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Abstract—Frequency modulated (FM) signals are frequently
encountered in radar signal processing. In practice, such signals
may experience distortions due to target radar cross section
fluctuation, propagation fading, and line-of-sight obstruction.
Such distortions make time-frequency presentations and analyses
challenging. The problem becomes even more difficult for data
with gapped missing samples, i.e., data samples are missing con-
secutively. In this paper, we address this problem in the context
of resilient quadratic time-frequency distributions, which are
achieved by applying robust spectrum analysis techniques to the
instantaneous autocorrelation functions. In addition, utilization
of compressive sensing and sparse reconstruction techniques, in
lieu of the conventional Fourier transform, further improves the
quality of the estimated time-varying instantaneous frequency
signatures.

Index Terms—Radar signal processing, nonstationary signal,
time-frequency analysis, missing sample, compressive sensing.

I. INTRODUCTION

Nonstationary frequency modulated (FM) signals with in-

stantaneous narrowband signatures are widely observed in

various applications, such as radar, sonar, and radio astronomy

[1]. In radar systems, linear frequency modulated (LFM) wave-

forms are commonly used as sensing signals [2]. The return

signals scattering back from moving and maneuvering targets

exhibit time-varying Doppler and micro-Doppler signatures,

depending on the nature of the target motions [3, 4]. Generally,

time-frequency distributions (TFDs) provide effective means

for the analysis, characterization, and visualization of such

nonstationary signals [5–7].

Time-frequency (TF) analysis methods can be classified into

linear transforms and quadratic TFDs (QTFDs). Examples of

the former include short-time Fourier transform (STFT), Gabor

transform, fractional Fourier transform, and wavelet transform.

These transforms represent the nonstationary signal as a

weighted sum of atoms or bases that capture the signal local

behavior in some ways. QTFDs, also referred to as bilinear

TFDs, on the other hand, depict the signal power distribution

in the joint TF domain, and generally yield better resolution

than their linear transform counterparts. The aim of QTFDs

is to concentrate the signal power along the instantaneous

frequency (IF) of each signal components. In the case of

radar backscattering from a moving target, such concentration

accurately reveals the target velocity, acceleration, and higher-

order motion behaviours.

In practice, such signals may experience distortions due

to, for example, target radar cross section (RCS) fluctuation,

propagation fading, line-of-sight obstruction, and interference

removal. Such distortions make TF presentations and analyses

challenging. Several robust TF analysis methods have been

developed based on TF kernels and sparse reconstruction

[8–12]. Proper TF kernels, particularly adaptive ones that

are optimized with the data, perform two-dimensional (2-D)

filtering in the TF domain, thereby effectively reducing the

effect of missing samples.

A more challenging situation arises when the missing data

occurs consecutively, yielding gapped missing data reception.

This may happen when the signal obstruction or fading spans

over multi-sample periods. In this case, the above methods

generally fail to function well.

In this paper, we address this challenging problem of

nonparametric TF analysis of nonstationary FM signals in

the context of resilient QTFDs. We notice that, at each time

instant, the instantaneous autocorrelation function (IAF) is

stationary with respect to the time lag, whereas the Fourier

transform of the IAF with respect to the time lag, repeated

computed for all time instants, yields the QTFD. As such,

resilient QTFDs of nonstationary FM signals can be achieved

by applying robust spectrum analysis techniques to recover

the missing IAF entries. In particular, we choose the missing

data iterative adaptive approach (MIAA) [13] approach as an

example to perform missing data recovery in the IAF domain.

QTFDs are then obtained by performing Fourier transform

of the IAF with respect to the time lag. Alternatively, we

can utilize compressive sensing (CS) and sparse reconstruction

techniques, in lieu of the Fourier transform, to further improve

the quality of the estimated time-varying power spectral sig-

natures. In addition, TF kernels can be applied between the

abovementioned two steps to mitigate the effect of cross-terms.

All these claims are supported by simulation results.

Notations. A lower (upper) case bold letter denotes a vector

(matrix). (·)∗ denotes complex conjugation. Fx(·) and F−1
x (·)

respectively represent the discrete Fourier transform (DFT)

and inverse DFT (IDFT) with respect to x. || · ||1 denotes the

L1 norm operation. In addition, δ(t) denotes the Kronecker

delta function.

II. SIGNAL MODEL

A. Signals with Missing Samples

Consider a discrete-time signal, x(t), t = 1, ..., T , which

comprises a single or multiple components of nonstationary

FM signals. Denote r(t) as its observation data with N missing



samples, where 0 ≤ N < T . As such, r(t) is the product of

x(t) and an “observation mask”, R(t), i.e.,

r(t) = x(t) ·R(t), (1)

where

R(t) =

{
1, if t ∈ S,
0, if t /∈ S.

