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Abstract—Different from conventional phased-array radars,
the frequency diverse array (FDA) radar offers a range-
dependent beampattern capability that is attractive in various ap-
plications. The spatial and range resolutions of an FDA radar are
fundamentally limited by the array geometry and the frequency
offset. In this paper, we overcome this limitation by introducing
a novel sparsity-based multi-target localization approach incor-
porating both coprime arrays and coprime frequency offsets.
The covariance matrix of the received signals corresponding to
all sensors and employed frequencies is formulated to generate a
space-frequency virtual difference coarrays. By using O(M+N)
antennas and O(M + N) frequencies, the proposed coprime
arrays with coprime frequency offsets enables the localization
of up to O(M2N2) targets with a resolution of O(1/(MN)) in
angle and range domains, where M and N are coprime integers.
The joint direction-of-arrival (DOA) and range estimation is cast
as a two-dimensional sparse reconstruction problem and is solved
within the Bayesian compressive sensing framework. We also
develop a fast algorithm with a lower computational complexity
based on the multitask Bayesian compressive sensing approach.
Simulations results demonstrate the superiority of the proposed
approach in terms of DOA-range resolution, localization accu-
racy, and the number of resolvable targets.

Index Terms—Target localization, frequency diverse array
radar, coprime array, coprime frequency offset, Bayesian com-
pressvie sensing

I. INTRODUCTION

Target localization finds a variety of applications in radar,
sonar, communications, and navigation [2]–[5]. The phased ar-
ray radars are known for their capability to electronically steer
a beam for target detection and tracking in the angular domain
[6]–[9]. To localize targets in both angle and range, beam-
steering should be achieved across a signal bandwidth. This
generally leads to a complicated waveform design and signal
processing algorithms. Recently, the frequency diverse array
(FDA) framework was introduced as an attractive multiple-
input multiple-output (MIMO) structure that performs beam
steering over a signal bandwidth and achieves joint estimation
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of targets direction-of-arrival (DOA) and range information
[10]–[20]. As compared with conventional arrays that as-
sume a fixed carrier frequency, FDA radars use a small
frequency increment across array elements and thus achieve
beam steering as a function of the angle and range in the
far field. In FDA radars, the spatial and range resolutions are
fundamentally limited by the array aperture and maximum
frequency increment. In addition, the number of degrees-of-
freedom (DOFs) offered by the array sensors and frequency
increments determines the maximum number of detectable
targets.

The traditional FDA exploits a uniform linear array with
a uniform frequency offset. The range and DOA estimation
problem using such FDA radar has been discussed in [21]–
[23]. In [21], [22], the target ranges and DOAs are jointly
estimated by the minimum variance distortionless response
(MVDR) and the MUSIC methods, respectively. Unlike [21],
[22], an FDA utilizing coherent double pulse respectively
with zero and non-zero frequency increments is considered
in [23], where the ranges and DOAs are estimated in two
steps. In the zero frequency increment case, the DOAs are first
estimated using a non-adaptive beamformer. The estimated
DOA information is then used as the prior knowledge by
adaptive beamforming to obtain the range information in the
other pulse. It is important to note that the above methods
[21]–[23] use the traditional FDA radar and are discussed
in the physical sensor framework rather than the virtual
difference coarray. That is, for an array with Nt sensors,
there are only O(Nt) DOFs with a resolution O(1/Nt) in
both the range and angle domains. While the angular and
range resolutions can be improved by exploiting a large
interelement spacing and a large frequency increment, such
structure generally requires a large number of array sensors,
or otherwise yields undesirable aliasing problems, i.e., causes
ambiguous estimations in angular and range dimensions.

Compared with uniform linear arrays (ULAs), sparse arrays
use the same number of sensors to achieve a larger array
aperture. A properly designed non-uniform array can achieve
a desired trade-off between meanbeam width and sidelobe
levels and, thereby, provide enhanced performance in terms of
DOA accuracy and resolution. These attributes are achieved
without changes in size, weight, power consumption, or cost.
More importantly, sparse arrays offer a higher number of
DOFs through the exploitation of the coarray concept [24]
and, as such, significantly increases the number of detectable
targets. Likewise, non-uniform frequency offsets can be used
to achieve improved target identifiability and resolution in the
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range dimension [25]. Among different techniques that are
available for sparse signal structures and array aperture synthe-
sis, the recent proposed nested [26] and coprime configurations
[27] offer systematical design capability and DOF analysis
involving sensors, samples, or frequencies [28]–[41].

In [42], a nested array is employed to generate a coarray
where the MUSIC algorithm together with spatial smoothing
is applied. As a result, the number of the DOFs in the
angular domain is increased to O(N2

t ). In [43], a sparsity-
based method using the nested array is proposed. It achieves
improved resolution and estimation accuracy when compared
with the conventional covariance based methods. However, the
number of the DOFs in the range domain is still O(Nt) since
a uniform frequency offset is used. In addition, due to the
large dimension of the joint range and angle dictionary, this
method results in a prohibitive computational complexity that
limits its practical applicability, particularly when the number
of antennas is large.

In this paper, we propose a novel configuration for the
FDA radar, which incorporates both coprime array structure
and coprime frequency offsets. In the proposed approach, the
offsets of carrier frequencies assume a coprime relationship to
further increase the number of DOFs beyond that achieved by
only implementing the sparse arrays with uniform frequency
increments. As a result, by using O(Nt) antennas and O(Nt)
frequencies, the proposed approach achieves O(N2

t ) DOFs
with a resolution of O(1/N2

t ) in both angular and range
domains.

In this paper, we consider point-like targets and we exploit
their sparsity in both range and angular domains. We propose
both joint and sequential estimation methods based on the
space-frequency coarray structure. For the joint estimation, the
covariance matrix of the received signals corresponding to all
sensors and employed frequencies is formulated to generate a
virtual difference coarray structure in the joint space-frequency
domain. Then, a joint-variable sparse reconstruction problem
in the range and angular domain is presented as a single
measurement vector (SMV) model. We further develop a
novel sequential two-step algorithm in the context of group
sparsity for reduced complexity. The cross-covariance matrices
between the signals received at all sensors corresponding to
different frequency pairs form space-only coarrays. Observa-
tions in these coarrays exhibit a group sparsity across all fre-
quency pairs, since their sparse angular domain vectors share
the same non-zero entry positions associated with the same
target DOAs. Therefore, the DOAs can be first solved under
a multiple measurement vector (MMV) model. The values
of nonzero entries contain the range information, and their
estimates across all frequency pairs are utilized to formulate
a sparse reconstruction model with respect to the range. In so
doing, the joint DOA and range estimation problem is recast
as two sequential one-dimensional (1-D) estimation problems
with a significantly reduced computational complexity.

