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Abstract—Modern radio telescopes commonly use antenna
arrays to achieve high-resolution imaging, and various beam-
forming techniques have been developed in radio astronomy to
generate dirty images. Because the manifold of a radio telescope
array varies over time due to Earth rotation, beamformers are
separately designed and implemented at each time epoch, and
the resulting images are averaged over multiple epochs to form
enhanced dirty images. Because astronomical scenes are typically
sparse, we propose a new method through sparse reconstruction
to obtain clean astronomical images. To reduce the computational
complexity, a singular value decomposition based compressive
sensing scheme is applied. The proposed method offers reduced
computational complexity while maintaining the high quality
of the sparse reconstruction. Unlike traditional beamforming
techniques which require an additional deconvolution procedure
for clean image formation, the proposed technique provides clean
astronomical images directly with accurate estimation of the
source position and intensity.

Index Terms—Compressive sensing, data fusion, dimension
reduction, radio astronomical imaging.

I. INTRODUCTION

Modern radio astronomical telescopes commonly use an

array consisting of multiple antennas to construct astronomical

images based on the principle of radio interferometry [1]. Ra-

dio astronomical images can be obtained using beamforming

methods [2]–[5]. Among them, delay-and-sum (DAS) is a

conventional data-independent beamformer, whereas minimum

variance distortionless response (MVDR) [6] and adaptive

angular response (AAR) [2] are adaptive beamforming techni-

ques commonly used in radio astronomy. Because the manifold

of radio telescope arrays varies over time due to Earth rotation,

beamformers are separately designed and implemented at

different time epochs during which the array manifold is consi-

dered unchanged. The resulting images obtained at these time

epochs are then averaged to form enhanced images, typically

over a multi-hour period [3]. Such images are commonly

referred to as dirty images because of their limited image

resolution determined by the array aperture. The corresponding

clean images can be obtained through image deconvolution.

Two deconvolution techniques, namely, the CLEAN method

[7] and the maximum entropy method [8], are commonly used

to reconstruct clean radio astronomical images.

Because astronomical objects are distantly separated, as-

tronomical scenes are typically sparse. In radio astronomical
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imaging, the sparsity is further enhanced because signals at

different frequency bands are separately processed. Therefore,

sparse reconstruction techniques find useful in astronomical

imaging in recent years [9]–[12]. However, in the literature,

sparse reconstruction is only utilized for each time epoch. Few

methods utilize coherent combining of the data observed over

multiple time epochs to improve the image quality [13].

In this paper, we propose a new sparse reconstruction-

based method to obtain clean astronomical images directly.

In this method, the visibility data over different time epochs

are fused to improve the robustness and quality of the resulting

images. Data fusion is designed to effectively exploit the

synthesized array aperture due to Earth rotation. Compared to

beamforming-based techniques, data fusion is more important

in sparse reconstruction-based methods because of the nonli-

near thresholding implicitly implemented in their computati-

ons. This paper offers two major contributions, i.e., the fusion

of the visibility data over multiple time epochs for imaging

performance improvement, and the utilization of compressive

sensing (CS) for computational complexity reduction. Note

that, unlike traditional beamforming techniques which require

an additional deconvolution step to generate clean images,

the proposed technique provides clean astronomical images

directly and enables accurate estimation of the source position

and intensity.

Notations: We use lower-case (upper-case) bold characters

to denote vectors (matrices). IN denotes the N ×N identity

matrix. (·)T and (·)H denote the transpose and the Hermitian

transpose of a matrix or a vector, respectively. Diag(·) denotes

a diagonal matrix with the elements of a vector as the diagonal

entries, whereas diag(·) denotes a vector consisting of the

diagonal entries of a general matrix. vec(·) converts a matrix

to a vector by stacking the columns of the matrix one under

the other.

II. SYSTEM MODEL

In radio astronomy, we commonly use two coordinate

systems, as shown in Fig. 1, respectively for the telescope

array and the astronomical objects [14]. The vector baseline dλ

connects the two antennas in the (u, v, w) coordinate system,

measured in wavelength. The component w is measured in

the phase reference position direction s0, and components u
and v are measured in a plane normal to the direction s0.

The (�,m) coordinate system corresponds to the projection



Fig. 1. Geometric relationship between a source under observation I(�,m)
and an interferometer or one antenna pair of an array.

of the celestial sphere onto a plane that is a tangent at the

field center, measured in radians. Consider a radio telescope

array consisting of P antennas, and astronomical sources are

represented as D point sources in a specific observation area

of interest. The source intensity is expressed as

I(�,m) =

D∑
d=1

I(�d,md)δ(�− �d)δ(m−md), (1)

where I(�d,md), d = 1, · · · , D, denotes the source intensity

at position (�d,md), and δ(·) denotes the Dirac delta function.