(2)

In the above expression, S ⊂ {1, ..., T} is the set of observed

time instants and its cardinality is denoted as |S| = T −N .

For convenience, we denote X(t) = 1 for convenience, and

define the missing data mask as

M(t) = X(t)−R(t) =

N∑
i=1

δ(t− ti), ti /∈ S. (3)

Accordingly, the missing signal is expressed as

m(t) = x(t) ·M(t) =
N∑
i=1

x(t)δ(t− ti) =
N∑
i=1

x(ti)δ(t− ti),

(4)

and the observed data with the missing samples is expressed

as

r(t) = x(t)−m(t) = x(t)−
N∑
i=1

x(ti)δ(t− ti). (5)

In this paper, as we consider gapped missing data, missing

samples are assumed to occur as a single or multiple groups of

consecutive missing samples. The number of missing samples

in each group is N0. The positions of the missing sample

groups are randomly chosen, and different groups do not

overlap. As such, we observe K missing positions, where the

total number of missing samples becomes N = KN0.

B. Joint-Variable Domain Representations

The ultimate goal of QTFD analysis is to achieve sharp

power concentration in the TF domain on or closely near the

true signal IFs. The IAF domain and the ambiguity domain

also provide convenient 2-D joint-domain signal represen-

tations for signal processing. In particular, TF kernels are

designed as multiplicative functions in the ambiguity domain,

whereas the stationarity of the IAF facilitates the missing

sample recovery as to be discussed in the subsequent section.

The IAF of x(t) is defined as

Cxx(t, τ) = x (t+ τ)x∗ (t− τ) , (6)

where τ is the time lag.

The DFT of the IAF Cxx(t, τ) with respect to τ is the well-

known Wigner-Ville distribution (WVD), expressed as,

Wxx(t, f) = Fτ [Cxx(t, τ)] =
∑
τ

Cxx(t, τ)e
−j4πfτ . (7)

Note that 4π is used to perform the DFT instead of 2π
because the time-lag τ takes integer values. Because Cxx(t, τ)
is conjugate symmetric and CRR(t, τ) is real and symmetric

with respect to τ , Crr(t, τ) is conjugate symmetric with τ as

well. As such, the WVD of the observed data, Wrr(t, f) =
Fτ [Crr(t, τ)], is real-valued.

Applying DFT to the IAF Cxx(t, τ) with respect to t yields

the ambiguity function (AF), expressed as,

Axx(θ, τ) = F [
tCxx(t, τ)] =

∑
t

Cxx(t, τ)e
−j2πθt, (8)

where θ is the frequency shift or Doppler. While the AF is

mathematically similar to the WVD (performing DFT with

respect to t instead of τ ), the AF entries are in general complex

as the IAF is conjugate symmetric only with τ but not with

t. The AF entries are conjugate symmetric with respect to the

origin.

III. EFFECT OF MISSING SAMPLES AND RECOVERY

TECHNIQUES

A. Effect of Missing Samples

From (1) and (6), the IAF of r(t) is expressed as

Crr(t, τ) = Cxx(t, τ)CRR(t, τ), (9)

where CRR(t, τ) is the IAF of the observation mask R(t). To

examine the effect of the missing data samples more clearly,

we use R(t) = X(t)−M(t) to obtain

CRR(t, τ)= CXX(t, τ)+CMM (t, τ)−CXM (t, τ)−CMX(t, τ),
(10)

where CXX(t, τ) and CMM (t, τ) are the IAF of X(t) and

M(t), respectively, and CXM (t, τ) and CMX(t, τ) are two

IAF cross-terms between M(t) and X(t). A missing sample

in m(t) contributes to both CXM (t, τ) and CMX(t, τ) terms,

yielding two crossing lines in the IAF domain. Because both

the TFD and the AF are related with the IAF by the one-

dimensional (1-D) Fourier transform, the missing samples in

the IAF domain yields undesirable artifacts in the TFD and

AF domains [8].

B. Demonstration Example

For clear understanding of the effect of missing samples, we

first show the joint-variable representations for an FM signal

without missing samples. Then, the case of random missing

samples is demonstrated. Afterwards, we show the case with

gapped data, which is the main focus of this paper.

A single FM signal is considered for simple and clear

illustrations. Its phase trajectory, which is unknown to the

receiver, is given by

φ(t) = 0.05t+ 0.05t2/T + 0.1t3/T 2, (11)

for t = 1, ..., T , where T is chosen to be 128.

Fig. 1(a)–a(d) respectively show the real-part of the wave-

form, the WVD, the AF, and the IAF of the FM signal. No

noise is added. The IAF is only computed in the diamond

region because values outside this region are unavailable due

to zero-padding of the time-domain data in evaluating the IAF.