The above sparse learning problems can be solved within
the compressive sensing (CS) framework [44] and various CS
methods can be used for this purpose. As a preferred approach,
we exploit the algorithms developed in the sparse Bayesian
learning context as they achieve superior performance and are

insensitive to the coherence of dictionary entries [45]–[51]. In
particular, the complex multitask Bayesian compressive sens-
ing (BCS) method [45], which effectively handles complex-
value observations in the underlying problem, is used in this
paper.

The main contribution of this work is threefold: (a) We
achieve a significantly increased number of DOFs and improve
both angular and range resolutions by exploiting both coprime
array and coprime frequency offsets under the coarray and
frequency difference equivalence. (b) We employ a sparsity-
based method to solve the joint DOA and range estimation
problem which, when compared to conventional MUSIC-based
approach, enables more effective utilization of the available
coarray aperture and frequency differences to resolve a higher
number of targets and improve the localization accuracy. (c)
We further develop a group-sparsity based algorithm which, by
casting the joint DOA and range estimation as two sequential
1-D estimation problems, significantly reduces the computa-
tional complexity and processing time.

The rest of the paper is organized as follows. In Section II,
the signal model of the traditional FDA radar is described. In
Section III, we present a new FDA structure using coprime
arrays and coprime frequency offsets. By effectively utilizing
the available coarray aperture and frequency differences, two
sparsity-based multi-target localization methods are proposed
in Sections IV and V that resolve a higher number of targets
and improve the localization accuracy. More specifically, in
Section IV, the DOA and range are jointly estimated by a two-
dimensional (2-D) sparse reconstruction algorithm, whereas
a low-complexity algorithm through sequential 1-D sparse
reconstruction is presented in Section V. Simulation results are
provided in Section VI to numerically compare the localization
performance of the proposed approach with other methods
in terms of the number of resolvable targets, DOA-range
resolution, and localization accuracy. Such results reaffirm
and demonstrate the effectiveness of the proposed approach.
Section VII concludes the paper.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, IN denotes the
N × N identity matrix. (.)∗ implies complex conjugation,
whereas (.)T and (.)H respectively denote the transpose and
conjugate transpose of a matrix or vector. vec(·) denotes
the vectorization operator that turns a matrix into a vector
by stacking all columns on top of the another, and diag(x)
denotes a diagonal matrix that uses the elements of x as its
diagonal elements. E(·) is the statistical expectation operator
and ⊗ denotes the Kronecker product. Pr(·) denotes the
probability density function (pdf), and N (x|a, b) denotes that
random variable x follows a Gaussian distribution with mean
a and variance b. Similarly, CN (a, b) denotes joint complex
Gaussian distribution with mean a and variance b. Γ(·) is
the Gamma function operator. δq,p is a delta function that
returns the value of 1 when p = q and 0 otherwise. N and
N+ respectively denote the set of non-negative integers and
positive integers, whereas R+ denotes the set of positive real
numbers. | · | denotes the determinant operation, whereas ‖ ·‖2
and ‖ · ‖F represent the Euclidean (l2) norm and Frobenious
norm, respectively. Tr(A) returns the trace of matrix A.
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Fig. 1. The FDA configuration.

II. FREQUENCY DIVERSE ARRAY RADAR

Without loss of generality, we limit our discussion to far-
field targets in the 2-D space where the DOA is described by
the azimuth angle only. Extension to three-dimensional (3-D)
space is straightforward.

A. Signal Model

As shown in Fig. 1, an FDA radar utilizes a linear array with
Nt antennas. Note that the array spacing can be either uniform
or non-uniform. Denote p = [p1d, ..., pNtd]T as the positions
of the array sensors where pk ∈ N, k = 1, ..., Nt. The first
sensor, located at p1 = 0, is used as the reference. To avoid
spatial ambiguity, d is typically taken as half wavelength, i.e.,
d = λ0/2 = c/(2f0), where c is the velocity of electromag-
netic wave propagation and f0 is the base carrier frequency.
Different from the conventional phased-array radar where all
antennas transmit the same signal with carrier frequency f0,
each FDA element radiates a signal with an incremental carrier
frequency. That is, a continuous-wave (CW) signal transmitted
from the kth element is expressed as

sk(t) = Akexp(j2πfkt), (1)

where Ak is the amplitude and the radiation frequency fk =
f0 + ξk∆f is exploited with a unit frequency increment ∆f ,
and ξk ∈ N is an integer coefficient of the frequency offset
applied at the kth element, k = 1, ..., Nt. The maximum
increment is assumed to satisfy ξNt∆f � f0 so as to
guarantee that the FDA radar works in a narrowband platform.
Also, the frequency offsets are not necessary uniform.

An important objective of this paper is to improve the
parameter identifiability using the FDA radar. Since the targets
in different bins can be simple identified, we consider a
scene with Q far-field targets within the same Doppler bin.
Without loss of generality, the Doppler frequency is assumed
to be 0. The locations of the targets are modeled as (θq, Rq),
q = 1, 2, · · · , Q. Then, the received signal at the lth sensor is
modeled as

x̌l(t) =

Nt∑
k=1

Q∑
q=1

ρq(t)exp(j2πfkt)e
−j 4π

λk
Rqe
−j 2πpld

λk
sin(θq)

+ ňl(t), l = 1, . . . , Nt, (2)

where ρq(t), q = 1, . . . , Q, are complex scattering coefficients
of the targets, which are assumed to be uncorrelated zero-
mean random variables with E[ρ∗qρp] = σ2

qδq,p, 1 ≤ q, p ≤
Q, due to, e.g., the radar cross section (RCS) fluctuations. In
addition, λk = c/fk denotes the wavelength corresponding to

carrier frequency fk. Furthermore, ňl(t) is the additive noise,
which is assumed to be spatially and temporally white, and is
independent of target signals.