Radio astronomical imaging is based on the visibility data,

which is the correlation of the received array signals. Denote

uk
i and vki as the baseline component at the i-th antenna and

time epoch tk. The visibility is expressed as V (u, v), where

u ≡ uk
ij = uk

i − uk
j and v ≡ vkij = vki − vkj respectively

stand for the baseline (between antennas i and j) in two

orthogonal coordinate axes on the Earth surface as depicted in

Fig. 1. Under certain standard approximations, such as planar

arrays and small field of view imaging, the visibility and the

astronomical source intensity for uncorrelated source points

are associated with the two-dimensional Fourier transform,

expressed as [3]

V (uk
ij , v

k
ij) =

D∑
d=1

I(�d,md)e
−j2π(uk

ij�d+vk
ijmd), (2)

where j =
√−1 is the imaginary unit. By selecting a

reference point and denoting its coordinate as (uk
0 , v

k
0 ), we

can reformulate (2) as

V (uk
ij , v

k
ij) =

D∑
d=1

e−j2π(uk
i,0�d+vk

i,0md)I(�d,md)

· ej2π(uk
j,0�d+vk

j,0md),

(3)

which can be further expressed in a matrix form as

Rk = AkBAH
k . (4)

Here, Ak = [ak(�1,m1), · · · ,ak(�D,mD)] denotes

the telescope array manifold matrix at time epoch

tk, where ak(�d,md) = [e−j2π(uk
1,0�d+vk

1,0md), · · · ,

e−j2π(uk
P,0�d+vk

P,0md)]T is the array steering vector of the

d-th source and B = Diag [I(�1,m1), · · · , I(�D,mD)] is a

diagonal matrix representing the intensity of point sources.

In practice, the array received signals are contaminated by

additive system noise. Assuming independent and identically

distributed (i.i.d.) additive white Gaussian noise at each an-

tenna with noise power σ2
n, the visibility matrix at time epoch

tk can be expressed as

R̃k = AkBAH
k + σ2

nIP . (5)

III. BEAMFORMING-BASED RADIO ASTRONOMICAL

IMAGING

Image formation is an inverse problem based on the visi-

bility matrix observed at all baseline positions. A well-known

classical imaging technique is the data-independent DAS be-

amformer, which computes the estimated source intensity at

all positions within the interested region ∀(�,m) ∈ Ω as [3]

IDAS(�,m) =
1

K

K∑
k=1

aH
k (�,m)R̃kak(�,m), (6)

where K denotes the number of time epochs.

In order to improve the image resolution, a number of

adaptive beamforming techniques have been developed for

radio astronomical imaging. Two commonly used adaptive

beamformers in radio astronomy are the MVDR beamformer

[6], which is given as

IMVDR(�,m) =

K∑
k=1

1

aH
k (�,m)R̃

−1

k ak(�,m)
, (7)

and the AAR beamformer [2], which is expressed as

IAAR(�,m) =

K∑
k=1

aH
k (�,m)R̃

−1

k ak(�,m)

K∑
k=1

aH
k (�,m)R̃

−2

k ak(�,m)

. (8)

For these beamforming-based techniques, the images are for-

med at each time epoch. The resulting images at different time

epochs are then averaged over a long time period, typically in

the order of hours, to form the final dirty image. A clean

image with a higher resolution can be obtained by performing

deconvolution to the dirty image.

IV. PROPOSED METHOD

Considering the fact that the sources are distant in the

sky, astronomical images are sparse as most areas of the

image are empty. In this section, we consider the image

construction based on sparse reconstruction techniques. Fusion

of the observed visibility data over different time epochs, and

the utilization of the CS kernels based on the dictionary matrix

are then discussed.



A. Sparse Image Reconstruction

Consider b = diag(B) = [I(�1,m1), · · · , I(�D,mD)]
T

as a

high-dimensional S-sparse vector. Vectorizing the covariance

matrix R̃k in (5) becomes

r̃k = rk + σ2
ni, (9)

where r̃k = vec(R̃k), rk = vec(AkBAH
k ) and i = vec(IP ).

The reconstruction of the image vector b from the measured

visibilities r̃k can be formulated as a CS problem,

r̃k = Φkb+ σ2
ni, (10)

where Φk ∈ C
P 2×D is the dictionary matrix at time epoch

tk. Each column of the dictionary matrix is normalized.