For the underlying single FM signal case, the magnitude of

the IAF is constant within the diamond-shaped region. It is

observed that the WVD shows a clear signal TF signature,

with the exception of cross-term contamination in the central

portion. The AF has a peak value in the origin, and exhibits

a broadened slope corresponding to the IF laws of the FM

signal.
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Fig. 1 Real-part waveform, WVD, AF, and IAF of a single-
component FM signal without missing samples.

In Fig. 2, we show the results when 37.5% of the samples

(48 samples) are randomly missing. The missing samples

are generated using the uniform distribution. In this case,

it is verified that each missing sample in the time-domain

waveform causes two diagonal missing lines in the IAF. The

missing samples collectively yield a high level of undesired

artifacts in both the WVD and AF domains with . Note that

such artifacts cannot be improved by increasing the signal

power.

Fig. 3 shows the results when the same number samples

are missing but in a gapped manner. In this example, the

missing samples occur as 8 gapped blocks, and the length

of each block is 6 samples. Because of the gapped missing

samples considered herein, the IAF missing samples appear

as gapped as well. In this case, we observe clear aliased

structures of artifacts in the WVD and AF near the original

auto-terms. Because each gap contains 6 samples which act

as a rectangular window, the aliasing exhibits a sinc function-

like pattern. The actual energy of the alias fluctuates because

of the superposition of the effect of multiple gapped missing

sample groups. Comparing the results depicted in Figs. 2 and

3, there exists a clear difference between the random missing

sample case and the gapped missing sample case.

C. Mitigating Effect of Missing Samples – TF Kernel Ap-
proach

In [8], robust QTFD construction of FM signals with

random missing samples is considered. The method proposed

therein mitigates the effect of missing samples by applying

a TF kernel to the joint-variable representations. TF kernels

are multiplicative filters in the ambiguity domain and translate

to 2-D convolution (smoothing) in the TF domain to reduce

the effect of artifacts. TF kernels can be classified into fixed

(signal-independent) and adaptive (signal-dependent). A large

class of signal-independent kernels, commonly known as the

Cohen’s class of TFDs, are available [5]. On the other hand,

adaptive kernels, such as the commonly used adaptive optimal
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Fig. 2 Real-part waveform, WVD, AF, and IAF of a single-
component FM signal with 37.5% randomly missing samples.
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Fig. 3 Real-part waveform, WVD, AF, and IAF of a single-
component FM signal with 37.5% gapped missing samples.

kernel (AOK) [14] and the recently developed adaptive direc-

tional TF distribution (ADTFD) [15], generally yield better

results than the fixed kernels.

Fig. 4(a) shows the QTFD, after applying the AOK, for the

signals with the 37.5% random missing samples, as depicted

in Fig. 2. It is clear that the effect of missing samples is

significantly reduced and a relatively clean TFD is achieved.

Fig. 4(b) shows the QTFD of the same signal after the ADTFD

is applied. The artifacts due to missing samples are also

mitigated with a higher residual around the signal IFs. Figs.

4(c) and 4(d) show the corresponding results for the gapped

missing case. While the effect of artifacts is again significantly

reduced as compared to the WVD counterparts, respectively

shown in Figs. 2(b) and 3(b), the residual effect is higher than

the results obtained in the case of random missing samples,

as shown in Figs. 4(a) and 4(b).
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Fig. 4 TFD using AOK and ADTFD for FM signal with 37.5%
randomly missing samples and 37.5% gapped missing samples.
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(a) applied to time-domain data (b) applied to IAF

Fig. 5 WVD of reconstructed signal using the proposed method
for the FM signal with 37.5% gapped missing samples.

D. Mitigating Effect of Missing Samples – Data Interpolation

An alternative approach is to fill the missing samples

through data interpolation based on a discrete set of known

data. In [13], a missing data iterative adaptive approach

(MIAA) is develop to fill the missing samples for stationary
signals. The MIAA approach works well for arbitrary data

missing patterns, such as gapped missing data samples as well

as for uniform or non-uniform sampling, provided that the

original signals are stationary. In addition, MIAA can be used

for both interpolation and extrapolation of data sequences. The

concept behind the MIAA approach is sequential estimation of

the Capon spectrum that minimizes the weighted least squares

between the received signal vector and the estimates. Then,

missing samples are recovered based on the estimated frequen-

cies and their coefficients. The Capon spectrum estimation

and missing sample recovery can be iterated for performance

improvement.

However, because the MIAA approach is designed for

stationary signals, it does not work properly for nonstationary

FM signals. Consider the single-component FM signal as

depicted in Fig. 3 with 37.5% gapped missing samples. In Fig.