By implementing the pass-band filtering, the received signal
is converted to the signals corresponding to the respective fre-
quencies. For a CW waveform with frequency fk transmitted
from the kth sensor, the baseband signal received at the lth
sensor can be expressed as

xk,l(t) =

Q∑
q=1

ρq(t)e
−j 4π

λk
Rqe
−j 2πpld

λk
sin(θq) + nk,l(t)

=

Q∑
q=1

ρq(t)e
−j 4πfk

c Rqe−j
πpl(f0+ξk∆f)

f0
sin(θq) + nk,l(t),

(3)

where nk,l(t) is the noise at the filter output with a variance
σ2
n. Because ξk∆f � f0, the above expression can be

simplified as

xk,l(t) =

Q∑
q=1

ρq(t)e
−j 4πfk

c Rqe−jπpl sin(θq) + nk,l(t). (4)

Stacking xk,l(t) for all k, l = 1, ..., Nt yields an N2
t ×1 vector,

x(t) =

Q∑
q=1

ρq(t)ap,f (θq, Rq) + n(t)

= Ap,fd(t) + n(t), (5)

where ap,f (θq, Rq) = ap(θq)⊗af (Rq) represents the steering
vector associated with the angle-range pair (θq, Rq). Herein,
ap(θq) and af (Rq) are steering vectors corresponding to θq
and Rq , respectively, expressed as

ap(θq) =
[
1, e−jπp2 sin(θq), · · · , e−jπpNt sin(θq)

]T
, (6)

af (Rq) =

[
e−j

4πf1
c Rq , e−j

4πf2
c Rq , · · · , e−j

4πfNt
c Rq

]T
. (7)

In addition, Ap,f = [ap,f (θ1), · · · ,ap,f (θQ)], d(t) =
[ρ1(t), · · · , ρQ(t)]T , and nk(t) is the noise vector following
the joint complex Gaussian distribution CN (0, σ2

nIN2
t
).

The N2
t × N2

t covariance matrix of data vector x(t) is
obtained as

Rx = E[x(t)xH(t)] = Ap,fRddAH
p,f + σ2

nIN2
t

=

Q∑
q=1

σ2
qap,f (θq, Rq)a

H
p,f (θq, Rq) + σ2

nIN2
t
, (8)

where Rdd = E[d(t)dH(t)] = diag([σ2
1 , . . . , σ

2
Q]) represents

the target scattering power. Note that we assume the target
scattering coefficients to be frequency-independent for the
emitting signals since the frequency offsets are relatively
small. In practice, the covariance matrix is estimated using
T available samples, i.e.,

R̂x =
1

T

T∑
t=1

x(t)xH(t). (9)
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Existing covariance matrix based techniques can then be
applied to estimate the DOA and range of the targets, e.g.,
the Fourier-based power spectrum density (PSD) [52] and 2-
D MUSIC [53].

B. Unambiguous Range

For each target, the DOA and range information are re-
spectively determined by φθq and φRq , which are defined
as the minimum phase difference in angle and range di-
mensions, respectively, i.e., the phase terms of e−jπ sin(θq)

and e−j4π∆fRq/c. In reality, however, phase observations are
wrapped within [−π, π). Therefore, the true phase can be
expressed as

φ
(true)
θq

= φθq + 2mθqπ, (10)

φ
(true)
Rq

= φRq + 2mRqπ, (11)

where mθq and mRq are unknown integers. As a result, the
range estimate is subject to range ambiguity [54], i.e.,

Rq =
cφRq
4π∆f

+
cmRq

2∆f
. (12)

The latter term in (12) implies ambiguity in range due to
phase wrapping. Thus, the range can be assumed as infinite
values separated by Rmax = c/(2∆f), which is referred to
as the maximum unambiguous range. Therefore, the use of
a large value of ∆f will reduce the maximum unambiguous
range. As a large frequency bandwidth is required to achieve
proper range resolution, uniform frequency offsets must trade
off between the range resolution and unambiguous range
estimation. On other other hand, coprime frequency offsets
allows the use of small ∆f while collectively spanning a large
signal bandwidth.

III. FREQUENCY DIVERSE COPRIME ARRAYS WITH
COPRIME FREQUENCY OFFSETS

For the traditional FDA radar with Nt-element ULA and
uniform frequency increment, it can localize up to N2

t − 1
targets, with a resolution O(1/Nt) in the angle and range
domains, respectively. Compared with the uniform case, sparse
arrays and sparse frequency offsets use the same number of
sensors and frequencies to achieve a larger array aperture and
frequency bandwidth. As a result, they improve the resolution
and estimation accuracy. However, the number of resolvable
targets using sparse arrays and sparse frequency offsets is
still upper bounded by N2

t − 1, if those covariance matrix
based approaches are used directly. Such the limitation can
be overcome by the improvement of DOFs under the coarray
equivalence.

A. Coarray Equivalence

By vectorizing the matrix Rx, we obtain the following N4
t ×

1 virtual measurement vector:

z = vec(Rx) = Ãp,fbp,f + σ2
n ĩ, (13)

with

Ãp,f = [ãp,f (θ1, R1), · · · , ãp,f (θQ, RQ)], (14)

bp,f = [σ2
1 , · · · , σ2

Q]T , (15)

ĩ = vec
(
IN2

t

)
, (16)

where

ãp,f (θq, Rq) = a∗p,f (θq, Rq)⊗ ap,f (θq, Rq)

= a∗p(θq)⊗ a∗f (Rq)⊗ ap(θq)⊗ af (Rq)

= (a∗p(θq)⊗ ap(θq))⊗ (a∗f (Rq)⊗ af (Rq))

= ãp(θq)⊗ ãf (Rq) (17)

for 1 ≤ q ≤ Q. Benefiting from the Vandermonde structure of
ap(θq) and af (Rq), the entries in ãp(θq) and ãf (Rq) are still
in the forms of e−jπ(pi−pj) sin(θq) and e−j4π(ξi−ξj)∆fRq/c, for
i, j = 1, · · · , Nt. As such, we can regard z as a received
signal vector from a single-snapshot signal vector bp,f , and
the matrix Ãp,f corresponds to the virtual array sensors
and virtual frequency offsets which are respectively located
at the sensor-lags between all sensor pairs and frequency-
offsets between all frequency pairs. The targets can thus be
localized by using the space-frequency coarray, in lieu of the
original antennas and frequencies. Note that the number of
elements in the space-frequency coarray structure are directly
determined by the distinct values of (pi − pj) and (ξi − ξj)
for i, j = 1, · · · , Nt. Non-uniform arrays can substantially
increase the number of DOFs by reducing the number of
redundant elements in the coarray. In other words, the number
of DOFs would be reduced if different pairs of sensors or
frequency offsets yield same lags when the uniform arrays are
exploited.