This is a standard linear signal model used in CS and can be

solved using many CS techniques, such as the orthogonal ma-

tching pursuit (OMP), least absolute shrinkage and selection

operator (LASSO), and Bayesian sparse learning techniques

[15]–[19]. However, the observation obtained at a single time

epoch may not necessarily provide sufficient measurements

to ensure robust imaging. To address this issue, we consider

the data fusion over multiple time epochs in the following

subsection.

B. Fusion of Multi-Epoch Visibility Data

The data observed at different time epochs correspond to

the image scene with the same sparse support. Generally

speaking, the raw data measured at different time epochs

and different locations cannot be synchronously fused because

of the different signal phases and propagation environments.

For the underlying radio astronomical imaging, however, the

values of b represent the power which are all positive and can

be considered invariant with respect to different time epochs.

We divide the entire observation time into several blocks,

with each block including M time epochs. Then, stacking the

visibility data observed at one block results in

x =

⎡
⎢⎢⎢⎣

r̃1
r̃2
...

r̃M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Φ1

Φ2

...

ΦM

⎤
⎥⎥⎥⎦ b+ σ2

n

⎡
⎢⎢⎢⎣

i
i
...

i

⎤
⎥⎥⎥⎦ . (11)

It is clear that the synthetic array baselines observed at diffe-

rent time epochs act as an equivalent array with an extended

array aperture. Also, through the stacking of the vectorized

visibility, the dimension of the measurement increases so that

it helps to ensure the satisfaction of the restricted isometry

property (RIP) condition for robust image construction [22].

C. Dimension-Reduced Sparse Reconstruction

Note that the dimension of the measurement x is determined

by both the number of antennas P and the number of time

epochs M . With the development of new radio telescopes

such as the Square Kilometer Array (SKA) [20] and the

Low-Frequency Array (LOFAR) [21], the number of antennas

increases significantly. Hence, the computational complexity

is a great concern because of the high-dimensional matrix

operation. In order to reduce the complexity, a dimension-

reduction scheme is utilized. Let Ψ ∈ C
N×MP 2

(N < MP 2)

be a CS matrix consisting of N row-orthonormal sensing

kernels, i.e, ΨΨH = IN . Applying Ψ to x in (11) yields,

y = Ψ

⎡
⎢⎢⎢⎣

r̃1
r̃2
...

r̃M

⎤
⎥⎥⎥⎦ = Ψ

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

Φ1

Φ2

...

ΦM

⎤
⎥⎥⎥⎦ b+ σ2

n

⎡
⎢⎢⎢⎣

i
i
...

i

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ . (12)

As such, the stacked dictionary matrix is compressed from

Φ = [ΦT
1 , · · · ,ΦT

M ]T ∈ C
MP 2×D to ΨΦ ∈ C

N×D.

Accordingly, the vectorized visibility vector x ∈ C
MP 2

is

compressed to a measurement vector y ∈ C
N . The com-

pression enables us to retrieve b from a lower-dimensional

compressed measurement vector y in an efficient manner since

the essential information contained in x is preserved.

Random sensing kernels such as Gaussian and Bernoulli

kernels are commonly adopted in the CS literature [23], [24].

In these cases, the imaging quality suffers a signal-to-noise

ratio (SNR) loss which is roughly proportional to the com-

pression factor MP 2/N . In astronomical imaging, the signals

are extremely weak; hence, we cannot afford significant power

loss. Unlike random CS matrices, utilizing well-designed CS

matrices may reduce the computational complexity without

suffering the sparse reconstruction performance loss. Exam-

ples of such CS matrix design strategies include those based

on singular value decomposition (SVD) [25] and maximum

mutual information [26], [27].

In this paper, we notice the fact that the array manifold

matrices for close time epochs are similar. In other words,

there are high redundancies in Φ so that its dimension can

be reduced without losing useful information and energy. As

such, we apply SVD on the stacked dictionary matrix Φ to

design the CS matrix. Decompose Φ as

Φ = UΣV H, (13)

where U is an MP 2 ×MP 2 column-orthonormal matrix, V
is a D×D column-orthonormal matrix, and Σ is an MP 2×D
matrix with singular values located in the diagonal. We select

N principal singular values, and denote the corresponding N

columns of U as Ū . Then, Ū
H ∈ C

N×MP 2

is taken as the

CS matrix Ψ. A rule of thumb is to retain enough singular

values to make up 90% of the energy in Σ. That is, the sum of

the squares of the retained singular values should be at least

90% of the sum of the squares of all the singular values.