5(a), we show the WVD of the recovered data after the MIAA

approach is applied to the time-domain FM signal waveform.

The result is very poor with even higher artifact spreading than

the WVD shown in Fig. 3(b).

IV. PROPOSED METHODS

A. Obtaining TFD Using Interpolated IAF

As we discussed earlier, while the FM signals are nonsta-

tionary, the IAF is stationary with respect to the time delay.

As such, we propose the application of the MIAA approach

to each column (time instant) of the IAF matrix, which is

stationary. Further, in lieu of the Capon estimator used in the

MIAA method, we can also use sparse reconstruction methods,

in the context of compressive sensing, for spectrum estimation.

Fig. 5(b) shows the improved WVD corresponding to the

IAF obtained after the IAF is interpolated and extrapolated us-

ing the MIAA approach. The resulting WVD shows significant

improvement as compared to Fig. 3(b), 4(c), 4(d), and 5(a).

The improved WVD is generally clean except for the cross-

terms, which are also observed in Fig. 1, because no kernels

are applied. That is, the effect of gapped missing samples is

substantially suppressed.

B. Obtaining TFD Using Sparse Reconstruction

As the signals are sparse represented in the TF domain,

sparse reconstruction methods have found useful for TFD

reconstruction. Denote c
[t]
xx as a vector that contains all IAF

entries along the τ dimension corresponding to time t, and d
[t]
xx

as a vector collecting all the QTFD entries for the same time t.

Note that c
[t]
xx may denote the original IAF, which corresponds

to the WVD, or its smoothed version as a result of applying a

kernel and missing sample recovery. Then, these two vectors

are related by the IDFT with respect to f , expressed as

c[t]xx = Gfd
[t]
xx, ∀t, (12)

where Gf is a matrix performing the IDFT with respect to f .

Because the signals are sparsely represented in the TF

domain, the non-zero entries of d
[t]
xx can be reconstructed

through sparse signal recovery techniques. The problem is

formulated as the following l1-norm optimization problem,

min ||d[t]
xx||1 s.t. c[t]xx −Gfd

[t]
xx = 0, ∀t. (13)

In this paper, we use the orthogonal matching pursuit (OMP)

[16] at each time instant. OMP is computationally attractive

and allows us to specify the number of non-zero entries (i.e.,

iterations) in each time instant. Other methods can also be

used for this purpose. For example, at the expense of a higher

computationally complexity, the Bayesian compressive sensing

methods [17, 18] generally yield a better TF reconstruction

performance and further allow consideration of the continuous

pattern of the TF signatures [19].

C. Simulation Results

Fig. 6(a) shows the sparse reconstruction results of the TFD,

which is based on the same IAF as used in Fig. 5(b). The

results truly follow the IFs, and a sharp TFD is achieved at

all time instants due to IAF extrapolation. Some perturbation

remains in the central portion due to cross-term effects. To

reduce the effect of cross-terms, we can apply TF kernels after

the gapped missing samples are filled and before performing

OMP for TFD reconstruction. Fig. 6(b) shows such results
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Fig. 6 Reconstructed TFD from OMP method for the FM signal
with 37.5% gapped missing samples.
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Fig. 7 Reconstructed TFD from different methods for the noisy
FM signal with 37.5% gapped missing samples (input SNR = 5 dB).

from the OMP with the application of the ADTFD, where the

cross-term effect is clearly removed.

In the next example, we demonstrate the effectiveness of the

proposed method in the presence of noise. The FM signal and

the gapped missing sample pattern remain the same except

that a noise that yields a 5 dB input signal-to-noise ratio

(SNR) is added. Fig. 7 shows the WVD without missing

sample recovery and kernel, WVD obtained from the IAF

with missing sample recovery using MIAA, the TFD obtained

using OMP from the IAF with missing sample recovery using

MIAA, and the TFD obtained using OMP from the IAF

with both MIAA-based missing sample recovery and ADTFD

kernel filtering. It is clear that the noise cause much higher

perturbation in the WVD with and without applying the MIAA

for missing sample recovery, as seen in Figs. 7(a) and 7(b). The

OMP result depicted in Fig. 7(c) is also degraded as compared

to the noise-free case. However, further applying the ADTFD

kernel enables restoration of the continuous IF signature, as

shown in Fig. 7(d).

V. CONCLUSIONS

In this paper, we have developed novel algorithms to achieve

resilient quadratic TF analysis for nonstationary FM signals

with gapped missing samples. The proposed techniques utilize

the stationarity of the IAF, and missing data recovery methods

developed for stationary signals are applied to recover missing

entries in the IAF. TFDs are then obtained using the Fourier

relationship between the IAF and TFD, which can be either

directly implemented or applied using sparse reconstruction

techniques.
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