B. Coprime Arrays with Coprime Frequency Offsets

Among the different choices that are available for sparse
array and frequency offset designs, the recently proposed co-
prime configurations [27] offer a systematical design capability
and DOF analysis involving sensors, samples, or frequencies.
In this paper, we use the extended coprime structure which
is proposed in [55] as an example. Extensions to other
generalized coprime structures that achieve higher DOFs are
straightforward [34].

As shown in Fig. 2, the extended coprime array structure
utilizes a coprime pair of uniform integers. The coprime array
consists of a 2M -sensor uniform linear subsarray with an

#0 #1 #𝑁 − 1 #2 

𝑀  

#0 #1 #2𝑀 − 1 #2 

𝑁  

Fig. 2. The extended coprime structure.
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interelement spacing of N , and an N -sensor uniform linear
subarray with an interelement spacing of M . The two integers
M and N are chosen to be coprime, i.e., their greatest common
divisor is one. In addition, M < N is assumed. Define

P(M,N) = {Mn|0 ≤ n ≤ N − 1}
⋃
{Nm|0 ≤ m ≤ 2M − 1}

(18)
as the union of two sparsely sampled integer subsets with
respect to the pair of coprime integers (M,N). As such, the
yielding correlation terms have the positions

L(M,N) = {±(Mn−Nm)|0 ≤ m ≤ 2M−1, 0 ≤ n ≤ N−1}.
(19)

An example is illustrated in Fig. 3, where M = 2 and N =
3. Fig. 3(a) shows the physical elements of extended coprime
structure, and the positions of the corresponding correlation
terms are depicted in Fig. 3(b). Notice that “holes”, e.g., ±8
in this case, still exist in the virtual domain and are indicated
by × in the figure. It is proved in [56] that L(M,N) can achieve
at least MN (up to (3MN +M −N +1)/2) DOFs with only
2M + N − 1 (two subsets share the first element) entries in
P(M,N).

0 1 2 3 4 5 6 7 8 9

(a)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

(b)

Fig. 3. An example for the extended coprime structure. (a) The physical
elements in P(M,N) (4: Subset 1; ∇: Subset 2); (b) The corresponding
correlation term positions in L(M,N).

When coprime arrays and coprime frequency offsets with
pairs of coprime integers (M,N) is exploited, there are at least
MN available DOFs in each ap(θq) and af (Rq). That is, the
resulting virtual array elements and virtual frequency offsets
enable estimation of at least MN distinct DOAs and MN
distinct ranges of targets. Benefitting from the sparse structure,
the proposed coprime array with coprime frequency offsets
offers a larger aperture and frequency span, thus resulting in an
improved resolution in both angular and range domains. Fur-
ther, it has less redundant entries in the covariance matrix Rx,
implying that the resulting coarray structure and frequency lag
sets provide a higher number of DOFs that can be used to
identify more targets using the CS based methods.

The localization problem in (13) is similar to handling mul-
tiple targets that are fully coherent. In this case, the covariance
matrix constructed from the virtual signal vector is rank-1
and, as a result, subspace-based localization approaches fail
to function. A well-known approach that restores the rank of
the covariance matrix is spatial smoothing [57], [58]. A major
disadvantage of such approach is that only consecutive lags
in the virtual observations can be used so that every subarray
has a similar manifold (e.g., [−7, 7] in Fig. 3(b)), whereas
the virtual sensors that are separated by any holes have to
be discarded. Alternatively, this problem can be solved by
using sparse reconstruction methods (e.g., [34], [59]) which,

2 4 6 8 10 12 14 16 18
Number of Physical Antennas Nt

0

500

1000

1500

2000

2500

T
h
e
N
u
m
b
er

o
f
D
O
F
s

Uniform

Coprime

Fig. 4. The number of DOFs versus Nt.

by taking advantages of the fact that the targets are sparse
in the angle-range domain, utilize all consecutive and non-
consecutive lags (e.g., ±9 and [−7, 7] in Fig. 3(b)) in the
coarray so as to fully utilize the available DOFs offered by
the coarray configurations.

Provided that sufficient snapshots are available for reliable
covariance matrix estimation, at least O(MN) targets (no
same DOA and no same range), up to O(M2N2) targets (each
of MN DOAs has MN distinct ranges), can thus be localized
by using Nt = 2M +N − 1 antennas and Nt = 2M +N − 1
frequencies. For a given number of Nt, the maximum number
of DOFs can be further optimized by

Maximize M2N2

subject to 2M +N − 1 = Nt, (20)

M < N, M,N ∈ N+.

It is demonstrated in [31] that the valid optimal coprime pair
to maximize MN is the one that has 2M and N as close as
possible. This is satisfied by choosing N = 2M − 1. In this
case, more than

[
N2
t (Nt + 2)2

]
/64 DOFs can be obtained.

Therefore, the frequency diverse coprime arrays with coprime
frequencies can resolve more targets than that of conventional
FDA with ULA and uniform frequency increment (i.e., N2

t −1)
when Nt ≥ 6, as shown in Fig. 4.

IV. TARGET LOCALIZATION USING MULTITASK BCS
In the following, we perform multi-target localization in

the sparse reconstruction framework. The general focus of
proposed methods is to resolve a higher number of targets
and improve the localization accuracy by fully utilizing all
the virtual observations achieved from lags in both sensor
positions and frequencies. For the simplicity and clarity of
the presentation, we assume the targets to be placed on a pre-
defined grid. Direct application of the proposed method in
the presence of dictionary mismatch would yield performance
degradation. However, various techniques, such as those cited
in [32], [33], [60], [61], can be used to overcome this problem
by exploring the joint sparsity between signals and the grid
mismatch variables.