Take OMP as an example to perform sparse reconstruction.

The computational complexity before the dimension reduction

is O(SMP 2D), whereas after the dimension reduction beco-

mes O(SND). Although SVD requires some extra computa-

tions, it is noted that such CS matrices are independent of the

signal and are determined only by the array manifold matrices.

Therefore, they can be precomputed off-line.

V. SIMULATION RESULTS

In this section, we provide simulation results to demon-

strate the performance of the proposed method and compare
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(a) Simulated astronomical scene
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(b) DAS dirty image
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(c) MVDR dirty image
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(d) AAR dirty image
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(e) Method 1: OMP performed in
each time epoch
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(f) Method 2: OMP performed in
each block (no CS kernel)
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(g) Method 3: OMP performed in
each block (random CS kernel)
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(h) Method 4: OMP performed in
each block (SVD-based kernel)

Fig. 2. Comparison of imaging methods at SNR = −20 dB.

the results with traditional beamforming-based astronomical

imaging methods including DAS, MVDR and AAR. As an

example, the 27-element Very Large Array (VLA) [28] is

considered with an observation time period of approximately 8

hours. The total number of time epochs is 690. The simulated

astronomical region, shown in Fig. 2(a), contains a total num-

ber of D = 81×81 = 6, 561 pixels, and has three point sources

present with the same intensity. The input SNR is defined

as the power ratio between the average power of the three

sources and the noise power. The row-orthogonal random CS

kernels are drawn from an i.i.d. random Gaussian distribution

CN (0, 1). 90% of the energy is kept when designing the CS

matrix utilizing the SVD of the stacked dictionary matrix.

To verify the effectiveness of the proposed imaging method

in a low SNR environment, we set the SNR to be −20 dB.

The simulation results are shown in Fig. 2. All three sources

could be detected by different imaging methods. However,

for beamforming-based imaging methods, the three sources

in the dirty images shown in Figs. 2(b)–2(d) are smeared and

corrupted by a high level of sidelobes.

For the sparse reconstruction-based imaging techniques,

four different implementation methods are considered. For

Method 1, sparse image reconstruction is taken place using

a single-epoch measured data, and the resulting images are

averaged over all the epochs. Methods 2, 3 and 4 exploit

M epochs in each image reconstruction, and the final image

is generated by averaging all the blocks. More specifically,

Method 2 implements (11) without CS kernel, Method 3

implements (12) with Gaussian random projections, whereas

Method 4 implements (12) with the designed SVD-based CS

kernel. In all simulations, M = 10 is assumed.

The result of a single-epoch image is shown in Fig. 2(e),

where several insignificant sporadic false positives around true

point sources are observed. The images produced with multi-

time-epoch data are shown in Figs. 2(f)–2(h). In Fig. 2(f), less

false positives appear compared to Fig. 2(e). In Fig. 2(g), the

compressive ratio is set as 5, whereas in Fig. 2(h) the average

compressive ratio is approximately 20 and the obtained perfor-

mance is similar to that in Fig. 2(f). We can conclude that the

designed CS matrix achieves comparable performance with a

significantly reduced computational complexity.

To quantitatively assess the imaging performance, we adopt

the structural similarity (SSIM) index [29] as the evaluation

criterion. From the comparison summarized in Table I we

observe that Method 2 performs better than Method 1, thereby

verifying the fact that data fusion of multiple time epochs can

improve the sparse reconstruction performance. The imaging

performance gap between Method 1 and Method 2 becomes

more apparent for lower SNR values. Method 3, which exploits

a random CS kernel, offers the worst imaging performance due

to the SNR loss, whereas Method 4 (the proposed method)

achieves a comparable performance to Method 2 since the

designed CS matrix keeps most of the energy.

TABLE I
IMAGING QUALITY COMPARISON WITH DIFFERENT SNR LEVELS

SNR(dB) Method 1 Method 2 Method 3 Method 4

-25 0.69 0.86 0.60 0.70
-20 0.96 0.97 0.68 0.96
-15 0.99 0.99 0.99 0.98

VI. CONCLUSION

In this paper, we proposed a new astronomical imaging

method based on sparse reconstruction. The effectiveness of

the proposed method was validated by simulation results with

the VLA being considered as an example. Compared with the

beamforming-based astronomical imaging methods, the pro-

posed technique provides high-fidelity image reconstruction

and power estimation. Fusion of measured data over multiple

time epochs is effective in improving the reconstructed astro-

nomical images. Also, the SVD-based CS matrix significantly

reduces the computational complexity without compromising

the performance of sparse image reconstruction.
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