b and r(") are the vectors representing the 2-D locations of the transmitter and the rth sensor,
respectively.

In this example, the target state space can be represented as an /N-dimensional sparse vector sgr), where

each element in sy) is uniquely associated with a discrete point in the position-velocity space. Following

the sparse signal reconstruction model in (3), the sparse decomposition of fcir) can be expressed as

igr) = \IIET)SET), where the basis or the dictionary matrix \IIET) is defined in the discrete position-velocity

space.

The lower bound on the root-mean-square error (RMSE) on the instantaneous estimation of target
position and velocity, assuming different proportion of missing samples, is compared in Fig. 5. As
discussed in Section III, the bounds on the RMSE of the position and velocity estimates increase by a
factor of \/M /(M — L), i.e., approximately 1.41 for 50% missing samples and 2.00 for 75% missing

samples.

The posterior bound is compared in Fig. 6 for three different proportions of missing samples while the
input SNR is maintained at —15 dB. The effect of strong additive Gaussian noise and high proportion
of missing samples is relatively lower in the steady-state posterior bound compared to the bound on the
instantaneous state estimation. For example, as shown in Fig. 6, the posterior bound on the standard
deviation of position estimate at —15 dB and 50% missing samples is approximately equal to 1 m, which
is a significant reduction from 3.4 m before tracking. This is the motivation behind the recursive learning
architecture presented in [8]. It is noted that the tracking performance also depends on the variance of
the process noise variance, which is set to be 02, = 1 in this simulation example. Next, we present

the posterior bound on the RMSE of the estimated target states at the kth observation by evaluating the
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Fig. 5. Error bounds on the estimates of (a) position; and (b) velocity.

inverse of the posterior FIM derived in (29). It is noted that the analysis in (27) requires a negligible
correlation between the actual measurements and the predicted measurements used for recursion. This is
verified through a numerical example in Fig. 7. For all values of the SNR and the ratio of missing samples
considered, the resulting correlation coefficient is very low. It is interesting to note that the correlation
coefficient is lower in the more challenging scenarios where the input SNR is low or the ratio of the
missing samples is high.

The lower bound on the RMSE of the instantaneous estimation of target position and velocity achieved
using the feedback structure is compared in Fig. 8 against the conventional method, assuming 50% missing

samples. As analytically evaluated in Section V and by exploiting the feedback structure, we lower the
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Fig. 6. Posterior error bounds on the estimates of (a) position; and (b) velocity.

bound on the variance of the instantaneous target state estimates. In fact, by properly choosing the value
of BET), a bound smaller than the case with no missing samples can be achieved. In this simulation

example, we use Bgr) = 0.751 .

Next, we compare the posterior bound on the RMSE of the estimated target states at the kth observation
achieved, respectively, by exploiting the conventional approach and the recursive feedback method. The
posterior bound is compared in Fig. 9 for 50% missing samples and an input SNR of —15 dB. It is
noted that the tracking performance is significantly improved by exploiting the feedback structure both

in terms of the rate of convergence and the accuracy at the steady state.

For a given percentage of missing samples and SNR, the emphasis on feedback structure determines
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the performance improvement that can be achieved through recursive learning. The effect of varying the
relative weight for different proportions of missing samples is shown in Fig. 10. It is evident that the
estimation error increases when a lower weight is placed on the predicted observation vector. This effect

becomes more prominent as the percentage of missing samples is increased.

Next, we compare the posterior error bound on the RMSE of the estimated target states at the kth
observation for different values of relative weights, while the percentage of missing samples is maintained
at 50% and an input SNR of —15 dB is considered in all three cases. As illustrated in Fig. 11, the lower
the relative weight on the predicted observation vector is, the larger the posterior error bound gets, and
it also takes a longer time to reach for the steady state. However, it is important to note, particularly for
highly maneuvering targets, that a higher relative weight on the predicted observation vector delays the

adaptation to any changes in the target trajectory.

VI. CONCLUSIONS

In this paper, we have analytically derived and compared the Cramer-Rao type performance bounds
for two algorithmic structures for sparsity-aware multi-sensor MTT. First, we analytically evaluated the
performance degradation of the conventional two-step sequential architecture that cascades the group
sparse reconstruction algorithm and the MTT algorithm in a situation where the observation suffers from
a high proportion of missing samples. Next, we derived the performance bounds for a recently developed
technique for sparsity-aware multi-sensor MTT which deploys a recursive feedback mechanism such that

the group sparse reconstruction algorithm also benefits from the a priori knowledge about the target
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dynamics. Through an application example in the context of multisensor MTT in PMR systems, we have
shown that the recursive learning structure outperforms the conventional approach, when the measurement

vectors are corrupted by a high percentage of missing samples and strong additive noise.
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