The virtual signal vector z in (13) can be sparsely repre-
sented over the entire discretized angular grids as

z = Φb + ε, (21)
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where Φ =
[
Φs, ĩ

]
. Herein, Φs is defined as the col-

lection of steering vectors ãp,f (θg1
, Rg2

) over all possible
grids θg1

and Rg2
, g1 = 1, . . . , G1, g2 = 1, . . . , G2, with

G = G1G2 � N4
t > Q, and bs is the sparse vector whose

non-zero entry positions correspond to the DOAs and ranges
of the targets, i.e., (θq, Rq), q = 1, . . . , Q. The term ĩ in
the dictionary accounts for noise variance terms that have
unequal values in the vectorized entries. In addition, an error
vector ε is included to represent the discrepancies between the
statistical expectation and the sample average in computing the
covariance matrix R. The discrepancies are modelled as i.i.d.
complex Gaussian as a result of a sufficiently large number of
samples employed in the averaging.

In this paper, we elect to perform the sparse signal re-
construction within the BCS framework [45]–[51] stemming
from their superior performance and robustness to dictionary
coherence. In particular, the complex multitask BCS approach
developed in [45] is used to deal with all the sparse reconstruc-
tion problems. Thus, the following sparse Bayesian model is
presented as an MMV model with P tasks (measurements),
whereas the SMV problem in (21) can be considered as a
special case with a single task, i.e., P = 1.

A. Sparse Bayesian Formulation

The MMV model is expressed as

Z = ΦB, (22)

where Z = [z1, · · · , zP ] and B = [b1, · · · ,bP ]. The matrix
B is jointly sparse (or row sparse), i.e., all columns of B are
spares and share the same support.

Assume that the entries in jointly sparse matrix B are
drawn from the product of the following zero-mean complex
Gaussian distributions:

Pr(B|α) =

P∏
p=1

CN (bp|0,Λ), (23)

where α = [α1, . . . , αG]T and Λ = diag(α). It is noted that
the gth row of B trends to be zero when αg, g = 1, · · · , G
is set to zero [46]. In addition, α is placed on a complex
variable directly. As such, it achieves improved sparse signal
reconstruction because by utilizing the group sparsity of the
real and imaginary components than the methods that simply
decomposing them into independent real and imaginary com-
ponents.

To encourage the sparsity, a Gamma prior is placed on αg ,
which is conjugate to the Gaussian distribution,

αg ∼ Γ(αg|1, ρ), g ∈ [1, · · · , G], (24)

where ρ ∈ R+ is a fixed priori. It has been demonstrated in
[62] that a proper choice of ρ encourages a sparse represen-
tation for the coefficients. Then, we have

Pr(α|a, b) =

G∏
g=1

Γ(αg|1, ρ). (25)

All columns of B share the same prior due to the group sparse
property. Base on [63], both of the real and image parts of bp,

p = 1, · · · , P , are Laplace distributed and share the same pdf
that is strongly peaked at the origin. As such, this two-stage
hierarchical prior is a sparse prior that favors most rows of B
being zeros.

A Gaussian prior CN (0, β−1
0 I2) is also placed on the error

vector ε. Then, we have,

Pr(Z|B, β0) =

P∏
p=1

CN (zp|Φbp, β
−1
0 I), (26)

Likewise, the Gamma prior is placed on β0 with hyper-
parameters c and d, expressed as

Pr(β0|c, d) = Γ(β−1
0 |c, d), (27)

where Gamma(β−1
0 |a, b) = Γ(a)−1baβ

−(a−1)
0 e−

b
β0 .

By combining the stages of the hierarchical Bayesian model,
the joint pdf becomes

Pr(Z,B,α, β0) = Pr(Z|B, β0)Pr(B|α)Pr(α|1, ρ)Pr(β0|c, d).
(28)

To make this Gamma prior non-information, we set c = d = 0
in this paper as in [46]–[51].

B. Bayesian Inference

Assuming α and β0 are known, given the measurement Z
and the corresponding dictionary Φ, the posterior for B can
be obtained analytically using Bayes’s rule, expressed as a
Gaussian distribution with mean µ and variance Σ

Pr(B|Z,α, β0) =

P∏
p=1

CN (bp|µp,Σ), (29)

where

µp = β−1
0 ΣΦHzp, (30)

Σ =
[
β−1

0 ΦHΦ + F−1
]−1

. (31)

The associated learning problem, in the context of relevance
vector machine (RVM), thus becomes the search for the α
and β0. In RVM, the values of α and β0 are estimated from
the data by performing a type-II maximum likelihood (ML)
procedure [62]. Specially, by marginalizing over the B, the
marginal likelihood for α and β0, or equivalently, its logarithm
L(α, β0) can be expressed analytically as

L(α, β0) =

P∑
p=1

log Pr(bp|α, β0)

=

P∑
p=1

log

∫
Pr(zp|bp, β0)Pr(bp|α)dbp

= const− 1

2

P∑
p=1

log |C|+ (zp)
H

C−1zp (32)

with
C = β0I + ΦFΦH . (33)

Denote U = [µ1, · · · ,µP ] = β−1
0 ΣΦHZ, B = B/

√
P , Z =

Z/
√
P , U = U/

√
P , and ρ = ρ/P . An ML approximation

employs the point estimates for α and β0 to maximize (32),
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which can be implemented via the expectation maximization
(EM) algorithm to yield

α(new)
g =

√
1 + 4ρ(‖µg‖22 + Σg,g)− 1

2ρ
, g ∈ [1, · · · , G],

(34)

β
(new)
0 =

E{‖Z−ΦB‖2F }
NΦ

, (35)

where µg is the gth row of matrix U and Σg,g is the (g, g)th
entry of matrix Σ. In addition, NΦ is the number of rows of
Φ.

It is noted that, because α(new) and β
(new)
0 are a function

of µp and Σ, while µp and Σ are a function of α and β0, this
suggests an iterative algorithm that iterates between (30)–(31)
and (34)–(35), until a convergence criterion is satisfied or the
maximum number of iterations is reached. In each iteration,
the computational complexity is O(max(NΦG

2, NΦGP ))
with an NΦ ×G dictionary Φ [48].

C. Complexity Analysis

For the case of 2-D BCS, the corresponding joint angle-
range of targets, (θ̂q, R̂q), q = 1, · · · , Q, can be estimated by
positions of the nonzero entries in b in (21). In the sequel, we
analyze its computational complexity, which can be divided
into the following three stages:

S1: Compute the N2
t ×N2

t covariance matrix R̂x with (9).
S2: Generate the N4

t × 1 virtual array data z with (13) by
vectorizing the covariance matrix.

S3: Perform target localization to obtain (θ̂q, R̂q), q =
1, · · · , Q using (30)–(31) and (34)–(35), based on the
BCS (P = 1) with an N4

t ×G1G2 dictionary.

In S1, there are O(N4
t T ) complex multiplications, whereas

no multiplication operation is needed for vectorization in S2.
For the BCS, we might need O(κN4

t G
2
1G

2
2) complex multipli-

cation operations, where κ is the number of iterations. There-
fore, the total computational load, i.e., O(N4

t T +κN4
t G

2
1G

2
2),

is very huge because the exhaustive 2-D searching process,
which motivates the development of fast algorithms.

V. A FAST ALGORITHM FOR TARGET LOCALIZATION

In this section, we develop an algorithm based on the
multitask BCS, wherein the 2-D sparse reconstruction prob-
lem is cast as separate 1-D sparse reconstruction problems.
Therefore, the computational complexity can be reduced.

Stacking xk,l(t) for all l = 1, ..., Nt yields the following
Nt × 1 vector,

xk(t) =

Q∑
q=1

ρq(t)e
−j 4πfk

c Rqap(θq) + nk(t). (36)

As such, the vector xk(t) behaves as the received signal of
the array, corresponding to the frequency fk, k = 1, · · · , Nt.

The cross-covariance matrix between data vectors xk(t) and
xk′(t), respectively corresponding to frequencies fk and fk′ ,
1 ≤ k, k′ ≤ Nt, is obtained as

Rxkk′ = E[xk(t)xHk′(t)] =

Q∑
q=1

σ2
qe
−j

4π∆f
kk′
c Rqap(θq)a

H
p (θq),

(37)
where ∆fkk′ = fk − fk′ = (ξk − ξk′)∆f . Note that the
dimension of Rxkk′ is reduced to Nt ×Nt, compared to the
N2
t ×N2

t matrix Rx in (8). In practice, the cross-covariance
matrix is estimated by using T available samples, i.e.,

R̂xkk′ =
1

T

T∑
t=1

xk(t)xHk′(t), 1 ≤ k, k′ ≤ Nt. (38)

Vectorizing this matrix yields the following N2
t × 1 vector

zkk′ = vec(Rxkk′ ) = Ābfkk′ , (39)

where

Ā = [ãp(θ1), · · · , ãp(θQ)], (40)

bfkk′ = [σ2
1e
−j

4π∆f
kk′
c R1 , · · · , σ2

Qe
−j

4π∆f
kk′
c RQ ]T . (41)

Similarly, (39) can be sparsely represented over the entire
angular grids as

zkk′ = Φ̄b̄kk′ , (42)

where the N2
t × G1 dictionary Φ̄ is defined as the collec-

tion of steering vectors ãp(θg) over all possible grids θg1 ,
g1 = 1, . . . , G1, with G1 � Q. As such, the DOAs θq ,
q = 1, · · · , Q, are indicated by the nonzero entries in the
sparse vector b̄kk′ , whose values describe the corresponding
coefficients σ2

qe
−j

4π(ξk−ξk′ )∆f
c Rq . Note that the nonzero entries

corresponding to different frequency pairs share the same
positions as they are associated with the same DOAs of the Q
targets. However, their values differ for each frequency pair.
Therefore, zkk′ exhibits a group sparsity across all frequency
pairs and the problem described in (42) can be solved in the
MMV sparse reconstruction context.

Denote Z = [z1, · · · , zP ] as the collection of vectors zkk′ ,
corresponding to all P = N2

t frequency pairs. Then, the MMV
sparse reconstruction problem is expressed as

Z = Φ̄B̄, (43)

where B = [b̄1, · · · , b̄P ] is the sparse matrix that can be
reconstructed by the multitask BCS.

Denote Q̄ as the number of distinct DOAs of Q targets, the
nq̄ , as the index of those nonzero positions in B̄ corresponding
to θq̄ , q̄ = 1, · · · , Q̄. In addition, the P × 1 vector bnq̄
is denoted as the nq̄th column of B̄T . Then, the range can
be estimated by solving the following sparse reconstruction
problem:

bnq̄ = ΨRnq̄ , q̄ = 1, · · · , Q̄, (44)

where Ψ is the N2
t ×G2 dictionary, whose g2th column, g2 =

1, . . . , G2, is

Ψg2
=

[
1, · · · , e−j

4π(ξk−ξk′ )
c Rg2 , · · · , 1

]T
, (45)
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with 1 ≤ k, k′ ≤ Nt. Then, the range on θq̄ , q̄ = 1, · · · , Q̄ can
be indicated by positions of nonzero entries in sparse vector
Rnq̄ .

As a summary, the proposed approach can be divided into
the following four stages:

S1: Compute all Nt×Nt covariance matrix R̂xkk′ using (38),
1 ≤ k, k′ ≤ Nt.

S2: Generate all the N2
t × 1 virtual array data zkk′ with (39)

by vectorizing the covariance matrix, 1 ≤ k, k′ ≤ Nt.
S3: Perform DOA estimation of the targets, based on the

multitask sparse reconstruction
(
P = N2

t

)
model in (43)

with an N2
t ×G1 dictionary.

S4: Perform range estimation of the targets, based on the
sparse reconstruction model in (44) with an N2

t × G2

dictionary.

In S1, there are O(N4
t T ) multiplication operations. The

complexity in S3 and S4 is O(κ1N
2
t G

2
1) and O(κ2N

2
t G

2
2),

respectively, where κ1 and κ2 are the corresponding num-
ber of iterations. Thus, the total computation load is
O
(
N4
t T + κ1N

2
t G

2
1 + κ2Q̄N

2
t G

2
2

)
, which is much lower than

O(N4
t T + κN4

t G
2
1G

2
2) in Section IV.

Remarks: The following observations can be made re-
garding the relationship between the joint and the two-step
estimation methods:

(1) Both estimation methods achieve the same number of
DOFs from the coarray;

(2) The two-step estimation method requires a significantly
reduced complexity. However, the corresponding performance
becomes sub-optimal due to error propagation. i.e., errors in
the DOA estimation stage may yield additional perturbations
in the range estimation.

VI. SIMULATION RESULTS

For illustrative purposes, we consider an FDA radar exploit-
ing coprime array and coprime frequency offset, where M = 2
and N = 3 are assumed. The extended coprime structure
consist of Nt = (2M+N−1) = 6 physical elements, and has
(3MN +M −N + 1)/2 = 9 DOFs in the virtual domain. As
such, the increased number of DOFs enables to localize more
than M2N2 = 36 targets with only 6 antennas exploiting 6
frequencies.

The unit interelement spacing is d = λ0/2, where λ0 is
the wavelength with respect to the carrier frequency f0 = 1
GHz. We choose the unit frequency increment to be ∆f =
30 KHz, resulting maximum unambiguous range Rmax =
c/(2∆f) = 5000 m. In all simulations, Q far-field targets
with identical target scattering powers are considered. The
qth target is assumed to be on angle-range plane (θq, Rq),
where θq ∈ [−60◦, 60◦] and Rq ∈ [1000, 5000] m, for
q = 1, · · · , Q. The localization performance for the coprime
array and coprime frequency offset (CA-CFO) is examined in
terms of the resolution, accuracy, and the maximum number of
resolvable targets. The average root mean square error (RMSE)

of the estimated DOAs and ranges, expressed as

RMSEθ =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(θ̂q(i)− θq)2,

RMSER =

√√√√ 1

IQ

I∑
i=1

Q∑
q=1

(R̂q(i)−Rq)2, (46)

are used as the metric for estimation accuracy, where θ̂q(i)
and R̂q(i) are the estimates of θq and Rq for the ith Monte
Carlo trial, i = 1, . . . , I . We use I = 500 independent trials
in simulations.

A. Joint Estimation Method versus Two-step Estimation
Method

We first compare the performance of the joint estimation
method and two-step estimation method. Q = 1 target with
(10◦, 1000m) is considered. The dictionary matrices Φ̄ and
Ψ are assumed to contain all possible grid entries within
(5◦, 15◦) and (1250 m, 1350 m) with uniform intervals θg1

=
0.2◦ and Rg2 = 1 m, respectively. Fig. 5 compares the RMSE
performance of DOA and range estimations with respect to
the input signal-to-noise ratio (SNR), where 500 snapshots
are used. In Fig. 6, we compare the RMSE performance with
respect to the number of snapshots, where the input SNR is set
to −5 dB. It is clear that the joint estimation method achieves
slightly better estimation accuracy at the cost of much higher
computation complexity.

-10 -8 -6 -4 -2 0 2 4 6 8 10
SNR (dB)

10-3

10-2

10-1

R
M
SE

(d
eg
)

Joint
Two-step

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
SNR (dB)

100

R
M
SE

(m
)

Joint
Two-step

(b)

Fig. 5. RMSE versus SNR using the joint and two-step estimation methods
(Q = 1 and T = 500). (a) RMSEθ ; (b) RMSER
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B. CA-CFO versus Other Array Configuration and Frequency
Offset Designs

Next, we examine the localization performance for different
array configuration and frequency offset designs. Particularly,
the proposed CA-CFO is compared with uniform linear array
and uniform frequency offset (ULA-UFO). Uniform linear
array with coprime frequency offset (ULA-CFO), and coprime
array and uniform frequency offset (CA-UFO) are also consid-
ered. In order to reduce the computational load, we use the fast
algorithm in section V for target localization in simulations.

In Fig. 7, we compare the resolution performance of differ-
ent schemes. Q = 8 targets whose true positions are shown
in Fig. 7(a) are considered. The dictionary matrices Φ̄ and Ψ
contain steering vectors over all possible grids in (−60◦, 60◦)
and (1000 m, 5000 m) with uniform intervals θg1

= 1◦ and
Rg2

= 100 m, respectively. Note that the number of targets is
larger than the number of antennas, and the traditional phased
array radar does not have sufficient DOFs to resolve all targets.
The covariance matrix are obtained by using 500 snapshots in
the presence of noise with a 0 dB SNR, and the corresponding
localization performance are illustrated in Figs. 7(b)–(e). It is
evident that only the case of CA-CFO can identify targets
correctly because the increased DOFs in both virtual array
and frequency can estimate more DOAs than the number of
antennas, and more ranges than the number of frequencies. In
addition, the corresponding larger apertures in both angle and
range domains enable the CA-CFO case to resolve the closely
spaced targets. The conventional FDA with ULA-UFO fails
to separate both pairs of the targets with closely spaced angle
and closely spaced range. However, the scenario of CA-UFO
can resolve the pair of targets with closely spaced angle and
the ULA-CFO case can identify targets with closely spaced
range, benefitting from the increased DOFs in the angle and
range domains, respectively.

We further compare the estimation accuracy through Monte
Carlo simulations. To proceed with the comparison, we con-
sider Q = 2 targets with (10◦, 1300 m) and (25◦, 1700m),
which can be separated for all cases. The dictionary matrices
Φ̄ and Ψ are assumed to contain entries corresponding to
all possible grids in (10◦, 30◦) and (1000 m, 2000 m) with
uniform intervals θg1 = 0.2◦ and Rg2 = 10 m, respec-
tively. Fig. 8 compares the RMSE performance of DOA
and range estimations with respect to the input SNR for
different array configurations and frequency offset structures,
where 500 snapshots are used. In Fig. 9, we compare the
RMSE performance with respect to the number of snapshots,
where the input SNR is set to −5 dB. It is evident that the
accuracy of both DOA and range estimates is improved as the
SNR and the number of snapshots increase. In comparison
with the uniform array/offset case, the coprime array/offset
structure benefits from more independent measurements under
the CS framework. It is shown that the CA-UFO and ULA-
CFO respectively achieve improved estimation accuracy in
the angular and range domains than that of the ULA-UFO
owing to the coprime structure in the sensor positions and
frequency offsets. In particular, the CA-CFO achieves the
best performance as the advantages of coprime structure are

presented in both angular and range domains.
In Fig. 10, we consider Q = 56 targets. Note that this

number is more than the available DOFs obtained from the
cases of ULA-UFO (the conventional FDA radar), ULA-CFO,
and CA-UFO. As the virtual array and virtual frequency offset
are obtained from the estimated covariance matrix based on the
received data samples, the virtual steering matrix is sensitive to
the noise contamination. To clearly demonstrate the sufficient
DOFs for localization of a large number of targets, we use
2000 snapshots in presence of noise with a 10 dB input SNR. It
is evident that all 56 signals can be identified correctly, which
demonstrates the effectiveness of the CA-CFO in resolving
more targets.

C. Sparsity-based Method versus Subspace-based Method

In Figs. 11–13, we compare the sparsity-based method and
the MUSIC algorithm with spatial smoothing (MUSIC-SS)
applied to the CA-CFO configuration. Note that the spatial
smoothing technique is applied to the covariance matrix of the
virtual measurement vector z so that its rank can be restored
before the MUSIC algorithm is applied. In this case, only
consecutive lags, i.e., [−7, 7], can be used so that every sub-
matrix has a similar manifold. The corresponding number of
available DOFs is less than that of the proposed sparsity-based
approach, which utilizes all unique lags [34]. In Fig. 11, we
examine their resolution for Q = 5 closely spaced targets,
whose true positions are shown in Fig. 11(a). The localization
results, depicted in Figs. 11(b) and 11(c), are obtained by
using 500 snapshots with a 0 dB SNR. It is clear that the
sparsity-based method outperforms the MUSIC-SS approach
for resolving the closely spaced targets, since it exploits
all distinct lags to form a virtual space-frequency structure,
thus yielding a larger array aperture and frequency span
compared to the corresponding MUSIC-SS technique which
only uses consecutive lags. The respective RMSE performance
is compared in Figs. 12 and 13 under the same target scenario
considered in Figs. 8 and 9, whereas Q = 2 targets located at
(10◦, 1300 m) and (25◦, 1700 m) are present. In Fig. 12, 500
snapshots are used, while a −5 dB SNR is assumed in Fig. 13.
It is evident that the proposed sparsity-based method achieves
a lower RMSE than the MUSIC-SS due to the higher number
DOFs in both angular and range domains. This simulation
example shows that the sparsity-based method achieves better
performance than the MUSIC-SS counterparts do.

D. Proposed Method versus Existing Methods

In Figs. 14–16, we compare the performance of the pro-
posed method with the existing methods using sparse arrays.
The methods in [42] and [43], which are referred to as the
Nested-MUSIC and Nested-CS, respectively, employ a nested
array configuration but with the uniform time-delayer and
frequency increment. As a consequence, it has only O(Nt)
frequency DOFs with a smaller spectral span for a coarse
range resolution, although it has the same O(N2

t ) spatial
DOFs as the proposed coprime FDA radar configuration.
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The same target scenario considered in Figs. 11–13 is used
for performance comparison. Fig. 14 depicts the angle-range
resolution, wherein the true positions and results obtained
from the proposed method are reproduced from Fig. 11(a)
and Fig. 11(c) as Fig. 14(a) and Fig. 14(b) for the conve-
nience of comparison. The corresponding results using the
Nested-MUSIC and Nested-CS methods are presented in Figs.
14(c) and 14(d), respectively. It is evident that only the
proposed method can resolve these closely spaced targets in
the range. Furthermore, the Nested-MUSIC method produces
more blurry spectra than the Nested-CS for targets with a
small angulare separation. The RMSE is compared in Figs.
15 and 16. It is clear that the Nested-MUSIC and Nested-CS
methods suffer from significant performance degradation in
the range domain due to the reduced spectral span and range-
domain DOFs. Accordingly, the Nested-CS outperforms the
Nested-MUSIC owing to its utilizations of all distinct lags in
the coarray structure.

VII. CONCLUSIONS

In this paper, we proposed a novel sparsity-based multi-
target localization algorithm, which incorporates both coprime
arrays and coprime frequency offsets in an FDA radar plat-
form. By exploiting the sensor position lags and frequency
differences, the proposed technique achieved a high number
of DOFs representing a larger array aperture and increased
frequency increments compared to conventional approaches.
These attributes enable high-resolution target localization of
significantly more targets than the number of physical sensors.
A fast algorithm was developed that cast the 2-D sparse
reconstruction problem as separate 1-D sparse reconstruc-
tion problems, thus effectively reducing the computational
complexity. The offerings of the proposed technique were
demonstrated by simulation results.
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Fig. 6. RMSE versus the number of snapshots using the joint and two-step estimation methods (Q = 2 and SNR= −5 dB). (a) RMSEθ ; (b) RMSER
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Fig. 7. The localization results using different schemes (Q = 8) (a) True; (b) ULA-UFO; (c) CA-UFO; (d) ULA-CFO; (e) CA-CFO.
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100 200 300 400 500 600 700 800 900 1000
The number of snapshots

10-2

10-1

100

R
M
SE

(d
eg
)

ULA-UFO

ULA-CFO

CA-UFO

CA-CFO

100 200 300 400 500 600 700 800 900 1000
The number of snapshots

100

101

102

R
M
SE

(m
)

ULA-UFO

ULA-CFO

CA-UFO

CA-CFO

(a) (b)

Fig. 9. RMSE versus the number of snapshots (Q = 2 and SNR= −5 dB). (a) RMSEθ ; (b) RMSER
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Fig. 10. The localization results using CA-CFO (Q = 56). (a) True; (b) Estimated
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Fig. 11. The localization results for different methods using CA-CFO (Q = 5, T = 500, and SNR= 0 dB) (a) True; (b) MUSIC-SS; (c) Proposed.
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Fig. 12. RMSE versus SNR for different methods using CA-CFO (Q = 2 and T = 500). (a) RMSEθ ; (b) RMSER
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Fig. 13. RMSE versus the number of snapshots for different methods using CA-CFO (Q = 2 and SNR= −5 dB). (a) RMSEθ ; (b) RMSER
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Fig. 14. The localization results for different methods (Q = 5, T = 500, and SNR= 0 dB) (a) True; (b) Proposed; (c) Nested-MUSIC; (d) Nested-CS.
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Fig. 15. RMSE versus the SNR for different methods (Q = 2 and T = 500). (a) RMSEθ ; (b) RMSER
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